1
|
Li R, Madhvacharyula AS, Du Y, Adepu HK, Choi JH. Mechanics of dynamic and deformable DNA nanostructures. Chem Sci 2023; 14:8018-8046. [PMID: 37538812 PMCID: PMC10395309 DOI: 10.1039/d3sc01793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
In DNA nanotechnology, DNA molecules are designed, engineered, and assembled into arbitrary-shaped architectures with predesigned functions. Static DNA assemblies often have delicate designs with structural rigidity to overcome thermal fluctuations. Dynamic structures reconfigure in response to external cues, which have been explored to create functional nanodevices for environmental sensing and other applications. However, the precise control of reconfiguration dynamics has been a challenge due partly to flexible single-stranded DNA connections between moving parts. Deformable structures are special dynamic constructs with deformation on double-stranded parts and single-stranded hinges during transformation. These structures often have better control in programmed deformation. However, related deformability and mechanics including transformation mechanisms are not well understood or documented. In this review, we summarize the development of dynamic and deformable DNA nanostructures from a mechanical perspective. We present deformation mechanisms such as single-stranded DNA hinges with lock-and-release pairs, jack edges, helicity modulation, and external loading. Theoretical and computational models are discussed for understanding their associated deformations and mechanics. We elucidate the pros and cons of each model and recommend design processes based on the models. The design guidelines should be useful for those who have limited knowledge in mechanics as well as expert DNA designers.
Collapse
Affiliation(s)
- Ruixin Li
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Anirudh S Madhvacharyula
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Yancheng Du
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Harshith K Adepu
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University 585 Purdue Mall West Lafayette Indiana 47907 USA
| |
Collapse
|
2
|
Qi L, Tian Y, Li N, Mao M, Fang X, Han D. Engineering Circular Aptamer Assemblies with Tunable Selectivity to Cell Membrane Antigens In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12822-12830. [PMID: 36856721 DOI: 10.1021/acsami.2c22820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The strategy of enhancing molecular recognition by improving the binding affinity of drug molecules against targets has generated a lot of successful therapeutic applications. However, one critical consequence of such affinity improvement, generally called "on-target, off-tumor" toxicity, emerged as a major obstacle limiting their clinical usage. Herein, we provide a modular assembly strategy that affords affinity-tunable DNA nanostructures allowing for immobilizing multiple aptamers that bind to the example antigen of EpCAM with different affinities. We develop a theoretical model proving that the apparent affinity of aptamer assemblies to target cells varies with antigen density as well as aptamer valency. More importantly, we demonstrate experimentally that the theoretical model can be used to predict the least valency required for discrimination between EpCAMhigh and EpCAMlow cells in vitro and in vivo. We believe that our strategy will have broad applications in an engineering nucleic acid-based delivery platform for targeted and cell therapy.
Collapse
Affiliation(s)
- Liqing Qi
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, School of Medicine, Shanghai Jiao Tong University, Renji Hospital, Institute of Molecular Medicine, Shanghai 200127, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yuan Tian
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, School of Medicine, Shanghai Jiao Tong University, Renji Hospital, Institute of Molecular Medicine, Shanghai 200127, China
| | - Na Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Menghan Mao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, School of Medicine, Shanghai Jiao Tong University, Renji Hospital, Institute of Molecular Medicine, Shanghai 200127, China
| | - Xiaohong Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Da Han
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, School of Medicine, Shanghai Jiao Tong University, Renji Hospital, Institute of Molecular Medicine, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
3
|
The Free-Energy Landscape of a Mechanically Bistable DNA Origami. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Molecular simulations using coarse-grained models allow the structure, dynamics and mechanics of DNA origamis to be comprehensively characterized. Here, we focus on the free-energy landscape of a jointed DNA origami that has been designed to exhibit two mechanically stable states and for which a bistable landscape has been inferred from ensembles of structures visualized by electron microscopy. Surprisingly, simulations using the oxDNA model predict that the defect-free origami has a single free-energy minimum. The expected second state is not stable because the hinge joints do not simply allow free angular motion but instead lead to increasing free-energetic penalties as the joint angles relevant to the second state are approached. This raises interesting questions about the cause of this difference between simulations and experiment, such as how assembly defects might affect the ensemble of structures observed experimentally.
Collapse
|
4
|
Wang X, Jun H, Bathe M. Programming 2D Supramolecular Assemblies with Wireframe DNA Origami. J Am Chem Soc 2022; 144:4403-4409. [PMID: 35230115 DOI: 10.1021/jacs.1c11332] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Wireframe DNA origami offers the ability to program nearly arbitrary 2D and 3D nanoscale geometries, with six-helix bundle (6HB) edge designs providing both geometric versatility and fidelity with respect to the target origami shape. Because individual DNA origami objects are limited in size by the length of the DNA scaffold, here, we introduce a hierarchical self-assembly strategy to overcome this limitation by programming supramolecular assemblies and periodic arrays using wireframe DNA origami objects as building blocks. Parallel half-crossovers are used together with lateral cohesive interactions between staples and the scaffold to introduce symmetry into supramolecular assemblies constructed from single DNA origami units that cannot be self-assembled directly using base-stacking or conventional antiparallel crossover designs. This hierarchical design approach can be applied readily to 2D wireframe DNA origami designed using the top-down sequence design strategy METIS without any prerequisites on scaffold and staple routing. We demonstrate the utility of our strategy by fabricating dimers and self-limiting hexameric superstructures using both triangular and hexagonal wireframe origami building blocks. We generalize our self-assembly approach to fabricate close-packed and non-close-packed periodic 2D arrays. Visualization using atomic force microscopy and transmission electron microscopy demonstrates that superstructures exhibit similar structural integrity to that of the individual origami building blocks designed using METIS. Our results offer a general platform for the design and fabrication of 2D materials for a variety of applications.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyungmin Jun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Sengar A, Ouldridge TE, Henrich O, Rovigatti L, Šulc P. A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results. Front Mol Biosci 2021; 8:693710. [PMID: 34235181 PMCID: PMC8256390 DOI: 10.3389/fmolb.2021.693710] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The oxDNA model of Deoxyribonucleic acid has been applied widely to systems in biology, biophysics and nanotechnology. It is currently available via two independent open source packages. Here we present a set of clearly documented exemplar simulations that simultaneously provide both an introduction to simulating the model, and a review of the model's fundamental properties. We outline how simulation results can be interpreted in terms of-and feed into our understanding of-less detailed models that operate at larger length scales, and provide guidance on whether simulating a system with oxDNA is worthwhile.
Collapse
Affiliation(s)
- A. Sengar
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - T. E. Ouldridge
- Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London, United Kingdom
| | - O. Henrich
- Department of Physics, SUPA, University of Strathclyde, Glasgow, United Kingdom
| | - L. Rovigatti
- Department of Physics, Sapienza University of Rome, Rome, Italy
- CNR Institute of Complex Systems, Sapienza University of Rome, Rome, Italy
| | - P. Šulc
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
6
|
Berengut JF, Wong CK, Berengut JC, Doye JPK, Ouldridge TE, Lee LK. Self-Limiting Polymerization of DNA Origami Subunits with Strain Accumulation. ACS NANO 2020; 14:17428-17441. [PMID: 33232603 DOI: 10.1021/acsnano.0c07696] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biology demonstrates how a near infinite array of complex systems and structures at many scales can originate from the self-assembly of component parts on the nanoscale. But to fully exploit the benefits of self-assembly for nanotechnology, a crucial challenge remains: How do we rationally encode well-defined global architectures in subunits that are much smaller than their assemblies? Strain accumulation via geometric frustration is one mechanism that has been used to explain the self-assembly of global architectures in diverse and complex systems a posteriori. Here we take the next step and use strain accumulation as a rational design principle to control the length distributions of self-assembling polymers. We use the DNA origami method to design and synthesize a molecular subunit known as the PolyBrick, which perturbs its shape in response to local interactions via flexible allosteric blocking domains. These perturbations accumulate at the ends of polymers during growth, until the deformation becomes incompatible with further extension. We demonstrate that the key thermodynamic factors for controlling length distributions are the intersubunit binding free energy and the fundamental strain free energy, both which can be rationally encoded in a PolyBrick subunit. While passive polymerization yields geometrical distributions, which have the highest statistical length uncertainty for a given mean, the PolyBrick yields polymers that approach Gaussian length distributions whose variance is entirely determined by the strain free energy. We also show how strain accumulation can in principle yield length distributions that become tighter with increasing subunit affinity and approach distributions with uniform polymer lengths. Finally, coarse-grained molecular dynamics and Monte Carlo simulations delineate and quantify the dominant forces influencing strain accumulation in a molecular system. This study constitutes a fundamental investigation of the use of strain accumulation as a rational design principle in molecular self-assembly.
Collapse
Affiliation(s)
- Jonathan F Berengut
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales Sydney 2052, Australia
| | - Chak Kui Wong
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Julian C Berengut
- School of Physics, University of New South Wales, Sydney 2052, Australia
| | - Jonathan P K Doye
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Thomas E Ouldridge
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lawrence K Lee
- EMBL Australia Node for Single Molecule Science, School of Medical Sciences, University of New South Wales Sydney 2052, Australia
- ARC Centre of Excellence in Synthetic Biology, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
Chhabra H, Mishra G, Cao Y, Prešern D, Skoruppa E, Tortora MMC, Doye JPK. Computing the Elastic Mechanical Properties of Rodlike DNA Nanostructures. J Chem Theory Comput 2020; 16:7748-7763. [PMID: 33164531 DOI: 10.1021/acs.jctc.0c00661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To study the elastic properties of rodlike DNA nanostructures, we perform long simulations of these structures using the oxDNA coarse-grained model. By analyzing the fluctuations in these trajectories, we obtain estimates of the bend and twist persistence lengths and the underlying bend and twist elastic moduli and couplings between them. Only on length scales beyond those associated with the spacings between the interhelix crossovers do the bending fluctuations behave like those of a wormlike chain. The obtained bending persistence lengths are much larger than that for double-stranded DNA and increase nonlinearly with the number of helices, whereas the twist moduli increase approximately linearly. To within the numerical error in our data, the twist-bend coupling constants are of order zero. That the bending persistence lengths that we obtain are generally somewhat higher than in experiment probably reflects both that the simulated origamis have no assembly defects and that the oxDNA extensional modulus for double-stranded DNA is too large.
Collapse
Affiliation(s)
- Hemani Chhabra
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Garima Mishra
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Yijing Cao
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Domen Prešern
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Enrico Skoruppa
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Maxime M C Tortora
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom.,Laboratory of Biology and Modeling of the Cell, École Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon Cedex 07, France
| | - Jonathan P K Doye
- Physical & Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|