1
|
Hustmyer CM, Landick R. Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression. Mol Microbiol 2024; 122:81-112. [PMID: 38847475 PMCID: PMC11260248 DOI: 10.1111/mmi.15283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.
Collapse
Affiliation(s)
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison
- Department of Bacteriology, University of Wisconsin-Madison
| |
Collapse
|
2
|
Zhao X, Vogirala VK, Liu M, Zhou Y, Rhodes D, Sandin S, Yan J. Exploring TRF2-Dependent DNA Distortion Through Single-DNA Manipulation Studies. Commun Biol 2024; 7:148. [PMID: 38310140 PMCID: PMC10838314 DOI: 10.1038/s42003-024-05838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2024] [Indexed: 02/05/2024] Open
Abstract
TRF2 is a component of shelterin, a telomere-specific protein complex that protects the ends of mammalian chromosomes from DNA damage signaling and improper repair. TRF2 functions as a homodimer and its interaction with telomeric DNA has been studied, but its full-length DNA-binding properties are unknown. This study examines TRF2's interaction with single-DNA strands and focuses on the conformation of the TRF2-DNA complex and TRF2's preference for DNA chirality. The results show that TRF2-DNA can switch between extended and compact conformations, indicating multiple DNA-binding modes, and TRF2's binding does not have a strong preference for DNA supercoiling chirality when DNA is under low tension. Instead, TRF2 induces DNA bending under tension. Furthermore, both the N-terminal domain of TRF2 and the Myb domain enhance its affinity for the telomere sequence, highlighting the crucial role of multivalent DNA binding in enhancing its affinity and specificity for telomere sequence. These discoveries offer unique insights into TRF2's interaction with telomeric DNA.
Collapse
Affiliation(s)
- Xiaodan Zhao
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore
| | - Vinod Kumar Vogirala
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Meihan Liu
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Yu Zhou
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technology University, 637551, Singapore, Singapore.
- NTU Institute of Structural Biology, Nanyang Technology University, 636921, Singapore, Singapore.
- Umeå university, KBC-huset (KB), Linnaeus väg 10, Umeå, 90187, Sweden.
| | - Jie Yan
- Department of Physics, National University of Singapore, 117551, Singapore, Singapore.
- Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.
| |
Collapse
|
3
|
van Heesch T, van de Lagemaat EM, Vreede J. Deciphering Sequence-Specific DNA Binding by H-NS Using Molecular Simulation. Methods Mol Biol 2024; 2819:585-609. [PMID: 39028525 DOI: 10.1007/978-1-0716-3930-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
H-NS is a DNA organizing protein that occurs in Gram-negative bacteria. It can form long filaments between two DNA duplexes by first binding to a high-affinity AT-rich nucleotide sequence and extending from there. Using molecular dynamics simulations and steered molecular dynamics, we are able to determine the free energy of formation and dissociation of a protein-DNA complex comprising an H-NS DNA-binding domain and a specific nucleotide sequence. The molecular dynamics simulations allow detailed characterization of the interactions between the protein and a specific nucleotide sequence. To quantify the strength of the interaction, we employ an additional potential based on protein-DNA contacts to speed up dissociation of the protein-DNA complex. The work required for the dissociation results in an estimate of the free energy of dissociation/complex formation. Our protocol can provide quantitative prediction of protein-DNA complex stability, while also providing high-resolution insights into recognition mechanisms. In this chapter, we have used this approach to quantify the sequence specificity of H-NS DNA-binding domains to various nucleotide sequences, thus elucidating the mechanism with which H-NS can specifically bind to AT-rich DNA.
Collapse
Affiliation(s)
- Thor van Heesch
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Eline M van de Lagemaat
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jocelyne Vreede
- van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Abstract
Magnetic tweezers are a single-molecule force and torque spectroscopy technique that enable the mechanical interrogation in vitro of biomolecules, such as nucleic acids and proteins. They use a magnetic field originating from either permanent magnets or electromagnets to attract a magnetic particle, thus stretching the tethering biomolecule. They nicely complement other force spectroscopy techniques such as optical tweezers and atomic force microscopy (AFM) as they operate as a very stable force clamp, enabling long-duration experiments over a very broad range of forces spanning from 10 fN to 1 nN, with 1-10 milliseconds time and sub-nanometer spatial resolution. Their simplicity, robustness, and versatility have made magnetic tweezers a key technique within the field of single-molecule biophysics, being broadly applied to study the mechanical properties of, e.g., nucleic acids, genome processing molecular motors, protein folding, and nucleoprotein filaments. Furthermore, magnetic tweezers allow for high-throughput single-molecule measurements by tracking hundreds of biomolecules simultaneously both in real-time and at high spatiotemporal resolution. Magnetic tweezers naturally combine with surface-based fluorescence spectroscopy techniques, such as total internal reflection fluorescence microscopy, enabling correlative fluorescence and force/torque spectroscopy on biomolecules. This chapter presents an introduction to magnetic tweezers including a description of the hardware, the theory behind force calibration, its spatiotemporal resolution, combining it with other techniques, and a (non-exhaustive) overview of biological applications.
Collapse
Affiliation(s)
- David Dulin
- LaserLaB Amsterdam and Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
5
|
Shetty D, Kenney LJ. A pH-sensitive switch activates virulence in Salmonella. eLife 2023; 12:e85690. [PMID: 37706506 PMCID: PMC10519707 DOI: 10.7554/elife.85690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
The transcriptional regulator SsrB acts as a switch between virulent and biofilm lifestyles of non-typhoidal Salmonella enterica serovar Typhimurium. During infection, phosphorylated SsrB activates genes on Salmonella Pathogenicity Island-2 (SPI-2) essential for survival and replication within the macrophage. Low pH inside the vacuole is a key inducer of expression and SsrB activation. Previous studies demonstrated an increase in SsrB protein levels and DNA-binding affinity at low pH; the molecular basis was unknown (Liew et al., 2019). This study elucidates its underlying mechanism and in vivo significance. Employing single-molecule and transcriptional assays, we report that the SsrB DNA-binding domain alone (SsrBc) is insufficient to induce acid pH-sensitivity. Instead, His12, a conserved residue in the receiver domain confers pH sensitivity to SsrB allosterically. Acid-dependent DNA binding was highly cooperative, suggesting a new configuration of SsrB oligomers at SPI-2-dependent promoters. His12 also plays a role in SsrB phosphorylation; substituting His12 reduced phosphorylation at neutral pH and abolished pH-dependent differences. Failure to flip the switch in SsrB renders Salmonella avirulent and represents a potential means of controlling virulence.
Collapse
Affiliation(s)
- Dasvit Shetty
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| | - Linda J Kenney
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch at GalvestonGalvestonUnited States
| |
Collapse
|
6
|
Bacterial H-NS contacts DNA at the same irregularly spaced sites in both bridged and hemi-sequestered linear filaments. iScience 2022; 25:104429. [PMID: 35669520 PMCID: PMC9162952 DOI: 10.1016/j.isci.2022.104429] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Gene silencing in bacteria is mediated by chromatin proteins, of which Escherichia coli H-NS is a paradigmatic example. H-NS forms nucleoprotein filaments with either one or two DNA duplexes. However, the structures, arrangements of DNA-binding domains (DBDs), and positions of DBD-DNA contacts in linear and bridged filaments are uncertain. To characterize the H-NS DBD contacts that silence transcription by RNA polymerase, we combined ·OH footprinting, molecular dynamics, statistical modeling, and DBD mapping using a chemical nuclease (Fe2+-EDTA) tethered to the DBDs (TEN-map). We find that H-NS DBDs contact DNA at indistinguishable locations in bridged or linear filaments and that the DBDs vary in orientation and position with ∼10-bp average spacing. Our results support a hemi-sequestration model of linear-to-bridged H-NS switching. Linear filaments able to inhibit only transcription initiation switch to bridged filaments able to inhibit both initiation and elongation using the same irregularly spaced DNA contacts.
Collapse
|
7
|
Modulating binding affinity, specificity and configurations by multivalent interactions. Biophys J 2022; 121:1868-1880. [PMID: 35450827 DOI: 10.1016/j.bpj.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
Biological functions of proteins rely on their specific interactions with binding partners. Many proteins contain multiple domains, which can bind to their targets that often have more than one binding site, resulting in multivalent interactions. While it has been shown that multivalent interactions play an crucial role in modulating binding affinity and specificity, other potential effects of multivalent interactions are less explored. Here, we developed a broadly applicable transfer matrix formalism and used it to investigate the binding of two-domain ligands to targets with multiple binding sites. We show that 1) ligands with two specific binding domains can drastically boost both the binding affinity and specificity and down-shift the working concentration range, compared to single-domain ligands, 2) the presence of a positive domain-domain cooperativity or containing a non-specific binding domain can down-shift the working concentration range of ligands by increasing the binding affinity without compromising the binding specificity, 3) the configuration of the bound ligands has a strong concentration dependence, providing important insights into the physical origin of phase-separation processes taking place in living cells. In line with previous studies, our results suggest that multivalent interactions are utilized by cells for highly efficient regulation of target binding involved in a diverse range of cellular processes such as signal transduction, gene transcription, antibody-antigen recognition.
Collapse
|
8
|
Abstract
The DNA-binding protein from starved cells, Dps, is a universally conserved prokaryotic ferritin that, in many species, also binds DNA. Dps homologs have been identified in the vast majority of bacterial species and several archaea. Dps also may play a role in the global regulation of gene expression, likely through chromatin reorganization. Dps has been shown to use both its ferritin and DNA-binding functions to respond to a variety of environmental pressures, including oxidative stress. One mechanism that allows Dps to achieve this is through a global nucleoid restructuring event during stationary phase, resulting in a compact, hexacrystalline nucleoprotein complex called the biocrystal that occludes damaging agents from DNA. Due to its small size, hollow spherical structure, and high stability, Dps is being developed for applications in biotechnology.
Collapse
|
9
|
Liang L, Ma K, Wang Z, Janissen R, Yu Z. Dynamics and inhibition of MLL1 CXXC domain on DNA revealed by single-molecule quantification. Biophys J 2021; 120:3283-3291. [PMID: 34280370 DOI: 10.1016/j.bpj.2021.03.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
CpG islands recruit MLL1 via the CXXC domain to modulate chromatin structure and regulate gene expression. The amino acid motif of CXXC also plays a pivotal role in MLL1's structure and function and serves as a target for drug design. In addition, the CpG pattern in an island governs spatially dependent collaboration among CpGs in recruiting epigenetic enzymes. However, current studies using short DNA fragments cannot probe the dynamics of CXXC on long DNA with crowded CpG motifs. Here, we used single-molecule magnetic tweezers to examine the binding dynamics of MLL1's CXXC domain on a long DNA with a CpG island. The mechanical strand separation assay allows profiling of protein-DNA complexes and reports force-dependent unfolding times. Further design of a hairpin detector reveals the unfolding time of individual CXXC-CpG complexes. Finally, in a proof of concept we demonstrate the inhibiting effect of dimethyl fumarate on the CXXC-DNA complexes by measuring the dose response curve of the unfolding time. This demonstrates the potential feasibility of using single-molecule strand separation as a label-free detector in drug discovery and chemical biology.
Collapse
Affiliation(s)
- Lin Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Kangkang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zeyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, South-Holland, The Netherlands
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
10
|
Visser EWA, Miladinovic J, Milstein JN. An Ultrastable and Dense Single-Molecule Click Platform for Sensing Protein-Deoxyribonucleic Acid Interactions. SMALL METHODS 2021; 5:e2001180. [PMID: 34928085 DOI: 10.1002/smtd.202001180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Indexed: 06/14/2023]
Abstract
An ultrastable, highly dense single-molecule assay ideal for observing protein-DNA interactions is demonstrated. Stable click tethered particle motion leverages next generation click-chemistry to achieve an ultrahigh density of surface tethered reporter particles, and has low non-specific interactions, is stable at elevated temperatures to at least 45 °C, and is compatible with Mg2+ , an important ionic component of many regulatory protein-DNA interactions. Prepared samples remain stable, with little degradation, for >6 months in physiological buffers. These improvements enable the authors to study previously inaccessible sequence and temperature-dependent effects on DNA binding by the bacterial protein, histone-like nucleoid-structuring protein, a global transcriptional regulator found in Escherichia coli. This greatly improved assay can directly be translated to accelerate existing tethered particle-based, single-molecule biosensing applications.
Collapse
Affiliation(s)
- Emiel W A Visser
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Jovana Miladinovic
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Joshua N Milstein
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
11
|
Li X, Wang M, Zheng W, Huang W, Wang Z, Jin K, Liu L, Yu Z. Dynamics of TRF1 organizing a single human telomere. Nucleic Acids Res 2021; 49:760-775. [PMID: 33347580 PMCID: PMC7826288 DOI: 10.1093/nar/gkaa1222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Chromosome stability is primarily determined by telomere length. TRF1 is the core subunit of shelterin that plays a critical role in telomere organization and replication. However, the dynamics of TRF1 in scenarios of telomere-processing activities remain elusive. Using single-molecule magnetic tweezers, we here investigated the dynamics of TRF1 upon organizing a human telomere and the protein-DNA interactions at a moving telomeric fork. We first developed a method to obtain telomeres from human cells for directly measuring the telomere length by single-molecule force spectroscopy. Next, we examined the compaction and decompaction of a telomere by TRF1 dimers. TRF1 dissociates from a compacted telomere with heterogenous loops in ∼20 s. We also found a negative correlation between the number of telomeric loops and loop sizes. We further characterized the dynamics of TRF1 at a telomeric DNA fork. With binding energies of 11 kBT, TRF1 can modulate the forward and backward steps of DNA fork movements by 2-9 s at a critical force of F1/2, temporarily maintaining the telomeric fork open. Our results shed light on the mechanisms of how TRF1 organizes human telomeres and facilitates the efficient replication of telomeric DNA. Our work will help future research on the chemical biology of telomeres and shelterin-targeted drug discovery.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Meijie Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Wei Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Wei Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Zeyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Kairang Jin
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
12
|
Liang L, Wang Z, Qu L, Huang W, Guo S, Guan X, Zhang W, Sun F, Yuan H, Zou H, Liu H, Yu Z. Single-molecule multiplexed profiling of protein-DNA complexes using magnetic tweezers. J Biol Chem 2021; 296:100327. [PMID: 33493518 PMCID: PMC7949110 DOI: 10.1016/j.jbc.2021.100327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023] Open
Abstract
Epigenetics, such as the dynamic interplay between DNA methylation and demethylation, play diverse roles in critical cellular events. Enzymatic activity at CpG sites, where cytosines are methylated or demethylated, is known to be influenced by the density of CpGs, methylation states, and the flanking sequences of a CpG site. However, how the relevant enzymes are recruited to and recognize their target DNA is less clear. Moreover, although DNA-binding epigenetic enzymes are ideal targets for therapeutic intervention, these targets have been rarely exploited. Single-molecule techniques offer excellent capabilities to probe site-specific protein-DNA interactions and unravel the dynamics. Here, we develop a single-molecule approach that allows multiplexed profiling of protein-DNA complexes using magnetic tweezers. When a DNA hairpin with multiple binding sites is unzipping, strand separation pauses at the positions bound by a protein. We can thus measure site-specific binding probabilities and dissociation time directly. Taking the TET1 CXXC domain as an example, we show that TET1 CXXC binds multiple CpG motifs with various flanking nucleotides or different methylation patterns in an AT-rich DNA. We are able to establish for the first time, at nanometer resolution, that TET1 CXXC prefers G/C flanked CpG motif over C/G, A/T, or T/A flanked ones. CpG methylation strengthens TET1 CXXC recruitment but has little effect on dissociation time. Finally, we demonstrate that TET1 CXXC can distinguish five CpG clusters in a CpG island with crowded binding motifs. We anticipate that the feasibility of single-molecule multiplexed profiling assays will contribute to the understanding of protein-DNA interactions.
Collapse
Affiliation(s)
- Lin Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zeyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Lihua Qu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Wei Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Shuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Xiangchen Guan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Wei Zhang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Fuping Sun
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Hongrui Yuan
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Huiru Zou
- Central Laboratory of Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Haitao Liu
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
13
|
You H, Zhou Y, Yan J. Using Magnetic Tweezers to Unravel the Mechanism of the G-quadruplex Binding and Unwinding Activities of DHX36 Helicase. Methods Mol Biol 2021; 2209:175-191. [PMID: 33201470 DOI: 10.1007/978-1-0716-0935-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule manipulation methods are useful techniques to probe the interactions of proteins and nucleic acid structures. Here, we describe the magnetic tweezers-based single-molecule investigation of the binding of helicases to G-quadruplex structures and their ATP-dependent unwinding activity, using DHX36 (also known as RHAU and G4R1) helicase and a DNA G-quadruplex structure for an example. We specifically emphasize on the principle and method to probe the interactions between DHX36 and the DNA G-quadruplex in different intermediate states during an ATPase cycle of DHX36, based on detecting the DHX36-induced changes in the lifetime of the DNA G-quadruplex under tension. The principle of the measurement can be broadly extended to the studies of other DNA or RNA G-quadruplex helicases.
Collapse
Affiliation(s)
- Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Zhou
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Impact of Self-Association on the Architectural Properties of Bacterial Nucleoid Proteins. Biophys J 2020; 120:370-378. [PMID: 33340542 DOI: 10.1016/j.bpj.2020.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The chromosomal DNA of bacteria is folded into a compact body called the nucleoid, which is composed essentially of DNA (∼80%), RNA (∼10%), and a number of different proteins (∼10%). These nucleoid proteins act as regulators of gene expression and influence the organization of the nucleoid by bridging, bending, or wrapping the DNA. These so-called architectural properties of nucleoid proteins are still poorly understood. For example, the reason why certain proteins compact the DNA coil in certain environments but make the DNA more rigid instead in other environments is the subject of ongoing debates. Here, we address the question of the impact of the self-association of nucleoid proteins on their architectural properties and try to determine whether differences in self-association are sufficient to induce large changes in the organization of the DNA coil. More specifically, we developed two coarse-grained models of proteins, which interact identically with the DNA but self-associate differently by forming either clusters or filaments in the absence of the DNA. We showed through Brownian dynamics simulations that self-association of the proteins dramatically increases their ability to shape the DNA coil. Moreover, we observed that cluster-forming proteins significantly compact the DNA coil (similar to the DNA-bridging mode of H-NS proteins), whereas filament-forming proteins significantly increase the stiffness of the DNA chain instead (similar to the DNA-stiffening mode of H-NS proteins). This work consequently suggests that the knowledge of the DNA-binding properties of the proteins is in itself not sufficient to understand their architectural properties. Rather, their self-association properties must also be investigated in detail because they might actually drive the formation of different DNA-protein complexes.
Collapse
|
15
|
Fitzgerald S, Kary SC, Alshabib EY, MacKenzie KD, Stoebel D, Chao TC, Cameron ADS. Redefining the H-NS protein family: a diversity of specialized core and accessory forms exhibit hierarchical transcriptional network integration. Nucleic Acids Res 2020; 48:10184-10198. [PMID: 32894292 PMCID: PMC7544231 DOI: 10.1093/nar/gkaa709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/07/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
H-NS is a nucleoid structuring protein and global repressor of virulence and horizontally-acquired genes in bacteria. H-NS can interact with itself or with homologous proteins, but protein family diversity and regulatory network overlap remain poorly defined. Here, we present a comprehensive phylogenetic analysis that revealed deep-branching clades, dispelling the presumption that H-NS is the progenitor of varied molecular backups. Each clade is composed exclusively of either chromosome-encoded or plasmid-encoded proteins. On chromosomes, stpA and newly discovered hlpP are core genes in specific genera, whereas hfp and newly discovered hlpC are sporadically distributed. Six clades of H-NS plasmid proteins (Hpp) exhibit ancient and dedicated associations with plasmids, including three clades with fidelity for plasmid incompatibility groups H, F or X. A proliferation of H-NS homologs in Erwiniaceae includes the first observation of potentially co-dependent H-NS forms. Conversely, the observed diversification of oligomerization domains may facilitate stable co-existence of divergent homologs in a genome. Transcriptomic and proteomic analysis in Salmonella revealed regulatory crosstalk and hierarchical control of H-NS homologs. We also discovered that H-NS is both a repressor and activator of Salmonella Pathogenicity Island 1 gene expression, and both regulatory modes are restored by Sfh (HppH) in the absence of H-NS.
Collapse
Affiliation(s)
- Stephen Fitzgerald
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Stefani C Kary
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ebtihal Y Alshabib
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Keith D MacKenzie
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, CA 91711, USA
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute of Environmental Change and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
- Institute for Microbial Systems and Society, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
16
|
Cristofalo M, Marrano CA, Salerno D, Corti R, Cassina V, Mammola A, Gherardi M, Sclavi B, Cosentino Lagomarsino M, Mantegazza F. Cooperative effects on the compaction of DNA fragments by the nucleoid protein H-NS and the crowding agent PEG probed by Magnetic Tweezers. Biochim Biophys Acta Gen Subj 2020; 1864:129725. [PMID: 32891648 DOI: 10.1016/j.bbagen.2020.129725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 08/30/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND DNA bridging promoted by the H-NS protein, combined with the compaction induced by cellular crowding, plays a major role in the structuring of the E. coli genome. However, only few studies consider the effects of the physical interplay of these two factors in a controlled environment. METHODS We apply a single molecule technique (Magnetic Tweezers) to study the nanomechanics of compaction and folding kinetics of a 6 kb DNA fragment, induced by H-NS bridging and/or PEG crowding. RESULTS In the presence of H-NS alone, the DNA shows a step-wise collapse driven by the formation of multiple bridges, and little variations in the H-NS concentration-dependent unfolding force. Conversely, the DNA collapse force observed with PEG was highly dependent on the volume fraction of the crowding agent. The two limit cases were interpreted considering the models of loop formation in a pulled chain and pulling of an equilibrium globule respectively. CONCLUSIONS We observed an evident cooperative effect between H-NS activity and the depletion of forces induced by PEG. GENERAL SIGNIFICANCE Our data suggest a double role for H-NS in enhancing compaction while forming specific loops, which could be crucial in vivo for defining specific mesoscale domains in chromosomal regions in response to environmental changes.
Collapse
Affiliation(s)
- M Cristofalo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
| | - C A Marrano
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
| | - D Salerno
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
| | - R Corti
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
| | - V Cassina
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy
| | - A Mammola
- Università degli Studi di Milano, Via Celoria 16, 20133 Milano (MI), Italy
| | - M Gherardi
- Università degli Studi di Milano, Via Celoria 16, 20133 Milano (MI), Italy; IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano (MI), Italy; I.N.F.N. Sezione di Milano, Via Celoria 16, 20133 Milano (MI), Italy
| | - B Sclavi
- Université Pierre et Marie Curie, Institut de Biologie Paris Seine, 7-9 Quai Saint Bernard, 75005 Paris, France
| | - M Cosentino Lagomarsino
- Università degli Studi di Milano, Via Celoria 16, 20133 Milano (MI), Italy; IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano (MI), Italy; I.N.F.N. Sezione di Milano, Via Celoria 16, 20133 Milano (MI), Italy
| | - F Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Raoul Follereau 3, 20854, Vedano al Lambro (MB), Italy.
| |
Collapse
|
17
|
Bischof K, Schiffer D, Trunk S, Höfler T, Hopfer A, Rechberger G, Koraimann G. Regulation of R1 Plasmid Transfer by H-NS, ArcA, TraJ, and DNA Sequence Elements. Front Microbiol 2020; 11:1254. [PMID: 32595626 PMCID: PMC7303359 DOI: 10.3389/fmicb.2020.01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/18/2020] [Indexed: 11/17/2022] Open
Abstract
In conjugative elements such as integrating conjugative elements (ICEs) or conjugative plasmids (CPs) transcription of DNA transfer genes is a prerequisite for cells to become transfer competent, i.e., capable of delivering plasmid DNA via bacterial conjugation into new host bacteria. In the large family of F-like plasmids belonging to the MobF12A group, transcription of DNA transfer genes is tightly controlled and dependent on the activation of a single promoter, designated PY. Plasmid encoded TraJ and chromosomally encoded ArcA proteins are known activators, whereas the nucleoid associated protein heat-stable nucleoid structuring (H-NS) silences the PY promoter. To better understand the role of these proteins in PY promoter activation, we performed in vitro DNA binding studies using purified H-NS, ArcA, and TraJR1 (TraJ encoded by the conjugative resistance plasmid R1). All proteins could bind to R1PY DNA with high affinities; however, only ArcA was found to be highly sequence specific. DNase I footprinting studies revealed three H-NS binding sites, confirmed the binding site for ArcA, and suggested that TraJ contacts a dyad symmetry DNA sequence located between −51 and −38 in the R1PY promoter region. Moreover, TraJR1 and ArcA supplied together changed the H-NS specific protection pattern suggesting that these proteins are able to replace H-NS from R1PY regions proximal to the transcription start site. Our findings were corroborated by PY-lacZ reporter fusions with a series of site specific R1PY promoter mutations. Sequential changes of some critical DNA bases in the TraJ binding site (jbs) from plasmid R1 to plasmid F led to a remarkable specificity switch: The PY promoter became activatable by F encoded TraJ whereas TraJR1 lost its activation function. The R1PY mutagenesis approach also confirmed the requirement for the host-encoded response-regulator ArcA and indicated that the sequence context, especially in the −35 region is critical for PY regulation and function.
Collapse
Affiliation(s)
- Karin Bischof
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Doris Schiffer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Sarah Trunk
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Thomas Höfler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Anja Hopfer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Rechberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| |
Collapse
|
18
|
Deciphering the Rules Underlying Xenogeneic Silencing and Counter-Silencing of Lsr2-like Proteins Using CgpS of Corynebacterium glutamicum as a Model. mBio 2020; 11:mBio.02273-19. [PMID: 32019787 PMCID: PMC7002338 DOI: 10.1128/mbio.02273-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lsr2-like nucleoid-associated proteins play an important role as xenogeneic silencers (XS) of horizontally acquired genomic regions in actinobacteria. In this study, we systematically analyzed the in vivo constraints underlying silencing and counter-silencing of the Lsr2-like protein CgpS in Corynebacterium glutamicum Genome-wide analysis revealed binding of CgpS to regions featuring a distinct drop in GC profile close to the transcription start site (TSS) but also identified an overrepresented motif with multiple A/T steps at the nucleation site of the nucleoprotein complex. Binding of specific transcription factors (TFs) may oppose XS activity, leading to counter-silencing. Following a synthetic counter-silencing approach, target gene activation was realized by inserting operator sites of an effector-responsive TF within various CgpS target promoters, resulting in increased promoter activity upon TF binding. Analysis of reporter constructs revealed maximal counter-silencing when the TF operator site was inserted at the position of maximal CgpS coverage. This principle was implemented in a synthetic toggle switch, which features a robust and reversible response to effector availability, highlighting the potential for biotechnological applications. Together, our results provide comprehensive insights into how Lsr2 silencing and counter-silencing shape evolutionary network expansion in this medically and biotechnologically relevant bacterial phylum.IMPORTANCE In actinobacteria, Lsr2-like nucleoid-associated proteins function as xenogeneic silencers (XS) of horizontally acquired genomic regions, including viral elements, virulence gene clusters in Mycobacterium tuberculosis, and genes involved in cryptic specialized metabolism in Streptomyces species. Consequently, a detailed mechanistic understanding of Lsr2 binding in vivo is relevant as a potential drug target and for the identification of novel bioactive compounds. Here, we followed an in vivo approach to investigate the rules underlying xenogeneic silencing and counter-silencing of the Lsr2-like XS CgpS from Corynebacterium glutamicum Our results demonstrated that CgpS distinguishes between self and foreign by recognizing a distinct drop in GC profile in combination with a short, sequence-specific motif at the nucleation site. Following a synthetic counter-silencer approach, we studied the potential and constraints of transcription factors to counteract CgpS silencing, thereby facilitating the integration of new genetic traits into host regulatory networks.
Collapse
|
19
|
Abstract
How genomes are organized within cells and how the 3D architecture of a genome influences cellular functions are significant questions in biology. A bacterial genomic DNA resides inside cells in a highly condensed and functionally organized form called nucleoid (nucleus-like structure without a nuclear membrane). The Escherichia coli chromosome or nucleoid is composed of the genomic DNA, RNA, and protein. The nucleoid forms by condensation and functional arrangement of a single chromosomal DNA with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling. Although a high-resolution structure of a bacterial nucleoid is yet to come, five decades of research has established the following salient features of the E. coli nucleoid elaborated below: 1) The chromosomal DNA is on the average a negatively supercoiled molecule that is folded as plectonemic loops, which are confined into many independent topological domains due to supercoiling diffusion barriers; 2) The loops spatially organize into megabase size regions called macrodomains, which are defined by more frequent physical interactions among DNA sites within the same macrodomain than between different macrodomains; 3) The condensed and spatially organized DNA takes the form of a helical ellipsoid radially confined in the cell; and 4) The DNA in the chromosome appears to have a condition-dependent 3-D structure that is linked to gene expression so that the nucleoid architecture and gene transcription are tightly interdependent, influencing each other reciprocally. Current advents of high-resolution microscopy, single-molecule analysis and molecular structure determination of the components are expected to reveal the total structure and function of the bacterial nucleoid.
Collapse
Affiliation(s)
- Subhash C. Verma
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| | - Zhong Qian
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sankar L. Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (SCV); (SLA)
| |
Collapse
|
20
|
Qin L, Erkelens AM, Ben Bdira F, Dame RT. The architects of bacterial DNA bridges: a structurally and functionally conserved family of proteins. Open Biol 2019; 9:190223. [PMID: 31795918 PMCID: PMC6936261 DOI: 10.1098/rsob.190223] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Every organism across the tree of life compacts and organizes its genome with architectural chromatin proteins. While eukaryotes and archaea express histone proteins, the organization of bacterial chromosomes is dependent on nucleoid-associated proteins. In Escherichia coli and other proteobacteria, the histone-like nucleoid structuring protein (H-NS) acts as a global genome organizer and gene regulator. Functional analogues of H-NS have been found in other bacterial species: MvaT in Pseudomonas species, Lsr2 in actinomycetes and Rok in Bacillus species. These proteins complement hns- phenotypes and have similar DNA-binding properties, despite their lack of sequence homology. In this review, we focus on the structural and functional characteristics of these four architectural proteins. They are able to bridge DNA duplexes, which is key to genome compaction, gene regulation and their response to changing conditions in the environment. Structurally the domain organization and charge distribution of these proteins are conserved, which we suggest is at the basis of their conserved environment responsive behaviour. These observations could be used to find and validate new members of this protein family and to predict their response to environmental changes.
Collapse
Affiliation(s)
- L. Qin
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - A. M. Erkelens
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - F. Ben Bdira
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - R. T. Dame
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
21
|
Zhao X, Guo S, Lu C, Chen J, Le S, Fu H, Yan J. Single-molecule manipulation quantification of site-specific DNA binding. Curr Opin Chem Biol 2019; 53:106-117. [DOI: 10.1016/j.cbpa.2019.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/24/2019] [Accepted: 08/24/2019] [Indexed: 10/25/2022]
|
22
|
Pfeifer E, Hünnefeld M, Popa O, Frunzke J. Impact of Xenogeneic Silencing on Phage-Host Interactions. J Mol Biol 2019; 431:4670-4683. [PMID: 30796986 PMCID: PMC6925973 DOI: 10.1016/j.jmb.2019.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
Phages, viruses that prey on bacteria, are the most abundant and diverse inhabitants of the Earth. Temperate bacteriophages can integrate into the host genome and, as so-called prophages, maintain a long-term association with their host. The close relationship between host and virus has significantly shaped microbial evolution and phage elements may benefit their host by providing new functions. Nevertheless, the strong activity of phage promoters and potentially toxic gene products may impose a severe fitness burden and must be tightly controlled. In this context, xenogeneic silencing (XS) proteins, which can recognize foreign DNA elements, play an important role in the acquisition of novel genetic information and facilitate the evolution of regulatory networks. Currently known XS proteins fall into four classes (H-NS, MvaT, Rok and Lsr2) and have been shown to follow a similar mode of action by binding to AT-rich DNA and forming an oligomeric nucleoprotein complex that silences gene expression. In this review, we focus on the role of XS proteins in phage-host interactions by highlighting the important function of XS proteins in maintaining the lysogenic state and by providing examples of how phages fight back by encoding inhibitory proteins that disrupt XS functions in the host. Sequence analysis of available phage genomes revealed the presence of genes encoding Lsr2-type proteins in the genomes of phages infecting Actinobacteria. These data provide an interesting perspective for future studies to elucidate the impact of phage-encoded XS homologs on the phage life cycle and phage-host interactions.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| | - Max Hünnefeld
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany
| | - Ovidiu Popa
- Heinrich Heine Universität Düsseldorf, Institute for Quantitative and Theoretical Biology, 40223 Düsseldorf, Germany
| | - Julia Frunzke
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425 Jülich, Germany.
| |
Collapse
|
23
|
Abstract
![]()
Life is an emergent property of transient
interactions between
biomolecules and other organic and inorganic molecules that somehow
leads to harmony and order. Measurement and quantitation of these
biological interactions are of value to scientists and are major goals
of biochemistry, as affinities provide insight into biological processes.
In an organism, these interactions occur in the context of forces
and the need for a consideration of binding affinities in the context
of a changing mechanical landscape necessitates a new way to consider
the biochemistry of protein–protein interactions. In the past
few decades, the field of mechanobiology has exploded, as both the
appreciation of, and the technical advances required to facilitate
the study of, how forces impact biological processes have become evident.
The aim of this review is to introduce the concept of force dependence
of biomolecular interactions and the requirement to be able to measure
force-dependent binding constants. The focus of this discussion will
be on the mechanotransduction that occurs at the integrin-mediated
adhesions with the extracellular matrix and the major mechanosensors
talin and vinculin. However, the approaches that the cell uses to
sense and respond to forces can be applied to other systems, and this
therefore provides a general discussion of the force dependence of
biomolecule interactions.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Physics , National University of Singapore , 117542 Singapore
| | - Jie Yan
- Department of Physics , National University of Singapore , 117542 Singapore.,Mechanobiology Institute , National University of Singapore , 117411 Singapore
| | - Benjamin T Goult
- School of Biosciences , University of Kent , Canterbury , Kent CT2 7NJ , U.K
| |
Collapse
|
24
|
Liew ATF, Foo YH, Gao Y, Zangoui P, Singh MK, Gulvady R, Kenney LJ. Single cell, super-resolution imaging reveals an acid pH-dependent conformational switch in SsrB regulates SPI-2. eLife 2019; 8:e45311. [PMID: 31033442 PMCID: PMC6557628 DOI: 10.7554/elife.45311] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/28/2019] [Indexed: 12/29/2022] Open
Abstract
After Salmonella is phagocytosed, it resides in an acidic vacuole. Its cytoplasm acidifies to pH 5.6; acidification activates pathogenicity island 2 (SPI-2). SPI-2 encodes a type three secretion system whose effectors modify the vacuole, driving endosomal tubulation. Using super-resolution imaging in single bacterial cells, we show that low pH induces expression of the SPI-2 SsrA/B signaling system. Single particle tracking, atomic force microscopy, and single molecule unzipping assays identified pH-dependent stimulation of DNA binding by SsrB. A so-called phosphomimetic form (D56E) was unable to bind to DNA in live cells. Acid-dependent DNA binding was not intrinsic to regulators, as PhoP and OmpR binding was not pH-sensitive. The low level of SPI-2 injectisomes observed in single cells is not due to fluctuating SsrB levels. This work highlights the surprising role that acid pH plays in virulence and intracellular lifestyles of Salmonella; modifying acid survival pathways represents a target for inhibiting Salmonella.
Collapse
Affiliation(s)
- Andrew Tze Fui Liew
- Mechanobiology Institute, T-LabNational University of SingaporeSingaporeSingapore
| | - Yong Hwee Foo
- Mechanobiology Institute, T-LabNational University of SingaporeSingaporeSingapore
| | - Yunfeng Gao
- Mechanobiology Institute, T-LabNational University of SingaporeSingaporeSingapore
| | - Parisa Zangoui
- Mechanobiology Institute, T-LabNational University of SingaporeSingaporeSingapore
| | | | - Ranjit Gulvady
- Mechanobiology Institute, T-LabNational University of SingaporeSingaporeSingapore
| | - Linda J Kenney
- Mechanobiology Institute, T-LabNational University of SingaporeSingaporeSingapore
- Biochemistry and Molecular BiologyUniversity of Texas Medical BranchGalvestonUnited States
| |
Collapse
|
25
|
Kapshikar RM, Gowrishankar J. Direct inhibition of transcription in vitro by the isolated N-terminal domain of the Escherichia coli nucleoid-associated protein H-NS and by its paralogue Hha. MICROBIOLOGY-SGM 2019; 165:463-474. [PMID: 30724731 DOI: 10.1099/mic.0.000780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
H-NS is an abundant nucleoid-associated protein in the enterobacteria that mediates both chromatin compaction and transcriptional silencing of numerous genes, especially those that have been acquired by horizontal transfer or that are involved in virulence functions. With two dimerization domains (N-terminal and central) and a C-terminal DNA-binding domain, the 15 kDa H-NS polypeptide can assemble as long polymeric filaments on DNA, and mutations in any of the three domains confer a dominant-negative phenotype in vivo by a subunit-poisoning mechanism. Here we confirm that several of these mutants [L26P, I119T and a truncation beyond residue 92(Δ93)] are also dominant-negative in vitro, in that they reverse the inhibition imposed by native H-NS in two different transcription assay formats (initiation+elongation, or elongation alone). On the other hand, another dominant-negative truncation mutant Δ64 (which possesses only the protein's N-terminal domain) per se completely and unexpectedly inhibited transcription in both assay formats. The Hha protein, which is a paralogue of H-NS and resembles its isolated N-terminal domain, also behaved like Δ64 as an inhibitor of transcription in vitro. We propose that under certain growth conditions, Escherichia coli RNA polymerase may be the direct inhibitory target of Hha, and that this effect is experimentally mimicked by the isolated N-terminal domain of H-NS.
Collapse
Affiliation(s)
- Rajvardhan M Kapshikar
- 1Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,2Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - J Gowrishankar
- 1Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|