1
|
Wang K, Li W, Cui H, Qin S. Phylogenetic distribution and characterization of conserved C-di-GMP metabolizing proteins in filamentous cyanobacterium Arthrospira. Gene 2024; 927:148643. [PMID: 38844269 DOI: 10.1016/j.gene.2024.148643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Cyclic diguanosine monophosphate (c-di-GMP) is a second messenger in bacteria that regulates multiple biological functions, including biofilm formation, virulence, and intercellular communication. However, c-di-GMP signaling is virtually unknown in economically important filamentous cyanobacteria, Arthrospira. In this study, we predicted 31 genes encoding GGDEF-domain proteins from A. platensis NIES39 as potential diguanylate cyclases (DGCs). Phylogenetic distribution analysis showed five genes (RS09460, RS04865, RS26155, M01840, and E02220) with highly conserved distribution across 25 Arthrospira strains. Adc1 encoded by RS09460 was further characterized as a typical DGC. By establishing the genetic transformation system of Arthrospira, we demonstrated that the overexpression of Adc1 promoted the production of extracellular polymeric substances (EPS), which in turn caused the aggregation of filaments. We also confirmed that RS04865 and RS26155 may encode active DGCs, while enzymatic activity assays showed that proteins encoded by M01840 and E02220 have phosphodiesterase (PDE) activity. Meta-analysis revealed that the expression profiles of RS09460 and RS04865 were unaffected under 31 conditions, suggesting that they may function as conserved genes in maintaining the basal level of c-di-GMP in Arthrospira. In summary, this report will provide the basis for further studies of c-di-GMP signal in Arthrospira.
Collapse
Affiliation(s)
- Kang Wang
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenjun Li
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hongli Cui
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
2
|
He L, Zhu G. Regulation and application of quorum sensing on anaerobic digestion system. CHEMOSPHERE 2024; 363:142983. [PMID: 39089336 DOI: 10.1016/j.chemosphere.2024.142983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024]
Abstract
Quorum sensing (QS) plays an important role in the social behavior of microbial communities. Anaerobic digestion (AD) is a biological process using anaerobic microorganisms to degrade organic macromolecules into small molecules for biogas and biofertilizer production. In AD, the QS signaling molecule N-acyl homoserine lactones (AHLs) induces bacterial metabolism, improving AD process efficiency. However, there are fewer systematic reports about QS regulation of microbial behavior in AD. In this report, the effects of signaling molecules on extracellular polymer secretion, biofilm formation, granulation of granular sludge and bacterial metabolism in AD were investigated in detail. At present, the regulation behavior of QS on AD is a group phenomenon, and there are few in-depth studies on the regulation pathway. Therefore, we conducted an in-depth analysis of the pure culture system, granular sludge and reactor in the AD. Then we pointed out that the future application potential of QS in the AD may be combined with quorum quenching (QQ) and omics technology, which is of great significance for the future application of AD.
Collapse
Affiliation(s)
- Liyan He
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Gefu Zhu
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China.
| |
Collapse
|
3
|
Gallagher KA, Tschowri N, Brennan RG, Schumacher MA, Buttner MJ. How c-di-GMP controls progression through the Streptomyces life cycle. Curr Opin Microbiol 2024; 80:102516. [PMID: 39059031 PMCID: PMC11497840 DOI: 10.1016/j.mib.2024.102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Members of the antibiotic-producing bacterial genus Streptomyces undergo a complex developmental life cycle that culminates in the production of spores. Central to control of this cell differentiation process is signaling through the second messenger 3', 5'-cyclic diguanylic acid (c-di-GMP). So far, three proteins that are directly controlled by c-di-GMP in Streptomyces have been functionally and structurally characterized: the key developmental regulators BldD and σWhiG, and the glycogen-degrading enzyme GlgX. c-di-GMP signals through BldD and σWhiG, respectively, to control the two most dramatic transitions of the Streptomyces life cycle, the formation of the reproductive aerial hyphae and their differentiation into spore chains. Later in development, c-di-GMP activates GlgX-mediated degradation of glycogen, releasing stored carbon for spore maturation.
Collapse
Affiliation(s)
| | - Natalia Tschowri
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Richard G Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Mark J Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
4
|
Liu L, Luo D, Zhang Y, Liu D, Yin K, Tang Q, Chou SH, He J. Characterization of the dual regulation by a c-di-GMP riboswitch Bc1 with a long expression platform from Bacillus thuringiensis. Microbiol Spectr 2024; 12:e0045024. [PMID: 38819160 PMCID: PMC11218506 DOI: 10.1128/spectrum.00450-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 06/01/2024] Open
Abstract
A riboswitch generally regulates the expression of its downstream genes through conformational change in its expression platform (EP) upon ligand binding. The cyclic diguanosine monophosphate (c-di-GMP) class I riboswitch Bc1 is widespread and conserved among Bacillus cereus group species. In this study, we revealed that Bc1 has a long EP with two typical ρ-independent terminator sequences 28 bp apart. The upstream terminator T1 is dominant in vitro, while downstream terminator T2 is more efficient in vivo. Through mutation analysis, we elucidated that Bc1 exerts a rare and incoherent "transcription-translation" dual regulation with T2 playing a crucial role. However, we found that Bc1 did not respond to c-di-GMP under in vitro transcription conditions, and the expressions of downstream genes did not change with fluctuation in intracellular c-di-GMP concentration. To explore this puzzle, we conducted SHAPE-MaP and confirmed the interaction of Bc1 with c-di-GMP. This shows that as c-di-GMP concentration increases, T1 unfolds but T2 remains almost intact and functional. The presence of T2 masks the effect of T1 unwinding, resulting in no response of Bc1 to c-di-GMP. The high Shannon entropy values of EP region imply the potential alternative structures of Bc1. We also found that zinc uptake regulator can specifically bind to the dual terminator coding sequence and slightly trigger the response of Bc1 to c-di-GMP. This work will shed light on the dual-regulation riboswitch and enrich our understanding of the RNA world.IMPORTANCEIn nature, riboswitches are involved in a variety of metabolic regulation, most of which preferentially regulate transcription termination or translation initiation of downstream genes in specific ways. Alternatively, the same or different riboswitches can exist in tandem to enhance regulatory effects or respond to multiple ligands. However, many putative conserved riboswitches have not yet been experimentally validated. Here, we found that the c-di-GMP riboswitch Bc1 with a long EP could form a dual terminator and exhibit non-canonical and incoherent "transcription-translation" dual regulation. Besides, zinc uptake regulator specifically bound to the coding sequence of the Bc1 EP and slightly mediated the action of Bc1. The application of SHAPE-MaP to the dual regulation mechanism of Bc1 may establish the foundation for future studies of such complex untranslated regions in other bacterial genomes.
Collapse
Affiliation(s)
- Lu Liu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dehua Luo
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongji Zhang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dingqi Liu
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kang Yin
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qing Tang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shan-Ho Chou
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Vincent CV, Bignell DRD. Regulation of virulence mechanisms in plant-pathogenic Streptomyces. Can J Microbiol 2024; 70:199-212. [PMID: 38190652 DOI: 10.1139/cjm-2023-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Streptomyces have a uniquely complex developmental life cycle that involves the coordination of morphological differentiation with the production of numerous bioactive specialized metabolites. The majority of Streptomyces spp. are soil-dwelling saprophytes, while plant pathogenicity is a rare attribute among members of this genus. Phytopathogenic Streptomyces are responsible for economically important diseases such as common scab, which affects potato and other root crops. Following the acquisition of genes encoding virulence factors, Streptomyces pathogens are expected to have specifically adapted their regulatory pathways to enable transition from a primarily saprophytic to a pathogenic lifestyle. Investigations of the regulation of pathogenesis have primarily focused on Streptomyces scabiei and the principal pathogenicity determinant thaxtomin A. The coordination of growth and thaxtomin A production in this species is controlled in a hierarchical manner by cluster-situated regulators, pleiotropic regulators, signalling and plant-derived molecules, and nutrients. Although the majority of phytopathogenic Streptomyces produce thaxtomins, many also produce additional virulence factors, and there are scab-causing pathogens that do not produce thaxtomins. The development of effective control strategies for common scab and other Streptomyces plant diseases requires a more in-depth understanding of the genetic and environmental factors that modulate the plant pathogenic lifestyle of these organisms.
Collapse
Affiliation(s)
- Corrie V Vincent
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Dawn R D Bignell
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
6
|
Hu XM, Peng L, Wu J, Wu G, Liang X, Yang JL. Bacterial c-di-GMP signaling gene affects mussel larval metamorphosis through outer membrane vesicles and lipopolysaccharides. NPJ Biofilms Microbiomes 2024; 10:38. [PMID: 38575604 PMCID: PMC10994910 DOI: 10.1038/s41522-024-00508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.
Collapse
Affiliation(s)
- Xiao-Meng Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Lihua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Jingxian Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Guanju Wu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-Culture of Aquaculture Animals, Shanghai, 201306, China.
| |
Collapse
|
7
|
Wang R, Zhang Z, Yu X, Song Y, Shentu X. CdgB Regulates Morphological Differentiation and Toyocamycin Production in Streptomyces diastatochromogenes 1628. Int J Mol Sci 2024; 25:3878. [PMID: 38612686 PMCID: PMC11012013 DOI: 10.3390/ijms25073878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Bis (3',5')-cyclic diguanylic acid (c-di-GMP) is a ubiquitous second messenger that controls several metabolic pathways in bacteria. In Streptomyces, c-di-GMP is associated with morphological differentiation, which is related to secondary metabolite production. In this study, we identified and characterized a diguanylate cyclase (DGC), CdgB, from Streptomyces diastatochromogenes 1628, which may be involved in c-di-GMP synthesis, through genetic and biochemical analyses. To further investigate the role of CdgB, the cdgB-deleted mutant strain Δ-cdgB and the cdgB-overexpressing mutant strain O-cdgB were constructed by genetic engineering. A phenotypic analysis revealed that the O-cdgB colonies exhibited reduced mycelium formation, whereas the Δ-cdgB colonies displayed wrinkled surfaces and shriveled mycelia. Notably, O-cdgB demonstrated a significant increase in the toyocamycin (TM) yield by 47.3%, from 253 to 374 mg/L, within 10 days. This increase was accompanied by a 6.7% elevation in the intracellular concentration of c-di-GMP and a higher transcriptional level of the toy cluster within four days. Conversely, Δ-cdgB showed a lower c-di-GMP concentration (reduced by 6.2%) in vivo and a reduced toyocamycin production (decreased by 28.9%, from 253 to 180 mg/L) after 10 days. In addition, S. diastatochromogenes 1628 exhibited a slightly higher inhibitory effect against Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani compared to Δ-cdgB, but a lower inhibition rate than that of O-cdgB. The results imply that CdgB provides a foundational function for metabolism and the activation of secondary metabolism in S. diastatochromogenes 1628.
Collapse
Affiliation(s)
- Rui Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China (X.Y.)
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China (X.Y.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China (X.Y.)
| | - Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China (X.Y.)
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China (X.Y.)
| |
Collapse
|
8
|
Wang K, Li W, Cui H, Qin S. Phylogenetic Analysis and Characterization of Diguanylate Cyclase and Phosphodiesterase in Planktonic Filamentous Cyanobacterium Arthrospira sp. Int J Mol Sci 2023; 24:15210. [PMID: 37894891 PMCID: PMC10607523 DOI: 10.3390/ijms242015210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger of intracellular communication in bacterial species, which widely modulates diverse cellular processes. However, little is known about the c-di-GMP network in filamentous multicellular cyanobacteria. In this study, we preliminarily investigated the c-di-GMP turnover proteins in Arthrospira based on published protein data. Bioinformatics results indicate the presence of at least 149 potential turnover proteins in five Arthrospira subspecies. Some proteins are highly conserved in all tested Arthrospira, whereas others are specifically found only in certain subspecies. To further validate the protein catalytic activity, we constructed a riboswitch-based c-di-GMP expression assay system in Escherichia coli and confirmed that a GGDEF domain protein, Adc11, exhibits potential diguanylate cyclase activity. Moreover, we also evaluated a protein with a conserved HD-GYP domain, Ahd1, the expression of which significantly improved the swimming ability of E. coli. Enzyme-linked immunosorbent assay also showed that overexpression of Ahd1 reduced the intracellular concentration of c-di-GMP, which is presumed to exhibit phosphodiesterase activity. Notably, meta-analyses of transcriptomes suggest that Adc11 and Ahd1 are invariable. Overall, this work confirms the possible existence of a functional c-di-GMP network in Arthrospira, which will provide support for the revelation of the biological function of the c-di-GMP system in Arthrospira.
Collapse
Affiliation(s)
- Kang Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (K.W.); (W.L.); (H.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (K.W.); (W.L.); (H.C.)
| | - Hongli Cui
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (K.W.); (W.L.); (H.C.)
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (K.W.); (W.L.); (H.C.)
| |
Collapse
|
9
|
Jiang YX, Zheng GF, Chen LC, Yang N, Xin XJ, Ma JY, Ju JH, Wu H, Zhao M, Wang R, An FL. Efficient ilamycins production utilizing Enteromorpha prolifera by metabolically engineered Streptomyces atratus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:151. [DOI: doi.org/10.1186/s13068-023-02398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
AbstractWith the invasion of green tides and the increase of urban green areas worldwide, multimillion tons of Enteromorpha need to be reutilized. In this study, Enteromorpha prolifera powder is considered a promising biomass resource for the production of commercial chemical products production. Ilamycins, novel cyclic heptapeptides with significant anti-TB activities, are isolated from Streptomyces atratus SCSIO ZH16, a deep-sea-derived strain. Using EP powder as a nitrogen source, the production of ilamycins reached 709.97 mg/L through optimization of the nitrogen source using the engineered strain S. atratus SCSIO ZH16 ΔR. After mutant strain constructions and tests, strain S. atratus SCSIO ZH16 ΔR::bldD EP powder achieved a higher production titer of ilamycins. Furthermore, the production titer of ilamycins and ilamycin E reached 1561.77 mg/L and 745.44 mg/L, respectively, in a 5 L bioreactor. This study suggests that E. prolifera is a promising and eco-friendly nitrogen source for the production of ilamycins.
Collapse
|
10
|
Jiang YX, Zheng GF, Chen LC, Yang N, Xin XJ, Ma JY, Ju JH, Wu H, Zhao M, Wang R, An FL. Efficient ilamycins production utilizing Enteromorpha prolifera by metabolically engineered Streptomyces atratus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:151. [PMID: 37798770 PMCID: PMC10552367 DOI: 10.1186/s13068-023-02398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
With the invasion of green tides and the increase of urban green areas worldwide, multimillion tons of Enteromorpha need to be reutilized. In this study, Enteromorpha prolifera powder is considered a promising biomass resource for the production of commercial chemical products production. Ilamycins, novel cyclic heptapeptides with significant anti-TB activities, are isolated from Streptomyces atratus SCSIO ZH16, a deep-sea-derived strain. Using EP powder as a nitrogen source, the production of ilamycins reached 709.97 mg/L through optimization of the nitrogen source using the engineered strain S. atratus SCSIO ZH16 ΔR. After mutant strain constructions and tests, strain S. atratus SCSIO ZH16 ΔR::bldD EP powder achieved a higher production titer of ilamycins. Furthermore, the production titer of ilamycins and ilamycin E reached 1561.77 mg/L and 745.44 mg/L, respectively, in a 5 L bioreactor. This study suggests that E. prolifera is a promising and eco-friendly nitrogen source for the production of ilamycins.
Collapse
Affiliation(s)
- Yu-Xi Jiang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gao-Fan Zheng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Long-Chao Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Na Yang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiu-Juan Xin
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jun-Ying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 528225, China
| | - Jian-Hua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 528225, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Fa-Liang An
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, No.4, Lane 218, Haiji Sixth Road, Shanghai, 201306, China.
| |
Collapse
|
11
|
Khan F, Jeong GJ, Tabassum N, Kim YM. Functional diversity of c-di-GMP receptors in prokaryotic and eukaryotic systems. Cell Commun Signal 2023; 21:259. [PMID: 37749602 PMCID: PMC10519070 DOI: 10.1186/s12964-023-01263-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023] Open
Abstract
Cyclic bis-(3', 5')-dimeric guanosine monophosphate (c-di-GMP) is ubiquitous in many bacterial species, where it functions as a nucleotide-based secondary messenger and is a vital regulator of numerous biological processes. Due to its ubiquity, most bacterial species possess a wide range of downstream receptors that has a binding affinity to c-di-GMP and elicit output responses. In eukaryotes, several enzymes and riboswitches operate as receptors that interact with c-di-GMP and transduce cellular or environmental signals. This review examines the functional variety of receptors in prokaryotic and eukaryotic systems that exhibit distinct biological responses after interacting with c-di-GMP. Evolutionary relationships and similarities in distance among the c-di-GMP receptors in various bacterial species were evaluated to understand their specificities. Furthermore, residues of receptors involved in c-di-GMP binding are summarized. This review facilitates the understanding of how distinct receptors from different origins bind c-di-GMP equally well, yet fulfill diverse biological roles at the interspecies, intraspecies, and interkingdom levels. Furthermore, it also highlights c-di-GMP receptors as potential therapeutic targets, particularly those found in pathogenic microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
12
|
Song Y, Zhang X, Zhang Z, Shentu X, Yu X. Physiology and Transcriptional Analysis of ppGpp-Related Regulatory Effects in Streptomyces diastatochromogenes 1628. Microbiol Spectr 2023; 11:e0120022. [PMID: 36475882 PMCID: PMC9927088 DOI: 10.1128/spectrum.01200-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ppGpp is a ubiquitous small nucleotide messenger that mediates cellular self-protective responses under environmental stress. However, the mechanisms of ppGpp that control transcription and other metabolic processes depend on the species, and ppGpp regulates the same process via different mechanisms. The level of ppGpp is regulated by RelA/SpoT homolog (RSH) enzymes that synthesize and hydrolyze the alarmone. Here, we constructed a ppGpp0 strain and monitored the effects of ppGpp on the transcriptional level, physiology, and secondary metabiotic production in the antibiotic producer Streptomyces diastatochromogenes 1628. The results showed the cell division and growth of ppGpp0 increased by measurement of gene transcription and DCWs. The utilization of nitrogen was affected depending on the nitrogen type with a significantly higher DCW of the ppGpp0 mutant in the medium supplied with the yeast extract and a lower growth rate in the inorganic nitrogen ammonium salt. The ppGpp-mediated stringent response could not affect the usage of carbon resources. More importantly, ppGpp0 inhibited the expression of antibiotic clusters and the production of toyocamycin and tetramycin P. The antibiotic resistance was also significantly downregulated in the ppGpp0 mutant. In conclusion, this study showed detailed changes in ppGpp-mediated stringent responses on S. diastatochromogenes 1628 cell growth, nutrient utilization, morphological characteristics, antibiotic production, and resistance, which will provide insights into the role of ppGpp in Streptomyces. IMPORTANCE The ppGpp-mediated stringent response is widely distributed in Escherichia coli, Bacillus subtilis, Streptomyces, Staphylococcus aureus, etc. Stringent responses give strains the ability to resist environmental stresses, and survival from nutrition starvation, virulence, long-term persistence, biofilm formation, and gut colonization. ppGpp has many targets in cells and can reprogram DNA replication, transcription, ribosome biogenesis and function, and lipid metabolism. However, the mechanism of ppGpp to control transcription and other metabolic processes depends on the bacterial species and regulates the same process via a different mechanism. In Streptomyces, how ppGpp regulates the transcription remains to be elucidated. However, because ppGpp regulates many genes involved in primary and secondary metabolism, we compared the transcription and cell division, cell growth, morphological differentiation, antibiotic resistance, and secondary synthesis in the wild-type S. diastatochromogenes and ppGpp0 strains.
Collapse
Affiliation(s)
- Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiangli Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
13
|
Clara L, David C, Laila S, Virginie R, Marie-Joelle V. Comparative Proteomic Analysis of Transcriptional and Regulatory Proteins Abundances in S. lividans and S. coelicolor Suggests a Link between Various Stresses and Antibiotic Production. Int J Mol Sci 2022; 23:ijms232314792. [PMID: 36499130 PMCID: PMC9739823 DOI: 10.3390/ijms232314792] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces coelicolor and Streptomyces lividans constitute model strains to study the regulation of antibiotics biosynthesis in Streptomyces species since these closely related strains possess the same pathways directing the biosynthesis of various antibiotics but only S. coelicolor produces them. To get a better understanding of the origin of the contrasted abilities of these strains to produce bioactive specialized metabolites, these strains were grown in conditions of phosphate limitation or proficiency and a comparative analysis of their transcriptional/regulatory proteins was carried out. The abundance of the vast majority of the 355 proteins detected greatly differed between these two strains and responded differently to phosphate availability. This study confirmed, consistently with previous studies, that S. coelicolor suffers from nitrogen stress. This stress likely triggers the degradation of the nitrogen-rich peptidoglycan cell wall in order to recycle nitrogen present in its constituents, resulting in cell wall stress. When an altered cell wall is unable to fulfill its osmo-protective function, the bacteria also suffer from osmotic stress. This study thus revealed that these three stresses are intimately linked in S. coelicolor. The aggravation of these stresses leading to an increase of antibiotic biosynthesis, the connection between these stresses, and antibiotic production are discussed.
Collapse
Affiliation(s)
- Lejeune Clara
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cornu David
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Sago Laila
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Redeker Virginie
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Laboratory of Neurodegenerative Diseases, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Molecular Imaging Center (MIRCen), Institut François Jacob, Université Paris-Saclay, 92260 Fontenay-aux-Roses, France
| | - Virolle Marie-Joelle
- Institute for Integrative Biology of the Cell (I2BC), Department of Microbiology, Group “Energetic Metabolism of Streptomyces”, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence:
| |
Collapse
|
14
|
Structural diversity, bioactivity, and biosynthesis of phosphoglycolipid family antibiotics: recent advances. BBA ADVANCES 2022; 2:100065. [PMID: 37082588 PMCID: PMC10074958 DOI: 10.1016/j.bbadva.2022.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Moenomycins, such as moenomycin A, are phosphoglycolipid specialized metabolites produced by a number of actinobacterial species. They are among the most potent antibacterial compounds known to date, which drew numerous studies directed at various aspects of the chemistry and biology of moenomycins. In this review, we outline the advances in moenomycin research over the last decade. We focus on biological aspects, highlighting the contribution of the novel methods of genomics and molecular biology to the deciphering of the biosynthesis and activity of moenomycins. Specifically, we describe the structural diversity of moenomycins as well as the underlying genomic variations in moenomycin biosynthetic gene clusters. We also describe the most recent data on the mechanism of action and assembly of complicated phosphoglycolipid scaffold. We conclude with the description of the genetic control of moenomycin production by Streptomyces bacteria and a brief outlook on future developments.
Collapse
|
15
|
Hou X, Rong C, Zhang Q, Song S, Cong Y, Zhang HT. Cyclic Nucleotide Phosphodiesterases in Alcohol Use Disorders: Involving Gut Microbiota. Int J Neuropsychopharmacol 2022; 26:70-79. [PMID: 36087271 PMCID: PMC9850663 DOI: 10.1093/ijnp/pyac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/22/2023] Open
Abstract
Alcohol abuse is 1 of the most significant public health problems in the world. Chronic, excessive alcohol consumption not only causes alcohol use disorder (AUD) but also changes the gut and lung microbiota, including bacterial and nonbacterial types. Both types of microbiota can release toxins, further damaging the gastrointestinal and respiratory tracts; causing inflammation; and impairing the functions of the liver, lung, and brain, which in turn deteriorate AUD. Phosphodiesterases (PDEs) are critical in the control of intracellular cyclic nucleotides, including cyclic adenosine monophosphate and cyclic guanosine monophosphate. Inhibition of certain host PDEs reduces alcohol consumption and attenuates alcohol-related impairment. These PDEs are also expressed in the microbiota and may play a role in controlling microbiota-associated inflammation. Here, we summarize the influences of alcohol on gut/lung bacterial and nonbacterial microbiota as well as on the gut-liver/brain/lung axis. We then discuss the relationship between gut and lung microbiota-mediated PDE signaling and AUD consequences in addition to highlighting PDEs as potential targets for treatment of AUD.
Collapse
Affiliation(s)
- Xueqin Hou
- Correspondence: Xueqin Hou, PhD, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China ()
| | | | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Shuangshuang Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Yifan Cong
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Han-Ting Zhang
- Han-Ting Zhang, MD, PhD, Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266073, P.R. China ()
| |
Collapse
|
16
|
Alviz-Gazitua P, González A, Lee MR, Aranda CP. Molecular Relationships in Biofilm Formation and the Biosynthesis of Exoproducts in Pseudoalteromonas spp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:431-447. [PMID: 35486299 DOI: 10.1007/s10126-022-10097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Most members of the Pseudoalteromonas genus have been isolated from living surfaces as members of epiphytic and epizooic microbiomes on marine macroorganisms. Commonly Pseudoalteromonas isolates are reported as a source of bioactive exoproducts, i.e., secondary metabolites, such as exopolymeric substances and extracellular enzymes. The experimental conditions for the production of these agents are commonly associated with sessile metabolic states such as biofilms or liquid cultures in the stationary growth phase. Despite this, the molecular mechanisms that connect biofilm formation and the biosynthesis of exoproducts in Pseudoalteromonas isolates have rarely been mentioned in the literature. This review compiles empirical evidence about exoproduct biosynthesis conditions and molecular mechanisms that regulate sessile metabolic states in Pseudoalteromonas species, to provide a comprehensive perspective on the regulatory convergences that generate the recurrent coexistence of both phenomena in this bacterial genus. This synthesis aims to provide perspectives on the extent of this phenomenon for the optimization of bioprospection studies and biotechnology processes based on these bacteria.
Collapse
Affiliation(s)
- P Alviz-Gazitua
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - A González
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile
| | - M R Lee
- Centro i~mar, Universidad de Los Lagos, Camino a Chinquihue km 6, P. Box 5480000, Puerto Montt, Chile
| | - C P Aranda
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Avda. Fuchslocher 1305, P. Box 5290000, Osorno, Chile.
| |
Collapse
|
17
|
Shemediuk AL, Dolia BS, Ochi K, Fedorenko VO, Ostash BO. Properties of Spontaneous rpsL Mutant of Streptomyces albus KO-1297. CYTOL GENET+ 2022; 56:31-36. [PMID: 35194265 PMCID: PMC8831875 DOI: 10.3103/s009545272201011x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022]
Abstract
The Streptomyces albus J1074 strain remains one of the most popular platforms for the discovery of new natural compounds due to the expression of biosynthetic gene clusters (BGCs) from the microorganisms of the Actinobacteria class. Different methods were tested to provide a maximal expression of heterologous BGCs in this strain. However, there is still no description of the properties of spontaneous J1074 mutants in the rpsL gene encoding a ribosomal protein S12. The interest in such mutations in actinobacteria is due to the fact that they provide a considerable increase in the antibiotic activity. In this work, we describe the isolation and characterization of the S. albus KO-1297 strain, which contains a spontaneous missense mutation in the rpsL gene leading to a Lys88Glu substitution in the protein S12. As compared with the initial strain, this mutant exhibits an increased resistance to streptomycin and higher antibiotic productivity. The KO-1297 strain and genetically engineered rpsLK88E mutant K88E are not identical in their ability to produce antibiotics. KO-1297 also exhibits a certain level of instability of rpsL mutation. The genomes of KO-1297 and its rpsLWT revertant contain the mutations that can cause phenotypic differences between these strains (as well as between them and SAM2 and K88E strains).
Collapse
|
18
|
Makitrynskyy R, Tsypik O, Bechthold A. Genetic Engineering of Streptomyces ghanaensis ATCC14672 for Improved Production of Moenomycins. Microorganisms 2021; 10:microorganisms10010030. [PMID: 35056478 PMCID: PMC8778134 DOI: 10.3390/microorganisms10010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/11/2023] Open
Abstract
Streptomycetes are soil-dwelling multicellular microorganisms famous for their unprecedented ability to synthesize numerous bioactive natural products (NPs). In addition to their rich arsenal of secondary metabolites, Streptomyces are characterized by complex morphological differentiation. Mostly, industrial production of NPs is done by submerged fermentation, where streptomycetes grow as a vegetative mycelium forming pellets. Often, suboptimal growth peculiarities are the major bottleneck for industrial exploitation. In this work, we employed genetic engineering approaches to improve the production of moenomycins (Mm) in Streptomyces ghanaensis, the only known natural direct inhibitors of bacterial peptidoglycan glycosyltransferses. We showed that in vivo elimination of binding sites for the pleiotropic regulator AdpA in the oriC region strongly influences growth and positively correlates with Mm accumulation. Additionally, a marker- and “scar”-less deletion of moeH5, encoding an amidotransferase from the Mm gene cluster, significantly narrows down the Mm production spectrum. Strikingly, antibiotic titers were strongly enhanced by the elimination of the pleiotropic regulatory gene wblA, involved in the late steps of morphogenesis. Altogether, we generated Mm overproducers with optimized growth parameters, which are useful for further genome engineering and chemoenzymatic generation of novel Mm derivatives. Analogously, such a scheme can be applied to other Streptomyces spp.
Collapse
|
19
|
An Intracellular Sensing and Signal Transduction System That Regulates the Metabolism of Polycyclic Aromatic Hydrocarbons in Bacteria. mSystems 2021; 6:e0063621. [PMID: 34609168 PMCID: PMC8547461 DOI: 10.1128/msystems.00636-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many bacteria utilize polycyclic aromatic hydrocarbon (PAH) as carbon and energy sources for growth. These bacteria play an important role in the amelioration of PAH pollution in various environments. However, it is unclear how bacteria sense PAHs and how PAH degradation pathways are regulated via signal transduction. Here, we investigated these mechanisms in Cycloclasticus, a ubiquitous PAH-degrading bacterium in marine environments. We identified the key genes involved in intracellular PAH sensing, signal transduction, and the differential regulation of degradation pathways for each PAH examined. Our results showed that PAHs bind specifically to a diguanylate cyclase PdgC, leading to the generation of cyclic dimeric GMP (c-di-GMP), which subsequently binds to two CRP/FNR family regulators, DPR-1 and DPR-2. c-di-GMP activates the transcription of DPR-1 and DPR-2 to positively regulate degradation pathways specific to pyrene and phenanthrene/naphthalene, respectively. This is the first report of an intracellular signal transduction pathway associated with PAH degradation in bacteria. Our results improve our understanding of the intracellular responses to PAHs. The existence of the identified genes in other bacteria indicates that the strategy described here is widely used by other PAH-degrading bacteria. IMPORTANCE Polycyclic aromatic hydrocarbons (PAHs) are widely distributed and have been found indoors, in the atmosphere, in terrestrial soils, in marine waters and sediments, and even in outer space. Bacteria degrade PAHs via degradation pathways. PAH signal sensing and transduction, as well as the regulation of PAH degradation pathways, are crucial for bacterial PAH biodegradation. However, prior to this study, these processes were poorly known. This study employed multiple molecular approaches to better understand the regulatory networks controlling PAH metabolism in bacteria. This report illustrates, for the first time, PAH-specific intracellular sensing, signal transduction, and metabolic regulatory pathways. Our results will help to increase our understanding of the hydrocarbon-metabolism regulatory network as well as the regulatory intricacies that control microbial biodegradation of organic matter. These key data should be considered to improve the rational design and efficiency of recombinant biodegradable, bacterial biosensors, and biocatalysts in modern green chemistry.
Collapse
|
20
|
Undabarrena A, Pereira CF, Kruasuwan W, Parra J, Sélem-Mojica N, Vind K, Schniete JK. Integrating perspectives in actinomycete research: an ActinoBase review of 2020-21. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001084. [PMID: 34515628 PMCID: PMC8549240 DOI: 10.1099/mic.0.001084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Last year ActinoBase, a Wiki-style initiative supported by the UK Microbiology Society, published a review highlighting the research of particular interest to the actinomycete community. Here, we present the second ActinoBase review showcasing selected reports published in 2020 and early 2021, integrating perspectives in the actinomycete field. Actinomycetes are well-known for their unsurpassed ability to produce specialised metabolites, of which many are used as therapeutic agents with antibacterial, antifungal, or immunosuppressive activities. Much research is carried out to understand the purpose of these metabolites in the environment, either within communities or in host interactions. Moreover, many efforts have been placed in developing computational tools to handle big data, simplify experimental design, and find new biosynthetic gene cluster prioritisation strategies. Alongside, synthetic biology has provided advances in tools to elucidate the biosynthesis of these metabolites. Additionally, there are still mysteries to be uncovered in understanding the fundamentals of filamentous actinomycetes' developmental cycle and regulation of their metabolism. This review focuses on research using integrative methodologies and approaches to understand the bigger picture of actinomycete biology, covering four research areas: i) technology and methodology; ii) specialised metabolites; iii) development and regulation; and iv) ecology and host interactions.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Camila F Pereira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Worarat Kruasuwan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Jonathan Parra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Nelly Sélem-Mojica
- Centro de Ciencias Matemáticas, Antigua Carretera a Pátzcuaro # 8701, Col. Ex Hacienda San José de la Huerta, Morelia C.P. 58089, Michoacán, México
| | - Kristiina Vind
- NAICONS Srl, Viale Ortles 22/4, 20139 Milan (MI), Italy
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1 6708 WD, Wageningen, Netherlands
| | - Jana K. Schniete
- Biology, Edge Hill University, St Helens Road, Ormskirk, L39 4QP, UK
| |
Collapse
|
21
|
Regulatory Control of Rishirilide(s) Biosynthesis in Streptomyces bottropensis. Microorganisms 2021; 9:microorganisms9020374. [PMID: 33673359 PMCID: PMC7917814 DOI: 10.3390/microorganisms9020374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
Streptomycetes are well-known producers of numerous bioactive secondary metabolites widely used in medicine, agriculture, and veterinary. Usually, their genomes encode 20-30 clusters for the biosynthesis of natural products. Generally, the onset and production of these compounds are tightly coordinated at multiple regulatory levels, including cluster-situated transcriptional factors. Rishirilides are biologically active type II polyketides produced by Streptomyces bottropensis. The complex regulation of rishirilides biosynthesis includes the interplay of four regulatory proteins encoded by the rsl-gene cluster: three SARP family regulators (RslR1-R3) and one MarR-type transcriptional factor (RslR4). In this work, employing gene deletion and overexpression experiments we revealed RslR1-R3 to be positive regulators of the biosynthetic pathway. Additionally, transcriptional analysis indicated that rslR2 is regulated by RslR1 and RslR3. Furthermore, RslR3 directly activates the transcription of rslR2, which stems from binding of RslR3 to the rslR2 promoter. Genetic and biochemical analyses demonstrated that RslR4 represses the transcription of the MFS transporter rslT4 and of its own gene. Moreover, DNA-binding affinity of RslR4 is strictly controlled by specific interaction with rishirilides and some of their biosynthetic precursors. Altogether, our findings revealed the intricate regulatory network of teamworking cluster-situated regulators governing the biosynthesis of rishirilides and strain self-immunity.
Collapse
|
22
|
Nah HJ, Park J, Choi S, Kim ES. WblA, a global regulator of antibiotic biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2021; 48:6127318. [PMID: 33928363 PMCID: PMC9113171 DOI: 10.1093/jimb/kuab007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022]
Abstract
Streptomyces species are soil-dwelling bacteria that produce vast numbers of pharmaceutically valuable secondary metabolites (SMs), such as antibiotics, immunosuppressants, antiviral, and anticancer drugs. On the other hand, the biosynthesis of most SMs remains very low due to tightly controlled regulatory networks. Both global and pathway-specific regulators are involved in the regulation of a specific SM biosynthesis in various Streptomyces species. Over the past few decades, many of these regulators have been identified and new ones are still being discovered. Among them, a global regulator of SM biosynthesis named WblA was identified in several Streptomyces species. The identification and understanding of the WblAs have greatly contributed to increasing the productivity of several Streptomyces SMs. This review summarizes the characteristics and applications on WblAs reported to date, which were found in various Streptomyces species and other actinobacteria.
Collapse
Affiliation(s)
- Hee-Ju Nah
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jihee Park
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sisun Choi
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
23
|
Nuzzo D, Makitrynskyy R, Tsypik O, Bechthold A. Identification and Characterization of Four c-di-GMP-Metabolizing Enzymes from Streptomyces ghanaensis ATCC14672 Involved in the Regulation of Morphogenesis and Moenomycin A Biosynthesis. Microorganisms 2021; 9:microorganisms9020284. [PMID: 33573171 PMCID: PMC7911125 DOI: 10.3390/microorganisms9020284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Diguanylate cyclases (DGCs) and phosphodiesterases (PDEs) are essential enzymes deputed to maintain the intracellular homeostasis of the second messenger cyclic dimeric (3'→5') GMP (c-di-GMP). Recently, c-di-GMP has emerged as a crucial molecule for the streptomycetes life cycle, governing both morphogenesis and secondary metabolite production. Indeed, in Streptomyces ghanaensis ATCC14672 c-di-GMP was shown to be involved in the regulatory cascade of the peptidoglycan glycosytransferases inhibitor moenomycin A (MmA) biosynthesis. Here, we report the role of four c-di-GMP-metabolizing enzymes on MmA biosynthesis as well as morphological progression in S. ghanaensis. Functional characterization revealed that RmdAgh and CdgAgh are two active PDEs, while CdgEgh is a DGC. In vivo, overexpression of rmdAgh and cdgAgh led to precocious sporulation, whereas overexpression of cdgEgh and cdgDgh (encoding a predicted DGC) caused an arrest of morphological development. Furthermore, we demonstrated that individual deletion of rmdAgh, cdgAgh, and cdgDgh enhances MmA accumulation, whereas deletion of cdgEgh has no impact on antibiotic production. Conversely, an individual deletion of each studied gene does not affect morphogenesis. Altogether, our results show that manipulation of c-di-GMP-metabolizing enzymes represent a useful approach to improving MmA production titers in S. ghanaensis.
Collapse
|
24
|
Romero F, Fernández A. Screening Fermentation and Extract Generation. Methods Mol Biol 2021; 2296:209-216. [PMID: 33977450 DOI: 10.1007/978-1-0716-1358-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This chapter describes the process of fermenting actinomycetes in flask and the generation of extracts from these broths. A medium for secondary metabolite production and a general procedure for flask fermentation are specified. Directions are given to reproduce aeration when using different flasks. The generation of extracts is based on a solvent mixture that could be varied in order to improve the extraction of products with different polarity. These extracts are then stored in a 96-well microtube format to facilitate their usage for the screening of bioactive compounds.
Collapse
Affiliation(s)
- Francisco Romero
- Bacteriology Department, Biomar Microbial Technologies S.A., Parque Tecnológicode León, León, Spain.
| | - Antonio Fernández
- Bacteriology Department, Biomar Microbial Technologies S.A., León, Spain
| |
Collapse
|
25
|
Ma Z, Hu Y, Liao Z, Xu J, Xu X, Bechthold A, Yu X. Cloning and Overexpression of the Toy Cluster for Titer Improvement of Toyocamycin in Streptomyces diastatochromogenes. Front Microbiol 2020; 11:2074. [PMID: 32983052 PMCID: PMC7492574 DOI: 10.3389/fmicb.2020.02074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
The nucleoside antibiotic toyocamycin (TM) is a potential fungicide that can control plant diseases, and it has become an attractive target for research. Streptomyces diastatochromogenes 1628, a TM-producing strain, was isolated by our laboratory and was considered to be a potent industrial producer of TM. Recently, the putative TM biosynthetic gene cluster (toy cluster) in S. diastatochromogenes 1628 was found by genome sequencing. In this study, the role of toy cluster for TM biosynthesis in S. diastatochromogenes 1628 was investigated by heterologous expression, deletion, and complementation. The extract of the recombinant strain S. albusJ1074-TC harboring a copy of toy cluster produced TM as shown by HPLC analysis. The Δcluster mutant completely lost its ability to produce TM. TM production in the complemented strain was restored to a level comparable to that of the wild-type strain. These results confirmed that the toy cluster is responsible for TM biosynthesis. Moreover, the introduction of an extra copy of the toy cluster into S. diastatochromogenes 1628 led to onefold increase in TM production (312.9 mg/l vs. 152.1 mg/l) as well as the transcription of all toy genes. The toy gene cluster was engineered in which the native promoter of toyA gene, toyM gene, toyBD operon, and toyEI operon was, respectively, replaced by permE∗ or SPL57. To further improve TM production, the engineered toy gene cluster was, respectively, introduced and overexpressed in S. diastatochromogenes 1628 to generate recombinant strains S. diastatochromogenes 1628-EC and 1628-SC. After 84 h, S. diastatochromogenes 1628-EC and 1628-SC produced 456.5 mg/l and 638.9 mg/l TM, respectively, which is an increase of 2- and 3.2-fold compared with the wild-type strain.
Collapse
Affiliation(s)
- Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yefeng Hu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zhijun Liao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jie Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xianhao Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Andreas Bechthold
- Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
26
|
Haist J, Neumann SA, Al-Bassam MM, Lindenberg S, Elliot MA, Tschowri N. Specialized and shared functions of diguanylate cyclases and phosphodiesterases in Streptomyces development. Mol Microbiol 2020; 114:808-822. [PMID: 32797697 DOI: 10.1111/mmi.14581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/20/2020] [Indexed: 12/26/2022]
Abstract
The second messenger bis-3,5-cyclic di-guanosine monophosphate (c-di-GMP) determines when Streptomyces initiate sporulation. c-di-GMP signals are integrated into the genetic differentiation network by the regulator BldD and the sigma factor σWhiG . However, functions of the development-specific diguanylate cyclases (DGCs) CdgB and CdgC, and the c-di-GMP phosphodiesterases (PDEs) RmdA and RmdB, are poorly understood. Here, we provide biochemical evidence that the GGDEF-EAL domain protein RmdB from S. venezuelae is a monofunctional PDE that hydrolyzes c-di-GMP to 5'pGpG. Despite having an equivalent GGDEF-EAL domain arrangement, RmdA cleaves c-di-GMP to GMP and exhibits residual DGC activity. We show that an intact EAL motif is crucial for the in vivo function of both enzymes since strains expressing protein variants with an AAA motif instead of EAL are delayed in development, similar to null mutants. Transcriptome analysis of ∆cdgB, ∆cdgC, ∆rmdA, and ∆rmdB strains revealed that the c-di-GMP specified by these enzymes has a global regulatory role, with about 20% of all S. venezuelae genes being differentially expressed in the cdgC mutant. Our data suggest that the major c-di-GMP-controlled targets determining the timing and mode of sporulation are genes involved in cell division and the production of the hydrophobic sheath that covers Streptomyces aerial hyphae and spores.
Collapse
Affiliation(s)
- Julian Haist
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Alina Neumann
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Sandra Lindenberg
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Natalia Tschowri
- Department of Biology/Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
27
|
Cyclic di-GMP cyclase SSFG_02181 from Streptomyces ghanaensis ATCC14672 regulates antibiotic biosynthesis and morphological differentiation in streptomycetes. Sci Rep 2020; 10:12021. [PMID: 32694623 PMCID: PMC7374567 DOI: 10.1038/s41598-020-68856-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Streptomycetes are filamentous bacteria famous for their ability to produce a vast majority of clinically important secondary metabolites. Both complex morphogenesis and onset of antibiotic biosynthesis are tightly linked in streptomycetes and require series of specific signals for initiation. Cyclic dimeric 3′–5′ guanosine monophosphate, c-di-GMP, one of the well-known bacterial second messengers, has been recently shown to govern morphogenesis and natural product synthesis in Streptomyces by altering the activity of the pleiotropic regulator BldD. Here we report a role of the heme-binding diguanylate cyclase SSFG_02181 from Streptomyces ghanaensis in the regulation of the peptidoglycan glycosyltransferase inhibitor moenomycin A biosynthesis. Deletion of ssfg_02181 reduced the moenomycin A accumulation and led to a precocious sporulation, while the overexpression of the gene blocked sporogenesis and remarkably improved antibiotic titer. We also demonstrate that BldD negatively controls the expression of ssfg_02181, which stems from direct binding of BldD to the ssfg_02181 promoter. Notably, the heterologous expression of ssfg_02181 in model Streptomyces spp. arrested morphological progression at aerial mycelium level and strongly altered the production of secondary metabolites. Altogether, our work underscores the significance of c-di-GMP-mediated signaling in natural product biosynthesis and pointed to extensively applicable approach to increase antibiotic production levels in streptomycetes.
Collapse
|