1
|
Kumar S, Poria R, Kala D, Nagraik R, Dhir Y, Dhir S, Singh B, Kaushik NK, Noorani MS, Kumar D, Gupta S, Kaushal A. Recent advances in ctDNA detection using electrochemical biosensor for cancer. Discov Oncol 2024; 15:517. [PMID: 39356360 PMCID: PMC11448507 DOI: 10.1007/s12672-024-01365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
In the quest for early cancer diagnosis, early identification and treatment are paramount. Recently, ctDNA detection has emerged as a viable avenue for early screening of cancer. The examination of ctDNA in fluid biopsies has gained substantial attention in tumor diagnosis and therapy. Both the scientific community and industry are actively exploring this field. However, developing cost-effective, portable, and real-time ctDNA measurement methods using conventional gene detection equipment poses a significant challenge. This challenge has led to the exploration of alternative approaches. Electrochemical biosensors, distinguished by their heightened sensitivity, remarkable specificity, affordability, and excellent portability, have emerged as a promising avenue for ctDNA detection. This review is dedicated to the specific focus on ctDNA detection, highlighting recent advancements in this evolving detection technology. We aimed to reference previous studies related to ctDNA-targeted cancer detection using electrochemical biosensors to advocate the utilization of electrochemical biosensors in healthcare diagnostics. Further research is imperative for the effective integration of ctDNA analysis into point-of-care cancer testing. Innovative approaches utilizing multiple markers need to be explored to advance this technology and make substantial contributions to societal well-being.
Collapse
Affiliation(s)
- Sahil Kumar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Renu Poria
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokolowska Street, Warsaw, 01142, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Yashika Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Sunny Dhir
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Bharat Singh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India
| | - Naveen Kumar Kaushik
- Department of Industrial Biotechnology, College of Biotechnology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Md Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India.
| | - Shagun Gupta
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| | - Ankur Kaushal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to Be) University, Mullana, 133203, Ambala, India.
| |
Collapse
|
2
|
Chen HC, Wang J, Coffey RJ, Patton JG, Weaver AM, Shyr Y, Liu Q. EVPsort: An Atlas of Small ncRNA Profiling and Sorting in Extracellular Vesicles and Particles. J Mol Biol 2024; 436:168571. [PMID: 38604528 DOI: 10.1016/j.jmb.2024.168571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Extracellular vesicles and particles (EVPs) play a crucial role in mediating cell-to-cell communication by transporting various molecular cargos, with small non-coding RNAs (ncRNAs) holding particular significance. A thorough investigation into the abundance and sorting mechanisms of ncRNA within EVPs is imperative for advancing their clinical applications. We have developed EVPsort, which not only provides an extensive overview of ncRNA profiling in 3,162 samples across various biofluids, cell lines, and disease contexts but also seamlessly integrates 19 external databases and tools. This integration encompasses information on associations between ncRNAs and RNA-binding proteins (RBPs), motifs, targets, pathways, diseases, and drugs. With its rich resources and powerful analysis tools, EVPsort extends its profiling capabilities to investigate ncRNA sorting, identify relevant RBPs and motifs, and assess functional implications. EVPsort stands as a pioneering database dedicated to comprehensively addressing both the abundance and sorting of ncRNA within EVPs. It is freely accessible at https://bioinfo.vanderbilt.edu/evpsort/.
Collapse
Affiliation(s)
- Hua-Chang Chen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
3
|
Tan IL, Modderman R, Stachurska A, Almeida R, de Vries R, Heersema DJ, Gacesa R, Wijmenga C, Jonkers IH, Meilof JF, Withoff S. Potential biomarkers for multiple sclerosis stage from targeted proteomics and microRNA sequencing. Brain Commun 2024; 6:fcae209. [PMID: 38978729 PMCID: PMC11229703 DOI: 10.1093/braincomms/fcae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Multiple sclerosis is a chronic demyelinating disease of the central nervous system. There is a need for new circulating biomarkers for multiple sclerosis, in particular, markers that differentiate multiple sclerosis subtypes (relapsing-remitting, secondary progressive and primary progressive multiple sclerosis), as this can help in making treatment decisions. In this study, we explore two classes of potential multiple sclerosis biomarkers-proteins and microRNAs-circulating in the cerebrospinal fluid and serum. Targeted medium-throughput proteomics (92 proteins) and microRNA sequencing were performed on serum samples collected in a cross-sectional case-control cohort (cohort I, controls n = 30, multiple sclerosis n = 75) and a prospective multiple sclerosis cohort (cohort II, n = 93). For cohort I, we also made these measurements in paired cerebrospinal fluid samples. In the cohort I cerebrospinal fluid, we observed differences between multiple sclerosis and controls for 13 proteins, including some previously described to be markers for multiple sclerosis [e.g. CD27, C-X-C motif chemokine 13 (CXCL13) and interleukin-7 (IL7)]. No microRNAs were significantly differentially expressed between multiple sclerosis and controls in the cerebrospinal fluid. In serum, 10 proteins, including angiopoietin-1 receptor (TIE2), and 16 microRNAs were significantly different between relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis after performing a meta-analysis combining both cohorts. In the prospective part of the study, participants with relapsing-remitting multiple sclerosis were followed for around 3 years, during which time 12 participants converted to secondary progressive multiple sclerosis. In these longitudinally collected serum samples, we observed a peak in granzyme B, A and H proteins around the time of conversion. Single-sample enrichment analysis of serum microRNA profiles revealed that the peak in granzyme B levels around conversion coincides with enrichment for microRNAs that are enriched in CD4+, CD8+ and natural killer cells (e.g. miRNA-150). We identified several proteins and microRNAs in serum that represent potential biomarkers for relapsing-remitting and secondary progressive multiple sclerosis. Conversion to secondary progressive disease is marked by a peak in granzyme B levels and enrichment for immune-related microRNAs. This indicates that specific immune cell-driven processes may contribute to the conversion of relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis.
Collapse
Affiliation(s)
- Ineke L Tan
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Rutger Modderman
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anna Stachurska
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Rodrigo Almeida
- Telespazio Belgium S.R.L. for the European Space Agency (ESA), 2200AG Noordwijk, The Netherlands
| | - Riemer de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Dorothea J Heersema
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- MS Center Noord Nederland, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Jan F Meilof
- MS Center Noord Nederland, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
4
|
Jehn J, Trudzinski F, Horos R, Schenz J, Uhle F, Weigand MA, Frank M, Kahraman M, Heuvelman M, Sikosek T, Rajakumar T, Gerwing J, Skottke J, Daniel-Moreno A, Rudolf C, Hinkfoth F, Tikk K, Christopoulos P, Klotz LV, Winter H, Kreuter M, Steinkraus BR. miR-Blood - a small RNA atlas of human blood components. Sci Data 2024; 11:164. [PMID: 38307869 PMCID: PMC10837159 DOI: 10.1038/s41597-024-02976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
miR-Blood is a high-quality, small RNA expression atlas for the major components of human peripheral blood (plasma, erythrocytes, thrombocytes, monocytes, neutrophils, eosinophils, basophils, natural killer cells, CD4+ T cells, CD8+ T cells, and B cells). Based on the purified blood components from 52 individuals, the dataset provides a comprehensive repository for the expression of 4971 small RNAs from eight non-coding RNA classes.
Collapse
Affiliation(s)
- Julia Jehn
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Franziska Trudzinski
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, and German Center for Lung Research (DZL), Heidelberg, Germany
| | - Rastislav Horos
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Judith Schenz
- Department of Anesthesiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Maurice Frank
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Mustafa Kahraman
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Marco Heuvelman
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Tobias Sikosek
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Timothy Rajakumar
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Jennifer Gerwing
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Jasmin Skottke
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | | | - Christina Rudolf
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Franziska Hinkfoth
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Kaja Tikk
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), and German Center for Lung Research (DZL), Heidelberg, Germany
| | - Laura V Klotz
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), and German Center for Lung Research (DZL), Heidelberg, Germany
| | - Hauke Winter
- Department of Thoracic Surgery, Thoraxklinik, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC-H), and German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, and German Center for Lung Research (DZL), Heidelberg, Germany
| | - Bruno R Steinkraus
- Hummingbird Diagnostics GmbH, Im Neuenheimer Feld 583, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Li M, Zhou T, Han M, Wang H, Bao P, Tao Y, Chen X, Wu G, Liu T, Wang X, Lu Q, Zhu Y, Lu ZJ. cfOmics: a cell-free multi-Omics database for diseases. Nucleic Acids Res 2024; 52:D607-D621. [PMID: 37757861 PMCID: PMC10767897 DOI: 10.1093/nar/gkad777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Liquid biopsy has emerged as a promising non-invasive approach for detecting, monitoring diseases, and predicting their recurrence. However, the effective utilization of liquid biopsy data to identify reliable biomarkers for various cancers and other diseases requires further exploration. Here, we present cfOmics, a web-accessible database (https://cfomics.ncRNAlab.org/) that integrates comprehensive multi-omics liquid biopsy data, including cfDNA, cfRNA based on next-generation sequencing, and proteome, metabolome based on mass-spectrometry data. As the first multi-omics database in the field, cfOmics encompasses a total of 17 distinct data types and 13 specimen variations across 69 disease conditions, with a collection of 11345 samples. Moreover, cfOmics includes reported potential biomarkers for reference. To facilitate effective analysis and visualization of multi-omics data, cfOmics offers powerful functionalities to its users. These functionalities include browsing, profile visualization, the Integrative Genomic Viewer, and correlation analysis, all centered around genes, microbes, or end-motifs. The primary objective of cfOmics is to assist researchers in the field of liquid biopsy by providing comprehensive multi-omics data. This enables them to explore cell-free data and extract profound insights that can significantly impact disease diagnosis, treatment monitoring, and management.
Collapse
Affiliation(s)
- Mingyang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100084, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianxiu Zhou
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Mingfei Han
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Hongke Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Pengfei Bao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Yuhuan Tao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoqing Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Guansheng Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tianyou Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojuan Wang
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Qian Lu
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, No. 168, Litang Road, Changping District, Beijing 102218, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Aparicio-Puerta E, Hirsch P, Schmartz GP, Fehlmann T, Keller V, Engel A, Kern F, Hackenberg M, Keller A. isomiRdb: microRNA expression at isoform resolution. Nucleic Acids Res 2022; 51:D179-D185. [PMID: 36243964 PMCID: PMC9825445 DOI: 10.1093/nar/gkac884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 01/29/2023] Open
Abstract
A significant fraction of mature miRNA transcripts carries sequence and/or length variations, termed isomiRs. IsomiRs are differentially abundant in cell types, tissues, body fluids or patients' samples. Not surprisingly, multiple studies describe a physiological and pathophysiological role. Despite their importance, systematically collected and annotated isomiR information available in databases remains limited. We thus developed isomiRdb, a comprehensive resource that compiles miRNA expression data at isomiR resolution from various sources. We processed 42 499 human miRNA-seq datasets (5.9 × 1011 sequencing reads) and consistently analyzed them using miRMaster and sRNAbench. Our database provides online access to the 90 483 most abundant isomiRs (>1 RPM in at least 1% of the samples) from 52 tissues and 188 cell types. Additionally, the full set of over 3 million detected isomiRs is available for download. Our resource can be queried at the sample, miRNA or isomiR level so users can quickly answer common questions about the presence/absence of a particular miRNA/isomiR in tissues of interest. Further, the database facilitates to identify whether a potentially interesting new isoform has been detected before and its frequency. In addition to expression tables, isomiRdb can generate multiple interactive visualisations including violin plots and heatmaps. isomiRdb is free to use and publicly available at: https://www.ccb.uni-saarland.de/isomirdb.
Collapse
Affiliation(s)
| | | | - Georges P Schmartz
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany,Rejuvenome, Astera Institute, Berkeley, CA 94705, USA
| | - Verena Keller
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany,Department for Internal Medicine II, Saarland University Hospital, 66421 Homburg, Germany
| | - Annika Engel
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany,Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Michael Hackenberg
- Genetics Department, Faculty of Science, Universidad de Granada, 18071 Granada, Spain
| | - Andreas Keller
- To whom correspondence should be addressed. Tel: +49 681 30268611; Fax: +49 681 30268610;
| |
Collapse
|
7
|
Zou D, Yuan Y, Xu L, Lei S, Li X, Lu X, Wang X, Li X, Wang L, Wang Z. PltDB: a blood platelets-based gene expression database for disease investigation. Bioinformatics 2022; 38:3143-3145. [PMID: 35438150 DOI: 10.1093/bioinformatics/btac278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/06/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Molecular profiling of blood-based liquid biopsies is a promising disease detection method, which overcomes the limitations of invasive diagnostic strategies. Recently, gene expression profiling of platelets reportedly provides valuable resource for developing new biomarkers for the detection of diseases, including cancer. However, there is no database containing RNAs in platelets. RESULTS In this study, we constructed PltDB (http://www.pltdb-hust.com), a platelets-based gene expression database featuring integration and visualization of RNA expression profiles based on RNA-seq and microarray data spanning both normal individuals and patients with different diseases. PltDB currently contains the expression landscape of mRNAs, lncRNAs, circRNAs, and miRNAs in platelets from patients with different disease types and healthy controls. Moreover, PltDB provides users with the tools for visualizing results of comparison and correlation analysis and for downloading expression profiles and analysis results. A submission interface for the scientific community is also embraced for uploading novel RNA expression profiles derived from platelet samples. PltDB will offer a comprehensive review of the clinical use of platelets, overcome technical problems when analyzing data from diverse studies and serve as a powerful platform for developing new blood biomarkers. AVAILABILITY PltDB is accessible at http://www.pltdb-hust.com. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Danyi Zou
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ye Yuan
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shijun Lei
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingbo Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohuan Lu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingyue Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - XiaoQiong Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
8
|
Adeola HA, Bello IO, Aruleba RT, Francisco NM, Adekiya TA, Adefuye AO, Ikwegbue PC, Musaigwa F. The Practicality of the Use of Liquid Biopsy in Early Diagnosis and Treatment Monitoring of Oral Cancer in Resource-Limited Settings. Cancers (Basel) 2022; 14:1139. [PMID: 35267452 PMCID: PMC8909754 DOI: 10.3390/cancers14051139] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
An important driving force for precision and individualized medicine is the provision of tailor-made care for patients on an individual basis, in accordance with best evidence practice. Liquid biopsy(LB) has emerged as a critical tool for the early diagnosis of cancer and for treatment monitoring, but its clinical utility for oral squamous cell carcinoma (OSCC) requires more research and validation. Hence, in this review, we have discussed the current applications of LB and the practicality of its routine use in Africa; the potential advantages of LB over the conventional "gold-standard" of tissue biopsy; and finally, practical considerations were discussed in three parts: pre-analytic, analytic processing, and the statistical quality and postprocessing phases. Although it is imperative to establish clinically validated and standardized working guidelines for various aspects of LB sample collection, processing, and analysis for optimal and reliable use, manpower and technological infrastructures may also be an important factor to consider for the routine clinical application of LB for OSCC. LB is poised as a non-invasive precision tool for personalized oral cancer medicine, particularly for OSCC in Africa, when fully embraced. The promising application of different LB approaches using various downstream analyses such as released circulating tumor cells (CTCs), cell free DNA (cfDNA), microRNA (miRNA), messenger RNA (mRNA), and salivary exosomes were discussed. A better understanding of the diagnostic and therapeutic biomarkers of OSCC, using LB applications, would significantly reduce the cost, provide an opportunity for prompt detection and early treatment, and a method to adequately monitor the effectiveness of the therapy for OSCC, which typically presents with ominous prognosis.
Collapse
Affiliation(s)
- Henry Ademola Adeola
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape, Tygerberg Hospital, Cape Town 7505, South Africa
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Ibrahim O. Bello
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia;
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town 7700, South Africa;
| | - Ngiambudulu M. Francisco
- Grupo de Investigação Microbiana e Imunológica, Instituto Nacional de Investigação em Saúde (National Institute for Health Research), Luanda 3635, Angola;
| | - Tayo Alex Adekiya
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 7 York Road, Johannesburg 2193, South Africa;
| | - Anthonio Oladele Adefuye
- Division of Health Sciences Education, Office of the Dean, Faculty of Health Sciences, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Paul Chukwudi Ikwegbue
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (P.C.I.); (F.M.)
| | - Fungai Musaigwa
- Division of Immunology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town 7925, South Africa; (P.C.I.); (F.M.)
| |
Collapse
|
9
|
Lin C, Liu X, Zheng B, Ke R, Tzeng CM. Liquid Biopsy, ctDNA Diagnosis through NGS. Life (Basel) 2021; 11:life11090890. [PMID: 34575039 PMCID: PMC8468354 DOI: 10.3390/life11090890] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022] Open
Abstract
Liquid biopsy with circulating tumor DNA (ctDNA) profiling by next-generation sequencing holds great promise to revolutionize clinical oncology. It relies on the basis that ctDNA represents the real-time status of the tumor genome which contains information of genetic alterations. Compared to tissue biopsy, liquid biopsy possesses great advantages such as a less demanding procedure, minimal invasion, ease of frequent sampling, and less sampling bias. Next-generation sequencing (NGS) methods have come to a point that both the cost and performance are suitable for clinical diagnosis. Thus, profiling ctDNA by NGS technologies is becoming more and more popular since it can be applied in the whole process of cancer diagnosis and management. Further developments of liquid biopsy ctDNA testing will be beneficial for cancer patients, paving the way for precision medicine. In conclusion, profiling ctDNA with NGS for cancer diagnosis is both biologically sound and technically convenient.
Collapse
Affiliation(s)
- Chen Lin
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
| | - Xuzhu Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
| | - Bingyi Zheng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Xiamen Key Laboratory of Cancer Cell Theranostics and Clinical Translation, Xiamen 361102, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (C.L.); (X.L.)
- Correspondence: (R.K.); (C.-M.T.)
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Xiamen Key Laboratory of Cancer Cell Theranostics and Clinical Translation, Xiamen 361102, China
- Correspondence: (R.K.); (C.-M.T.)
| |
Collapse
|
10
|
Circulating miRNAs as Novel Non-Invasive Biomarkers to Aid the Early Diagnosis of Suspicious Breast Lesions for Which Biopsy Is Recommended. Cancers (Basel) 2021; 13:cancers13164028. [PMID: 34439180 PMCID: PMC8391908 DOI: 10.3390/cancers13164028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. A retrospective cohort of plasma samples divided into training and testing sets and a prospective cohort of women with suspicious imaging findings who underwent tissue biopsy were investigated through a global microRNA profile by OpenArray. Seven signatures, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were identified and validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 of them were confirmed in the prospective cohort. Abstract In population-based screens, tissue biopsy remains the standard practice for women with imaging that suggests breast cancer. We examined circulating microRNAs as minimally invasive diagnostic biomarkers to discriminate malignant from benign breast lesions. miRNAs were analyzed by OpenArray in a retrospective cohort of plasma samples including 100 patients with malignant (T), 89 benign disease (B), and 99 healthy donors (HD) divided into training and testing sets and a prospective cohort (BABE) of 289 women with suspicious imaging findings who underwent tissue biopsy. miRNAs associated with disease status were identified by univariate analysis and then combined into signatures by multivariate logistic regression models. By combining 16 miRNAs differentially expressed in the T vs. HD comparison, 26 signatures were also able to significantly discriminate T from B disease. Seven of them, involving 5 specific miRNAs (miR-625, miR-423-5p, miR-370-3p, miR-181c, and miR-301b), were statistically validated in the testing set. Among the 7 signatures, the discriminatory performances of 5 were confirmed in the prospective BABE Cohort. This study identified 5 circulating miRNAs that, properly combined, distinguish malignant from benign breast disease in women with a high likelihood of malignancy.
Collapse
|
11
|
Du H, Zhao Y, Yin Z, Wang DW, Chen C. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases. Int J Biol Sci 2021; 17:402-416. [PMID: 33613101 PMCID: PMC7893589 DOI: 10.7150/ijbs.53419] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose and lipids are important nutrients that provide the majority of energy for each organ to maintain homeostasis of the body. With the continuous improvement in living standards, the incidence of metabolic disorder-associated diseases, such as diabetes, hyperlipidemia, and atherosclerosis, is increasing worldwide. Among them, diabetes, which could be induced by both glucose and lipid metabolic disorders, is one of the five diseases with the highest incidence and mortality worldwide. However, the detailed molecular mechanisms underlying glucose and lipid metabolism disorders and target-organ damage are still not fully defined. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNAs, which usually affect their target mRNAs in the cytoplasm by post-transcriptional regulation. Previously, we have found that miR-320 contributed to glucose and lipid metabolism via different signaling pathways. Most importantly, we identified that nuclear miR-320 mediated diabetes-induced cardiac dysfunction by activating the transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Here, we reviewed the roles of miR-320 in glucose and lipid metabolism and target-organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Chen Chen
- Division of Cardiology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Aparicio-Puerta E, Gómez-Martín C, Giannoukakos S, Medina JM, Marchal JA, Hackenberg M. mirnaQC: a webserver for comparative quality control of miRNA-seq data. Nucleic Acids Res 2020; 48:W262-W267. [PMID: 32484556 PMCID: PMC7319542 DOI: 10.1093/nar/gkaa452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Although miRNA-seq is extensively used in many different fields, its quality control is frequently restricted to a PhredScore-based filter. Other important quality related aspects like microRNA yield, the fraction of putative degradation products (such as rRNA fragments) or the percentage of adapter-dimers are hard to assess using absolute thresholds. Here we present mirnaQC, a webserver that relies on 34 quality parameters to assist in miRNA-seq quality control. To improve their interpretability, quality attributes are ranked using a reference distribution obtained from over 36 000 publicly available miRNA-seq datasets. Accepted input formats include FASTQ and SRA accessions. The results page contains several sections that deal with putative technical artefacts related to library preparation, sequencing, contamination or yield. Different visualisations, including PCA and heatmaps, are available to help users identify underlying issues. Finally, we show the usefulness of this approach by analysing two publicly available datasets and discussing the different quality issues that can be detected using mirnaQC.
Collapse
Affiliation(s)
- Ernesto Aparicio-Puerta
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain.,Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100-Granada. Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18071 Granada, Spain
| | - Cristina Gómez-Martín
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain.,Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100-Granada. Spain
| | - Stavros Giannoukakos
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain.,Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100-Granada. Spain
| | - José María Medina
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain.,Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100-Granada. Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18071 Granada, Spain.,Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine, University of Granada, Granada, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, 18071 Granada, Spain.,Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100-Granada. Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain.,Excellence Research Unit "Modelling Nature" (MNat), University of Granada, 18071 Granada, Spain
| |
Collapse
|
13
|
Busch RM, Yehia L, Bazeley P, Seyfi M, Blümcke I, Hermann BP, Najm IM, Eng C. Verbal memory dysfunction is associated with alterations in brain transcriptome in dominant temporal lobe epilepsy. Epilepsia 2020; 61:2203-2213. [PMID: 32945555 DOI: 10.1111/epi.16673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Memory dysfunction is prevalent in many neurological disorders and can have a significant negative impact on quality of life. The genetic contributions to memory impairment in epilepsy, particularly temporal lobe epilepsy (TLE), remain poorly understood. Here, we compare the brain transcriptome between TLE patients with and without verbal memory impairments to identify genes and signaling networks important for episodic memory. METHODS Brain tissues were resected from 23 adults who underwent dominant temporal lobectomy for treatment of pharmacoresistant epilepsy. To control for potential effects of APOE on memory, only those homozygous for the APOE ε3 allele were included. A battery of memory tests was performed, and patients were stratified into two groups based on preoperative memory performance. The groups were well matched on demographic and disease-related variables. Total RNA-Seq and small RNA-Seq were performed on RNA extracted from the brain tissues. Pathway and integrative analyses were subsequently performed. RESULTS We identified 1092 differentially expressed transcripts (DETs), with the majority (71%) being underexpressed in brain tissues from patients with impaired memory compared to those from patients with intact memory. Enrichment analysis revealed overrepresentation of genes in pathways pertaining to brain-related neurological dysfunction, including a subset associated with neurodegenerative diseases, memory, and cognition (APP, MAPT, PINK1). Despite including patients with identical APOE genotypes, we identify APOE as a differentially expressed gene associated with memory status. Small RNA-Seq identified four differentially expressed microRNAs (miRNAs) that were predicted to target a subset (22%) of all DETs. Integrative analysis showed that these miRNA-predicted DET targets impact brain-related pathways and biological processes also pertinent to memory and cognition. SIGNIFICANCE TLE-associated memory status may be influenced by differences in gene expression profiles within the temporal lobe. Upstream processes influencing differential expression signatures, such as miRNAs, could serve as biomarkers and potential treatment targets for memory impairment in TLE.
Collapse
Affiliation(s)
- Robyn M Busch
- Epilepsy Center and Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Marilyn Seyfi
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ingmar Blümcke
- Epilepsy Center and Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Institute of Neuropathology, University Hospitals Erlangen, Erlangen, Germany
| | - Bruce P Hermann
- Department of Neurology, University of Wisconsin, Madison, Wisconsin
| | - Imad M Najm
- Epilepsy Center and Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
14
|
Ovchinnikov VY, Kashina EV, Mordvinov VA, Fromm B. EV-transported microRNAs of Schistosoma mansoni and Fasciola hepatica: Potential targets in definitive hosts. INFECTION GENETICS AND EVOLUTION 2020; 85:104528. [PMID: 32891875 DOI: 10.1016/j.meegid.2020.104528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Trematodes are widespread parasitic flatworms that significantly affect mankind either directly as human parasites, or indirectly via the infection of livestock and the related economic damage. The two most important trematode taxa are the blood flukes Schistosoma and the liver flukes Fasciola, but detection and differentiation of these parasites remains a challenge. Recently, microRNAs (miRNAs) were described from extracellular vesicles (EV) for both parasites secreted into respective hosts. These molecules have been proposed as mediators of parasite-host communication, and potential biomarkers for the detection of parasitic infections from host blood. Our aim here was to study similarities and differences in the miRNA complements of Schistosoma mansoni and Fasciola hepatica, EV-load in particular, to predict their targets and potential functions in the parasite-host interaction. We reanalyzed the known miRNA complements of S. mansoni and F. hepatica and found 16 and 4 previously overlooked, but deeply conserved miRNAs, respectively, further moving their complements closer together. We found distinct miRNA enrichment patterns in EVs both showing high levels of flatworm miRNAs with potential for the detection of an infection from blood. Two miRNAs of the protostome specific MIR-71 and MIR-277 families were highly expressed in EVs and could, therefore, have potential as biomarkers for trematode infection. Curiously, we identified nucleotide differences in the sequence of Mir-277-P2 between S. mansoni and F. hepatica that hold great promise for the distinction of both parasites. To test whether the EV-miRNAs of S. mansoni and F. hepatica could be modulating the expression of host genes, we predicted miRNA targets in 321 human and cattle messenger RNAs that overlapped between both hosts. Of several predicted targets, wnt signaling pathway genes stood out and their suppression likely leads to changes in the glucose concentration in host blood and the reduction of inflammatory and immune responses.
Collapse
Affiliation(s)
- Vladimir Y Ovchinnikov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Elena V Kashina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Viatcheslav A Mordvinov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| |
Collapse
|
15
|
Aparicio-Puerta E, Lebrón R, Rueda A, Gómez-Martín C, Giannoukakos S, Jaspez D, Medina JM, Zubkovic A, Jurak I, Fromm B, Marchal JA, Oliver J, Hackenberg M. sRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression. Nucleic Acids Res 2020; 47:W530-W535. [PMID: 31114926 PMCID: PMC6602500 DOI: 10.1093/nar/gkz415] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/28/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
Since the original publication of sRNAtoolbox in 2015, small RNA research experienced notable advances in different directions. New protocols for small RNA sequencing have become available to address important issues such as adapter ligation bias, PCR amplification artefacts or to include internal controls such as spike-in sequences. New microRNA reference databases were developed with different foci, either prioritizing accuracy (low number of false positives) or completeness (low number of false negatives). Additionally, other small RNA molecules as well as microRNA sequence and length variants (isomiRs) have continued to gain importance. Finally, the number of microRNA sequencing studies deposited in GEO nearly triplicated from 2014 (280) to 2018 (764). These developments imply that fast and easy-to-use tools for expression profiling and subsequent downstream analysis of miRNA-seq data are essential to many researchers. Key features in this sRNAtoolbox release include addition of all major RNA library preparation protocols to sRNAbench and improvements in sRNAde, a tool that summarizes several aspects of small RNA sequencing studies including the detection of consensus differential expression. A special emphasis was put on the user-friendliness of the tools, for instance sRNAbench now supports parallel launching of several jobs to improve reproducibility and user time efficiency.
Collapse
Affiliation(s)
- Ernesto Aparicio-Puerta
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain.,Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine, Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n, 18100 Granada. Spain
| | - Ricardo Lebrón
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | - Antonio Rueda
- Genomics England, Charterhouse Square, London EC1M 6BQ, UK
| | - Cristina Gómez-Martín
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | - Stavros Giannoukakos
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | - David Jaspez
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - José María Medina
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | | | - Igor Jurak
- Department of Biotechnology, University of Rijeka, Croatia
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Institute of Biopathology and Regenerative Medicine, Excellence Research Unit 'Modeling Nature' (MNat), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n, 18100 Granada. Spain
| | - José Oliver
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain
| | - Michael Hackenberg
- Dpto. de Genética, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain.,Lab. de Bioinformática, Centro de Investigación Biomédica (CIBM), PTS, Avda. del Conocimiento s/n, 18100 Granada. Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n, 18100 Granada. Spain
| |
Collapse
|