1
|
Wang L, Liu C, Li L, Wei H, Wei W, Zhou Q, Chen Y, Meng T, Jiao R, Wang Z, Sun Q, Li W. RNF20 Regulates Oocyte Meiotic Spindle Assembly by Recruiting TPM3 to Centromeres and Spindle Poles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306986. [PMID: 38240347 PMCID: PMC10987117 DOI: 10.1002/advs.202306986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/02/2023] [Indexed: 04/04/2024]
Abstract
Previously a ring finger protein 20 (RNF20) is found to be essential for meiotic recombination and mediates H2B ubiquitination during spermatogenesis. However, its role in meiotic division is still unknown. Here, it is shown that RNF20 is localized at both centromeres and spindle poles, and it is required for oocyte acentrosomal spindle organization and female fertility. RNF20-depleted oocytes exhibit severely abnormal spindle and chromosome misalignment caused by defective bipolar organization. Notably, it is found that the function of RNF20 in spindle assembly is not dependent on its E3 ligase activity. Instead, RNF20 regulates spindle assembly by recruiting tropomyosin3 (TPM3) to both centromeres and spindle poles with its coiled-coil motif. The RNF20-TPM3 interaction is essential for acentrosomal meiotic spindle assembly. Together, the studies uncover a novel function for RNF20 in mediating TPM3 recruitment to both centromeres and spindle poles during oocyte spindle assembly.
Collapse
Affiliation(s)
- Liying Wang
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Chao Liu
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Li Li
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Huafang Wei
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Wei Wei
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Qiuxing Zhou
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Yinghong Chen
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Tie‐Gang Meng
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Renjie Jiao
- The State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouGuangdong510182China
| | - Zhen‐Bo Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qing‐Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhou510317China
| | - Wei Li
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623China
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyStem Cell and Regenerative Medicine Innovation InstituteChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell 2024; 15:157-190. [PMID: 37470788 PMCID: PMC10903993 DOI: 10.1093/procel/pwad045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanting Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
3
|
Jeon YG, Nahmgoong H, Oh J, Lee D, Kim DW, Kim JE, Kim YY, Ji Y, Han JS, Kim SM, Sohn JH, Lee WT, Kim SW, Park J, Huh JY, Jo K, Cho JY, Park J, Kim JB. Ubiquitin ligase RNF20 coordinates sequential adipose thermogenesis with brown and beige fat-specific substrates. Nat Commun 2024; 15:940. [PMID: 38296968 PMCID: PMC10831072 DOI: 10.1038/s41467-024-45270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
In mammals, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) execute sequential thermogenesis to maintain body temperature during cold stimuli. BAT rapidly generates heat through brown adipocyte activation, and further iWAT gradually stimulates beige fat cell differentiation upon prolonged cold challenges. However, fat depot-specific regulatory mechanisms for thermogenic activation of two fat depots are poorly understood. Here, we demonstrate that E3 ubiquitin ligase RNF20 orchestrates adipose thermogenesis with BAT- and iWAT-specific substrates. Upon cold stimuli, BAT RNF20 is rapidly downregulated, resulting in GABPα protein elevation by controlling protein stability, which stimulates thermogenic gene expression. Accordingly, BAT-specific Rnf20 suppression potentiates BAT thermogenic activity via GABPα upregulation. Moreover, upon prolonged cold stimuli, iWAT RNF20 is gradually upregulated to promote de novo beige adipogenesis. Mechanistically, iWAT RNF20 mediates NCoR1 protein degradation, rather than GABPα, to activate PPARγ. Together, current findings propose fat depot-specific regulatory mechanisms for temporal activation of adipose thermogenesis.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hahn Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jiyoung Oh
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Jane Eunsoo Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yul Ji
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sung Min Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jee Hyung Sohn
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Won Taek Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sun Won Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jeu Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin Young Huh
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Life Science, Sogang University, Seoul, 04107, South Korea
| | - Kyuri Jo
- Department of Computer Engineering, Chungbuk National University, Cheongju, 28644, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Jiyoung Park
- Department of Biological Sciences, College of Information and Bioengineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
4
|
Spires LM, Wind E, Papp B, Toth Z. KSHV RTA utilizes the host E3 ubiquitin ligase complex RNF20/40 to drive lytic reactivation. J Virol 2023; 97:e0138923. [PMID: 37888983 PMCID: PMC10688343 DOI: 10.1128/jvi.01389-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing human herpesvirus that establishes a persistent infection in humans. The lytic viral cycle plays a crucial part in lifelong infection as it is involved in the viral dissemination. The master regulator of the KSHV lytic replication cycle is the viral replication and transcription activator (RTA) protein, which is necessary and sufficient to push the virus from latency into the lytic phase. Thus, the identification of host factors utilized by RTA for controlling the lytic cycle can help to find novel targets that could be used for the development of antiviral therapies against KSHV. Using a proteomics approach, we have identified a novel interaction between RTA and the cellular E3 ubiquitin ligase complex RNF20/40, which we have shown to be necessary for promoting RTA-induced KSHV lytic cycle.
Collapse
Affiliation(s)
- Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Eleanor Wind
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- UF Genetics Institute, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
- UF Center for Orphaned Autoimmune Disorders, Gainesville, Florida, USA
- UF Informatics Institute, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- UF Genetics Institute, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
5
|
Liu J, Wu X, Qin H, Hu Y, Zhang Z, Wang Y, Li J. RNF20/RNF40 ameliorates streptozotocin-induced type 1 diabetes by activating vitamin D receptors in vivo. Allergol Immunopathol (Madr) 2023; 51:1-9. [PMID: 37422774 DOI: 10.15586/aei.v51i4.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/09/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Type 1 diabetes is one of the chronic autoimmune diseases. Its features include the immune-triggered pancreatic beta-cells destruction. Ubiquitin ligases RNF20 and RNF40 have been discovered to participate into beta cells gene expression, insulin secretion, and expression of vitamin D receptors (VDRs). However, no reports about the role of RNF20/RNF40 in type 1 diabetes are known till now. The aim of this study was to clarify the role of RNF20/RNF40 in type 1 diabetes and explore the mechanism. METHODS In this study, streptozotocin (STZ)-induced mice type 1 diabetes model was used. The protein expressions of genes were examined through Western blot analysis. Fasting blood glucose was detected through glucose meter. The plasma insulin was tested through the commercial kit. Hematoxylin and eosin staining was utilized to observe pathological changes of pancreatic tissues. Immunofluorescence assay was performed to evaluate the level of insulin. The levels of pro-inflammatory cytokines in serum were assessed by enzyme-linked-immunosorbent serologic assay. The cell apoptosis was measured through terminal deoxynucleotidyl transferase dUTP nick end labelling assay. RESULTS STZ was used to stimulate mice model for type 1 diabetes. At first, both RNF20 and RNF40 expressions were down-regulated in STZ-mediated type 1 diabetes. Additionally, RNF20/RNF40 improved hyperglycemia in STZ-stimulated mice. Moreover, RNF20/RNF40 relieved pancreatic tissue injury in STZ-induced mice. Further experiments found that RNF20/RNF40 rescued the strengthened inflammation mediated by STZ treatment. The cell apoptosis was enhanced in the pancreatic tissues of STZ-triggered mice, but this effect was weakened by overexpression of RNF20/RNF40. Besides, the VDR expression was positively regulated by RNF20/RNF40. Finally, VDR knockdown reversed improved hyperglycemia, inflammation, and cell apoptosis stimulated by overexpression of RNF20/RNF40. CONCLUSION Our findings proved that RNF20/RNF40 activated VDR to relieve type 1 diabetes. This work might highlight the functioning of RNF20/RNF40 in the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Junxiang Liu
- Department of Endocrinology, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region, China;
| | - Xuri Wu
- Department of Endocrinology, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region, China
| | - Haixia Qin
- Department of Endocrinology, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region, China
| | - Ying Hu
- Department of Endocrinology, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region, China
| | - Zhiyun Zhang
- Department of Endocrinology, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region, China
| | - Yanmei Wang
- Department of Endocrinology, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region, China
| | - Jinlan Li
- Department of Endocrinology, Ordos Central Hospital, Ordos, Inner Mongolia Autonomous Region, China
| |
Collapse
|
6
|
Li J, Zhao J, Gan X, Wang Y, Jiang D, Chen L, Wang F, Xu J, Pei H, Huang J, Chen X. The RPA-RNF20-SNF2H cascade promotes proper chromosome segregation and homologous recombination repair. Proc Natl Acad Sci U S A 2023; 120:e2303479120. [PMID: 37155876 PMCID: PMC10193940 DOI: 10.1073/pnas.2303479120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023] Open
Abstract
The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.
Collapse
Affiliation(s)
- Jimin Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jingyu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xiaoli Gan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yanyan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Donghao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Fangwei Wang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057
| | - Jun Huang
- The Ministry of Education Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuefeng Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Centre of Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Qi A, Liu Y, Zhai J, Wang Y, Li W, Wang T, Chai Y. RNF20 deletion causes inflammation in model of sepsis through the NLRP3 activation. Immunopharmacol Immunotoxicol 2023:1-10. [PMID: 36650938 DOI: 10.1080/08923973.2023.2170241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Aim: Sepsis is an extremely complex, threatening and difficult-to-treat disease, which can occur at any age and under any underlying disease. RNF20 regulate NF-kappaB (NF-κB) signaling pathway and the transcription of inflammatory factors of target genes. Therefore, it is of great significance to study the function of RNF20 in the clinical treatment of sepsis and its underlying mechanisms.Methods: C57BL/6 mice were subjected to cecal ligation and puncture (CLP) surgery. THP-1 cells were induced with Lipopolysaccharide for 4 h.Results: RNF20 gene, mRNA expression and protein expression were reduced in patients with sepsis and mice with sepsis. Based on RNF20 deletion (RNF20-/-) mice, these were found to be increased inflammation reactions in RNF20-/- mice. However, the RNF20 human protein reduced inflammation reactions in mice with sepsis. In vitro model of sepsis, over-expression of RNF20 inhibited inflammation reactions by inducing Vitamin D Receptor (VDR), while down-regulation of RNF20 promoted inflammation reactions through the suppression of VDR. RNF20 protein was interlinked with VDR protein, and VDR protein was also interlinked with NLRP3. Furthermore, VDR promoted NLRP3 ubiquitination and reduced NLRP3 function in vitro model of sepsis.Conclusion: These studies demonstrate that RNF20 suppressed inflammation reactions in models with sepsis through NLRP3 inflammasome and NLRP3 ubiquitination by activating VDR.
Collapse
Affiliation(s)
- Anlong Qi
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Jianhua Zhai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yongtao Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Wang Li
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, P.R. China
| | - Tong Wang
- NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, P.R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
8
|
Xu Q, Liu Y, Wang S, Wang J, Liu L, Xu Y, Qin Y. Interfering with the expression of EEF1D gene enhances the sensitivity of ovarian cancer cells to cisplatin. BMC Cancer 2022; 22:628. [PMID: 35672728 PMCID: PMC9175347 DOI: 10.1186/s12885-022-09699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Eukaryotic translation elongation factors 1 δ (EEF1D), has garnered much attention with regards to their role in the drug resistance of cancers. In this paper, we investigated the effects and mechanisms of increasing the sensitivity of ovarian cancer cells to cisplatin or cis-dichlorodiammine platinum (DDP) by knockdown and knockout of EEF1D gene in cellular and animal models. Methods The EEF1D gene was knocked-down or -out by siRNA or CRISPR/Cas9 respectively in human ovarian cancer cell SKOV3, DDP-resistant subline SKOV3/DDP, and EEF1D gene in human primary ovarian cancer cell from 5 ovarian cancer patients with progressive disease/stable disease (PD/SD) was transiently knocked down by siRNA interference. The mice model bearing xenografted tumor was established with subcutaneous inoculation of SKOV3/DDP. Results The results show that reducing or removing EEF1D gene expression significantly increased the sensitivity of human ovarian cancer cells to DDP in inhibiting viability and inducing apoptosis in vitro and in vivo, and also boosted DDP to inhibit xenografted tumor growth. Interfering with EEF1D gene expression in mice xenografted tumor significantly affected the levels of OPTN, p-Akt, Bcl-2, Bax, cleaved caspase-3 and ERCC1 compared to DDP treated mice alone, and had less effect on PI3K, Akt and caspase-3. Conclusions The knocking down or out EEF1D gene expression could enhance the sensitivity of ovarian cancer cells to DDP partially, which may be achieved via inactivating the PI3K/AKT signaling pathway, thus inducing cell apoptosis and decreasing repairment of DNA damage. Our study provides a novel therapeutic strategy for the treatment of ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09699-7.
Collapse
Affiliation(s)
- Qia Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Street, Hefei, Anhui, 230032, People's Republic of China
| | - Yun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Street, Hefei, Anhui, 230032, People's Republic of China
| | - Shenyi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Street, Hefei, Anhui, 230032, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Liwei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Street, Hefei, Anhui, 230032, People's Republic of China
| | - Yin Xu
- Department of Neuropsychology, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China. .,Laboratory of Molecular Neuropsychology, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Yide Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Street, Hefei, Anhui, 230032, People's Republic of China.
| |
Collapse
|
9
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
10
|
Kaitsuka T, Tomizawa K, Matsushita M. Heat Shock-Induced Dephosphorylation of Eukaryotic Elongation Factor 1BδL by Protein Phosphatase 1. Front Mol Biosci 2021; 7:598578. [PMID: 33521052 PMCID: PMC7841112 DOI: 10.3389/fmolb.2020.598578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022] Open
Abstract
Several variant proteins are produced from EEF1D, including two representative proteins produced via alternative splicing machinery. One protein is the canonical translation eukaryotic elongation factor eEF1Bδ1, and the other is the heat shock-responsive transcription factor eEF1BδL. eEF1Bδ1 is phosphorylated by cyclin-dependent kinase 1 (CDK1), but the machinery controlling eEF1BδL phosphorylation and dephosphorylation has not been clarified. In this study, we found that both proteins were dephosphorylated under heat shock and proteotoxic stress, and this dephosphorylation was inhibited by okadaic acid. Using proteins with mutations at putative phosphorylated residues, we revealed that eEF1Bδ1 and eEF1BδL are phosphorylated at S133 and S499, respectively, and these residues are both CDK1 phosphorylation sites. The eEF1BδL S499A mutant more strongly activated HSPA6 promoter-driven reporter than the wild-type protein and S499D mutant. Furthermore, protein phosphatase 1 (PP1) was co-immunoprecipitated with eEF1Bδ1 and eEF1BδL, and PP1 dephosphorylated both proteins in vitro. Thus, this study clarified the role of phosphorylation/dephosphorylation in the functional regulation of eEF1BδL during heat shock.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,School of Pharmacy in Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
11
|
Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene 2020; 40:465-474. [PMID: 33199825 PMCID: PMC7819849 DOI: 10.1038/s41388-020-01556-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
RNF40 (OMIM: 607700) is a really interesting new gene (RING) finger E3 ubiquitin ligase containing multiple coiled-coil domains and a C-terminal RING finger motif, which engage in protein–DNA and protein–protein interactions. RNF40 encodes a polypeptide of 1001 amino acids with a predicted molecular mass of 113,678 Da. RNF40 and its paralog RNF20 form a stable heterodimer complex that can monoubiquitylate histone H2B at lysine 120 as well as other nonhistone proteins. Cancer is a major public health problem and the second leading cause of death. Through its protein ubiquitylation activity, RNF40 acts as a tumor suppressor or oncogene to play major epigenetic roles in cancer development, progression, and metastasis, highlighting the essential function of RNF40 and the importance of studying it. In this review, we summarize current knowledge about RNF40 gene structure and the role of RNF40 in histone H2B monoubiquitylation, DNA damage repair, apoptosis, cancer development, and metastasis. We also underscore challenges in applying this information to cancer prognosis and prevention and highlight the urgent need for additional investigations of RNF40 as a potential target for cancer therapeutics.
Collapse
|
12
|
Park JK, Kim KY, Sim YW, Kim YI, Kim JK, Lee C, Han J, Kim CU, Lee JE, Park S. Structures of three ependymin-related proteins suggest their function as a hydrophobic molecule binder. IUCRJ 2019; 6:729-739. [PMID: 31316816 PMCID: PMC6608618 DOI: 10.1107/s2052252519007668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/27/2019] [Indexed: 06/10/2023]
Abstract
Ependymin was first discovered as a predominant protein in brain extracellular fluid in fish and was suggested to be involved in functions mostly related to learning and memory. Orthologous proteins to ependymin called ependymin-related proteins (EPDRs) have been found to exist in various tissues from sea urchins to humans, yet their functional role remains to be revealed. In this study, the structures of EPDR1 from frog, mouse and human were determined and analyzed. All of the EPDR1s fold into a dimer using a monomeric subunit that is mostly made up of two stacking antiparallel β-sheets with a curvature on one side, resulting in the formation of a deep hydrophobic pocket. All six of the cysteine residues in the monomeric subunit participate in the formation of three intramolecular disulfide bonds. Other interesting features of EPDR1 include two asparagine residues with glycosylation and a Ca2+-binding site. The EPDR1 fold is very similar to the folds of bacterial VioE and LolA/LolB, which also use a similar hydrophobic pocket for their respective functions as a hydrophobic substrate-binding enzyme and a lipoprotein carrier, respectively. A further fatty-acid binding assay using EPDR1 suggests that it indeed binds to fatty acids, presumably via this pocket. Additional interactome analysis of EPDR1 showed that EPDR1 interacts with insulin-like growth factor 2 receptor and flotillin proteins, which are known to be involved in protein and vesicle translocation.
Collapse
Affiliation(s)
- Jeong Kuk Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Keon Young Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yeo Won Sim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jin Kyun Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Cheol Lee
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jeongran Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chae Un Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - J. Eugene Lee
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - SangYoun Park
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|