1
|
Zhang Z, Hong X, Xiong P, Wang J, Zhou Y, Zhan J. Minimal twister sister-like self-cleaving ribozymes in the human genome revealed by deep mutational scanning. eLife 2024; 12:RP90254. [PMID: 39636683 PMCID: PMC11620745 DOI: 10.7554/elife.90254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Despite their importance in a wide range of living organisms, self-cleaving ribozymes in the human genome are few and poorly studied. Here, we performed deep mutational scanning and covariance analysis of two previously proposed self-cleaving ribozymes (LINE-1 and OR4K15). We found that the regions essential for ribozyme activities are made of two short segments, with a total of 35 and 31 nucleotides only. The discovery makes them the simplest known self-cleaving ribozymes. Moreover, the essential regions are circular permutated with two nearly identical catalytic internal loops, supported by two stems of different lengths. These two self-cleaving ribozymes, which are shaped like lanterns, are similar to the catalytic regions of the twister sister ribozymes in terms of sequence and secondary structure. However, the nucleotides at the cleavage site have shown that mutational effects on two twister sister-like (TS-like) ribozymes are different from the twister sister ribozyme. The discovery of TS-like ribozymes reveals a ribozyme class with the simplest and, perhaps, the most primitive structure needed for self-cleavage.
Collapse
Affiliation(s)
- Zhe Zhang
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- University of Science and Technology of ChinaHefeiChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
| | - Xu Hong
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- University of Science and Technology of ChinaHefeiChina
| | - Peng Xiong
- University of Science and Technology of ChinaHefeiChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- Suzhou Institute for Advanced Research, University of Science and Technology of ChinaSuzhouChina
| | - Junfeng Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of SciencesHefeiChina
- Institute of Physical Science and Information Technology, Anhui UniversityHefeiChina
| | - Yaoqi Zhou
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- School of Information and Communication Technology, Griffith UniversitySouthportAustralia
| | - Jian Zhan
- Institute for Systems and Physical Biology, Shenzhen Bay LaboratoryShenzhenChina
- Institute for Biomedicine and Glycomics, Griffith UniversitySouthportAustralia
- Ribopeutic Inc, Guangzhou International Bio IslandGuangzhouChina
| |
Collapse
|
2
|
Qi F, Chen J, Chen Y, Sun J, Lin Y, Chen Z, Kapranov P. Evaluating Performance of Different RNA Secondary Structure Prediction Programs Using Self-cleaving Ribozymes. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae043. [PMID: 39317944 DOI: 10.1093/gpbjnl/qzae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/02/2024] [Accepted: 06/05/2024] [Indexed: 09/26/2024]
Abstract
Accurate identification of the correct, biologically relevant RNA structures is critical to understanding various aspects of RNA biology since proper folding represents the key to the functionality of all types of RNA molecules and plays pivotal roles in many essential biological processes. Thus, a plethora of approaches have been developed to predict, identify, or solve RNA structures based on various computational, molecular, genetic, chemical, or physicochemical strategies. Purely computational approaches hold distinct advantages over all other strategies in terms of the ease of implementation, time, speed, cost, and throughput, but they strongly underperform in terms of accuracy that significantly limits their broader application. Nonetheless, the advantages of these methods led to a steady development of multiple in silico RNA secondary structure prediction approaches including recent deep learning-based programs. Here, we compared the accuracy of predictions of biologically relevant secondary structures of dozens of self-cleaving ribozyme sequences using seven in silico RNA folding prediction tools with tasks of varying complexity. We found that while many programs performed well in relatively simple tasks, their performance varied significantly in more complex RNA folding problems. However, in general, a modern deep learning method outperformed the other programs in the complex tasks in predicting the RNA secondary structures, at least based on the specific class of sequences tested, suggesting that it may represent the future of RNA structure prediction algorithms.
Collapse
Affiliation(s)
- Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Junjie Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Yue Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Jianfeng Sun
- Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - Yiting Lin
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Zipeng Chen
- Institute of Genomics, School of Medicine, Huaqiao University, Xiamen 361021, China
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Nasaev SS, Mukanov AR, Kuznetsov II, Veselovsky AV. AliNA - a deep learning program for RNA secondary structure prediction. Mol Inform 2023; 42:e202300113. [PMID: 37710142 DOI: 10.1002/minf.202300113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
Nowadays there are numerous discovered natural RNA variations participating in different cellular processes and artificial RNA, e. g., aptamers, riboswitches. One of the required tasks in the investigation of their functions and mechanism of influence on cells and interaction with targets is the prediction of RNA secondary structures. The classic thermodynamic-based prediction algorithms do not consider the specificity of biological folding and deep learning methods that were designed to resolve this issue suffer from homology-based methods problems. Herein, we present a method for RNA secondary structure prediction based on deep learning - AliNA (ALIgned Nucleic Acids). Our method successfully predicts secondary structures for non-homologous to train-data RNA families thanks to usage of the data augmentation techniques. Augmentation extends existing datasets with easily-accessible simulated data. The proposed method shows a high quality of prediction across different benchmarks including pseudoknots. The method is available on GitHub for free (https://github.com/Arty40m/AliNA).
Collapse
Affiliation(s)
- Shamsudin S Nasaev
- Institute of Biomedical Chemistry, 10, Pogodinskaya str., 119121, Moscow, Russia
| | - Artem R Mukanov
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, 18, Kremlyovskaya str., 420008, Kazan, Russia
| | - Ivan I Kuznetsov
- Moscow University of Finance and Law, 10 block 1, Serpuhovsky val str., 115191, Moscow, Russia
| | | |
Collapse
|
4
|
Matarrese MAG, Loppini A, Nicoletti M, Filippi S, Chiodo L. Assessment of tools for RNA secondary structure prediction and extraction: a final-user perspective. J Biomol Struct Dyn 2022:1-20. [DOI: 10.1080/07391102.2022.2116110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Margherita A. G. Matarrese
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Jane and John Justin Neurosciences Center, Cook Children’s Health Care System, TX, USA
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA
| | - Alessandro Loppini
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Martina Nicoletti
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
- Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome, Italy
| | - Simonetta Filippi
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
| | - Letizia Chiodo
- Engineering Department, Campus Bio-Medico University of Rome, Rome, Italy
| |
Collapse
|
5
|
Singh J, Paliwal K, Litfin T, Singh J, Zhou Y. Predicting RNA distance-based contact maps by integrated deep learning on physics-inferred secondary structure and evolutionary-derived mutational coupling. Bioinformatics 2022; 38:3900-3910. [PMID: 35751593 PMCID: PMC9364379 DOI: 10.1093/bioinformatics/btac421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recently, AlphaFold2 achieved high experimental accuracy for the majority of proteins in Critical Assessment of Structure Prediction (CASP 14). This raises the hope that one day, we may achieve the same feat for RNA structure prediction for those structured RNAs, which is as fundamentally and practically important similar to protein structure prediction. One major factor in the recent advancement of protein structure prediction is the highly accurate prediction of distance-based contact maps of proteins. RESULTS Here, we showed that by integrated deep learning with physics-inferred secondary structures, co-evolutionary information and multiple sequence-alignment sampling, we can achieve RNA contact-map prediction at a level of accuracy similar to that in protein contact-map prediction. More importantly, highly accurate prediction for top L long-range contacts can be assured for those RNAs with a high effective number of homologous sequences (Neff > 50). The initial use of the predicted contact map as distance-based restraints confirmed its usefulness in 3D structure prediction. AVAILABILITY AND IMPLEMENTATION SPOT-RNA-2D is available as a web server at https://sparks-lab.org/server/spot-rna-2d/ and as a standalone program at https://github.com/jaswindersingh2/SPOT-RNA-2D. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Thomas Litfin
- Institute for Glycomics, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- To whom correspondence should be addressed. or or
| |
Collapse
|
6
|
Bendixsen DP, Pollock TB, Peri G, Hayden EJ. Experimental Resurrection of Ancestral Mammalian CPEB3 Ribozymes Reveals Deep Functional Conservation. Mol Biol Evol 2021; 38:2843-2853. [PMID: 33720319 PMCID: PMC8233481 DOI: 10.1093/molbev/msab074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Self-cleaving ribozymes are genetic elements found in all domains of life, but their evolution remains poorly understood. A ribozyme located in the second intron of the cytoplasmic polyadenylation binding protein 3 gene (CPEB3) shows high sequence conservation in mammals, but little is known about the functional conservation of self-cleaving ribozyme activity across the mammalian tree of life or during the course of mammalian evolution. Here, we use a phylogenetic approach to design a mutational library and a deep sequencing assay to evaluate the in vitro self-cleavage activity of numerous extant and resurrected CPEB3 ribozymes that span over 100 My of mammalian evolution. We found that the predicted sequence at the divergence of placentals and marsupials is highly active, and this activity has been conserved in most lineages. A reduction in ribozyme activity appears to have occurred multiple different times throughout the mammalian tree of life. The in vitro activity data allow an evaluation of the predicted mutational pathways leading to extant ribozyme as well as the mutational landscape surrounding these ribozymes. The results demonstrate that in addition to sequence conservation, the self-cleavage activity of the CPEB3 ribozyme has persisted over millions of years of mammalian evolution.
Collapse
Affiliation(s)
- Devin P. Bendixsen
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Tanner B. Pollock
- Department of Biological Science, Boise State University, Boise, ID, USA
| | - Gianluca Peri
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Eric J. Hayden
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
- Department of Biological Science, Boise State University, Boise, ID, USA
| |
Collapse
|
7
|
Zhang T, Singh J, Litfin T, Zhan J, Paliwal K, Zhou Y. RNAcmap: A Fully Automatic Pipeline for Predicting Contact Maps of RNAs by Evolutionary Coupling Analysis. Bioinformatics 2021; 37:3494-3500. [PMID: 34021744 DOI: 10.1093/bioinformatics/btab391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The accuracy of RNA secondary and tertiary structure prediction can be significantly improved by using structural restraints derived from evolutionary coupling or direct coupling analysis. Currently, these coupling analyses relied on manually curated multiple sequence alignments collected in the Rfam database, which contains 3016 families. By comparison, millions of non-coding RNA sequences are known. Here, we established RNAcmap, a fully automatic pipeline that enables evolutionary coupling analysis for any RNA sequences. The homology search was based on the covariance model built by INFERNAL according to two secondary structure predictors: a folding-based algorithm RNAfold and the latest deep-learning method SPOT-RNA. RESULTS We showed that the performance of RNAcmap is less dependent on the specific evolutionary coupling tool but is more dependent on the accuracy of secondary structure predictor with the best performance given by RNAcmap (SPOT-RNA). The performance of RNAcmap (SPOT-RNA) is comparable to that based on Rfam-supplied alignment and consistent for those sequences that are not in Rfam collections. Further improvement can be made with a simple meta predictor RNAcmap (SPOT-RNA/RNAfold) depending on which secondary structure predictor can find more homologous sequences. Reliable base-pairing information generated from RNAcmap, for RNAs with high effective homologous sequences, in particular, will be useful for aiding RNA structure prediction. AVAILABILITY RNAcmap is available as a web server at https://sparks-lab.org/server/rnacmap/ and as a standalone application along with the datasets at https://github.com/sparks-lab-org/RNAcmap_standalone. A platform independent and fully configured docker image of RNAcmap is also provided at https://hub.docker.com/r/jaswindersingh2/rnacmap.
Collapse
Affiliation(s)
- Tongchuan Zhang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Thomas Litfin
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jian Zhan
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia.,Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
8
|
Singh J, Paliwal K, Zhang T, Singh J, Litfin T, Zhou Y. Improved RNA Secondary Structure and Tertiary Base-pairing Prediction Using Evolutionary Profile, Mutational Coupling and Two-dimensional Transfer Learning. Bioinformatics 2021; 37:2589-2600. [PMID: 33704363 DOI: 10.1093/bioinformatics/btab165] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION The recent discovery of numerous non-coding RNAs (long non-coding RNAs, in particular) has transformed our perception about the roles of RNAs in living organisms. Our ability to understand them, however, is hampered by our inability to solve their secondary and tertiary structures in high resolution efficiently by existing experimental techniques. Computational prediction of RNA secondary structure, on the other hand, has received much-needed improvement, recently, through deep learning of a large approximate data, followed by transfer learning with gold-standard base-pairing structures from high-resolution 3-D structures. Here, we expand this single-sequence-based learning to the use of evolutionary profiles and mutational coupling. RESULTS The new method allows large improvement not only in canonical base-pairs (RNA secondary structures) but more so in base-pairing associated with tertiary interactions such as pseudoknots, noncanonical and lone base-pairs. In particular, it is highly accurate for those RNAs of more than 1000 homologous sequences by achieving >0.8 F1-score (harmonic mean of sensitivity and precision) for 14/16 RNAs tested. The method can also significantly improve base-pairing prediction by incorporating artificial but functional homologous sequences generated from deep mutational scanning without any modification. The fully automatic method (publicly available as server and standalone software) should provide the scientific community a new powerful tool to capture not only the secondary structure but also tertiary base-pairing information for building three-dimensional models. It also highlights the future of accurately solving the base-pairing structure by using a large number of natural and/or artificial homologous sequences. AVAILABILITY Standalone-version of SPOT-RNA2 is available at https://github.com/jaswindersingh2/SPOT-RNA2. Direct prediction can also be made at https://sparks-lab.org/server/spot-rna2/. The datasets used in this research can also be downloaded from the GITHUB and the webserver mentioned above.
Collapse
Affiliation(s)
- Jaswinder Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Kuldip Paliwal
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Tongchuan Zhang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Jaspreet Singh
- Signal Processing Laboratory, School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Thomas Litfin
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr. Southport, QLD 4222, Australia
| |
Collapse
|
9
|
Yokobayashi Y. High-Throughput Analysis and Engineering of Ribozymes and Deoxyribozymes by Sequencing. Acc Chem Res 2020; 53:2903-2912. [PMID: 33164502 DOI: 10.1021/acs.accounts.0c00546] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ribozymes and deoxyribozymes are catalytic RNA and DNA, respectively, that catalyze chemical reactions such as self-cleavage or ligation reactions. While some ribozymes are found in nature, a larger variety of ribozymes and deoxyribozymes have been discovered by in vitro selection from random sequences. These catalytic nucleic acids, especially ribozymes, are of fundamental interest because they are crucial for the RNA world hypothesis, which suggests that RNA played a central role in both the propagation of genetic information and catalyzing metabolic reactions in primordial life prior to the emergence of proteins and DNA. On the practical side, catalytic nucleic acids have been extensively engineered for various applications, such as biosensors and genetic devices for synthetic biology. Therefore, it is important to gain a deeper understanding of the sequence-function relationships of ribozymes and deoxyribozymes.Mutational analysis, or measurements of activities of catalytic nucleic acid mutants, is one of the most fundamental approaches for that purpose. Mutations that abolish, reduce, retain, or even increase activity provide useful information about nucleic acid catalysts for engineering and other purposes. However, methods for mutational analysis of ribozymes and deoxyribozymes have not evolved much for decades, requiring tedious and low-throughput assays (e.g., gel electrophoresis) of individually prepared mutants. This has prevented researchers from performing quantitative mutational analysis of ribozymes and deoxyribozymes on a large scale.To address this limitation, we developed a massively parallel ribozyme and deoxyribozyme assay strategy that allows >104 assays using high-throughput sequencing (HTS). We used HTS to literally count the number of cleaved (or ligated) and uncleaved (or unligated) ribozyme (or deoxyribozyme) sequences and calculated the activities of each mutant in a reaction mixture. This simple yet powerful strategy was applied to analyze the mutational effects of various natural and synthetic ribozymes and deoxyribozymes at scales impossible for conventional mutational analysis. These large-scale sequence-function data sets were used to better understand the functional consequences of mutations and to engineer ribozymes for practical applications. Furthermore, these newly available data are motivating researchers to employ more rigorous computational methods to extract additional insights such as structural information and nonlinear effects of multiple mutations. The new HTS-based assay strategy is distinct from and complementary to a related strategy that uses HTS to analyze ribozyme and deoxyribozyme populations subjected to in vitro selection. Postselection sequencing can cover a larger sequence space, although it does not directly quantify the activities of ribozyme and deoxyribozyme mutants. With further advances in DNA sequencing technologies and computational methods, there should be more opportunities to harness the power of HTS to deepen our understanding of catalytic nucleic acids and enhance our ability to engineer them for even more applications.
Collapse
Affiliation(s)
- Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
10
|
DiMSum: an error model and pipeline for analyzing deep mutational scanning data and diagnosing common experimental pathologies. Genome Biol 2020; 21:207. [PMID: 32799905 PMCID: PMC7429474 DOI: 10.1186/s13059-020-02091-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/05/2020] [Indexed: 12/30/2022] Open
Abstract
Deep mutational scanning (DMS) enables multiplexed measurement of the effects of thousands of variants of proteins, RNAs, and regulatory elements. Here, we present a customizable pipeline, DiMSum, that represents an end-to-end solution for obtaining variant fitness and error estimates from raw sequencing data. A key innovation of DiMSum is the use of an interpretable error model that captures the main sources of variability arising in DMS workflows, outperforming previous methods. DiMSum is available as an R/Bioconda package and provides summary reports to help researchers diagnose common DMS pathologies and take remedial steps in their analyses.
Collapse
|