1
|
Li A, Wang T, Zhou S, Han J, Wu W. USP17 regulates preeclampsia by modulating the NF-κB signaling pathway via deubiquitinating HDAC2. Placenta 2024; 145:9-18. [PMID: 38008034 DOI: 10.1016/j.placenta.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Ubiquitination is a significant post-translational modification engaged in diverse biological processes, such as cell differentiation, metastasis, and protein stability modulation. The dysregulation of ubiquitination and deubiquitination is inextricably linked to disease progression, including preeclampsia (PE). Ubiquitin-specific protease 17 (USP17), a prominent deubiquitinating enzyme that regulates ubiquitination modifications, performs multiple functions at the cellular level, whereas its role in PE remains elusive. In this study, we intended to probe the role of USP17 in PE and its underlying mechanisms. METHODS The USP17 level in the plasma of PE patients was detected through Elisa. Western blot and qRT-PCR were performed to measure the mRNA and protein level of USP17 in placental tissues. CCK-8, EdU, and transwell assays were conducted to evaluate the proliferation, migration, and invasion of trophoblast cells. The interaction between HDAC2 and USP17 or STAT1 were determined by co-immunoprecipitation and Western blot assays. The expression of NF-κB pathway related proteins was examined using Western blot. RESULTS USP17 was dramatically downregulated in PE patients. Overexpression of USP17 facilitated trophoblast proliferation, migration, and invasion. Moreover, histone deacetylase 2 (HDAC2) was validated as a substrate of USP17 deubiquitination, and USP17 upregulation enhanced HDAC2 protein level. Furthermore, HDAC2 could interact with and deacetylate Signal transducer and activator of transcription 1 (STAT1), resulting in the enhancement of STAT1 activity and inhibition of NF-κB signaling. DISCUSSION Our findings disclosed that USP17 augmented the proliferation and invasion of trophoblast by deubiquitinating HDAC2, which will contribute to novel prospective targets for diagnosing and treating PE.
Collapse
Affiliation(s)
- Aiping Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Ting Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| | - Shasha Zhou
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jingjing Han
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Wujia Wu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| |
Collapse
|
2
|
Talukdar PD, Chatterji U. Transcriptional co-activators: emerging roles in signaling pathways and potential therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:427. [PMID: 37953273 PMCID: PMC10641101 DOI: 10.1038/s41392-023-01651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 11/14/2023] Open
Abstract
Specific cell states in metazoans are established by the symphony of gene expression programs that necessitate intricate synergic interactions between transcription factors and the co-activators. Deregulation of these regulatory molecules is associated with cell state transitions, which in turn is accountable for diverse maladies, including developmental disorders, metabolic disorders, and most significantly, cancer. A decade back most transcription factors, the key enablers of disease development, were historically viewed as 'undruggable'; however, in the intervening years, a wealth of literature validated that they can be targeted indirectly through transcriptional co-activators, their confederates in various physiological and molecular processes. These co-activators, along with transcription factors, have the ability to initiate and modulate transcription of diverse genes necessary for normal physiological functions, whereby, deregulation of such interactions may foster tissue-specific disease phenotype. Hence, it is essential to analyze how these co-activators modulate specific multilateral processes in coordination with other factors. The proposed review attempts to elaborate an in-depth account of the transcription co-activators, their involvement in transcription regulation, and context-specific contributions to pathophysiological conditions. This review also addresses an issue that has not been dealt with in a comprehensive manner and hopes to direct attention towards future research that will encompass patient-friendly therapeutic strategies, where drugs targeting co-activators will have enhanced benefits and reduced side effects. Additional insights into currently available therapeutic interventions and the associated constraints will eventually reveal multitudes of advanced therapeutic targets aiming for disease amelioration and good patient prognosis.
Collapse
Affiliation(s)
- Priyanka Dey Talukdar
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
3
|
Park HB, Min Y, Hwang S, Baek KH. Suppression of USP7 negatively regulates the stability of ETS proto-oncogene 2 protein. Biomed Pharmacother 2023; 162:114700. [PMID: 37062218 DOI: 10.1016/j.biopha.2023.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes (DUBs) that remove mono or polyubiquitin chains from target proteins. Depending on cancer types, USP7 has two opposing roles: oncogene or tumor suppressor. Moreover, it also known that USP7 functions in the cell cycle, apoptosis, DNA repair, chromatin remodeling, and epigenetic regulation through deubiquitination of several substrates including p53, mouse double minute 2 homolog (MDM2), Myc, and phosphatase and tensin homolog (PTEN). The [P/A/E]-X-X-S and K-X-X-X-K motifs of target proteins are necessary elements for the binding of USP7. In a previous study, we identified a novel substrate of USP7 through bioinformatics analysis using the binding motifs for USP7, and suggested that it can be an effective tool for finding new substrates for USP7. In the current study, gene ontology (GO) analysis revealed that putative target proteins having the [P/A/E]-X-X-S and K-X-X-K motifs are involved in transcriptional regulation. Moreover, through protein-protein interaction (PPI) analysis, we discovered that USP7 binds to the AVMS motif of ETS proto-oncogene 2 (ETS2) and deubiquitinates M1-, K11-, K27-, and K29-linked polyubiquitination of ETS2. Furthermore, we determined that suppression of USP7 decreases the protein stability of ETS2 and inhibits the transcriptional activity of ETS2 by disrupting the binding between the GGAA/T core motif and ETS2. Therefore, we propose that USP7 can be a novel target in cancers related to the dysregulation of ETS2.
Collapse
Affiliation(s)
- Hong-Beom Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Yosuk Min
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea; Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-Do 13496, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do 13488, Republic of Korea.
| |
Collapse
|
4
|
Huang S, Li J, Wu S, Zheng Z, Wang C, Li H, Zhao L, Zhang X, Huang H, Huang C, Xie Q. C4orf19 inhibits colorectal cancer cell proliferation by competitively binding to Keap1 with TRIM25 via the USP17/Elk-1/CDK6 axis. Oncogene 2023; 42:1333-1346. [PMID: 36882524 DOI: 10.1038/s41388-023-02656-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the gastrointestinal tract, and has been attracted a great deal attention and extensive investigation due to its high morbidity and mortality rates. The C4orf19 gene encodes a protein with uncharacterized function. Our preliminary exploration of the TCGA database indicated that C4orf19 is markedly downregulated in CRC tissues in comparison to that observed in normal colonic tissues, suggesting its potential association with CRC behaviors. Further studies showed a significant positive correlation between C4orf19 expression levels and CRC patient prognosis. Ectopic expression of C4orf19 inhibited the growth of CRC cells in vitro and tumorigenic ability in vivo. Mechanistic studies showed that C4orf19 binds to Keap1 at near the Lys615, which prevents the ubiquitination of Keap1 by TRIM25, thus protecting the Keap1 protein from degradation. The accumulated Keap1 results in USP17 degradation and in turn leading to the degradation of Elk-1, further attenuates its regulated CDK6 mRNA transcription and protein expression, as well as its mediated proliferation of CRC cells. Collectively, the present studies characterize function of C4orf19 as a tumor suppressor for CRC cell proliferation by targeting Keap1/USP17/Elk-1/CDK6 axis.
Collapse
Affiliation(s)
- Shirui Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jizhen Li
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuang Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhijian Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaodong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
5
|
Ducker C, Ratnam M, Shaw PE, Layfield R. Comparative analysis of protein expression systems and PTM landscape in the study of transcription factor ELK-1. Protein Expr Purif 2023; 203:106216. [PMID: 36528218 DOI: 10.1016/j.pep.2022.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Post-translational modifications (PTMs) are important for protein folding and activity, and the ability to recreate physiologically relevant PTM profiles on recombinantly-expressed proteins is vital for meaningful functional analysis. The ETS transcription factor ELK-1 serves as a paradigm for cellular responses to mitogens and can synergise with androgen receptor to promote prostate cancer progression, although in vitro protein function analyses to date have largely overlooked its complex PTM landscapes. We expressed and purified human ELK-1 using mammalian (HEK293T), insect (Sf9) and bacterial (E. coli) systems in parallel and compared PTMs imparted upon purified proteins, along with their performance in DNA and protein interaction assays. Phosphorylation of ELK-1 within its transactivation domain, known to promote DNA binding, was most apparent in protein isolated from human cells and accordingly conferred the strongest DNA binding in vitro, while protein expressed in insect cells bound most efficiently to the androgen receptor. We observed lysine acetylation, a hitherto unreported PTM of ELK-1, which appeared highest in insect cell-derived ELK-1 but was also present in HEK293T-derived ELK-1. Acetylation of ELK-1 was enhanced in HEK293T cells following starvation and mitogen stimulation, and modified lysines showed overlap with previously identified regulatory SUMOylation and ubiquitination sites. Our data demonstrate that the choice of recombinant expression system can be tailored to suit biochemical application rather than to maximise soluble protein production and suggest the potential for crosstalk and antagonism between different PTMs of ELK-1.
Collapse
Affiliation(s)
- Charles Ducker
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom.
| | - Manohar Ratnam
- Department of Oncology, Wayne State University School of Medicine and Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Peter E Shaw
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Robert Layfield
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
6
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
7
|
The Molecular Effects of Environmental Enrichment on Alzheimer's Disease. Mol Neurobiol 2022; 59:7095-7118. [PMID: 36083518 PMCID: PMC9616781 DOI: 10.1007/s12035-022-03016-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022]
Abstract
Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effective neuroprotective strategy against neurodegenerative diseases such as Alzheimer's disease (AD). Here, we summarize the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delaying the onset of AD for future research.
Collapse
|
8
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Determination of WWOX Function in Modulating Cellular Pathways Activated by AP-2α and AP-2γ Transcription Factors in Bladder Cancer. Cells 2022; 11:cells11091382. [PMID: 35563688 PMCID: PMC9106060 DOI: 10.3390/cells11091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Following the invention of high-throughput sequencing, cancer research focused on investigating disease-related alterations, often inadvertently omitting tumor heterogeneity. This research was intended to limit the impact of heterogeneity on conclusions related to WWOX/AP-2α/AP-2γ in bladder cancer which differently influenced carcinogenesis. The study examined the signaling pathways regulated by WWOX-dependent AP-2 targets in cell lines as biological replicates using high-throughput sequencing. RT-112, HT-1376 and CAL-29 cell lines were subjected to two stable lentiviral transductions. Following CAGE-seq and differential expression analysis, the most important genes were identified and functionally annotated. Western blot was performed to validate the selected observations. The role of genes in biological processes was assessed and networks were visualized. Ultimately, principal component analysis was performed. The studied genes were found to be implicated in MAPK, Wnt, Ras, PI3K-Akt or Rap1 signaling. Data from pathways were collected, explaining the differences/similarities between phenotypes. FGFR3, STAT6, EFNA1, GSK3B, PIK3CB and SOS1 were successfully validated at the protein level. Afterwards, a definitive network was built using 173 genes. Principal component analysis revealed that the various expression of these genes explains the phenotypes. In conclusion, the current study certified that the signaling pathways regulated by WWOX and AP-2α have more in common than that regulated by AP-2γ. This is because WWOX acts as an EMT inhibitor, AP-2γ as an EMT enhancer while AP-2α as a MET inducer. Therefore, the relevance of AP-2γ in targeted therapy is now more evident. Some of the differently regulated genes can find application in bladder cancer treatment.
Collapse
|
9
|
Prasad SK, Bhat S, Shashank D, C R A, R S, Rachtanapun P, Devegowda D, Santhekadur PK, Sommano SR. Bacteria-Mediated Oncogenesis and the Underlying Molecular Intricacies: What We Know So Far. Front Oncol 2022; 12:836004. [PMID: 35480118 PMCID: PMC9036991 DOI: 10.3389/fonc.2022.836004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cancers are known to have multifactorial etiology. Certain bacteria and viruses are proven carcinogens. Lately, there has been in-depth research investigating carcinogenic capabilities of some bacteria. Reports indicate that chronic inflammation and harmful bacterial metabolites to be strong promoters of neoplasticity. Helicobacter pylori-induced gastric adenocarcinoma is the best illustration of the chronic inflammation paradigm of oncogenesis. Chronic inflammation, which produces excessive reactive oxygen species (ROS) is hypothesized to cause cancerous cell proliferation. Other possible bacteria-dependent mechanisms and virulence factors have also been suspected of playing a vital role in the bacteria-induced-cancer(s). Numerous attempts have been made to explore and establish the possible relationship between the two. With the growing concerns on anti-microbial resistance and over-dependence of mankind on antibiotics to treat bacterial infections, it must be deemed critical to understand and identify carcinogenic bacteria, to establish their role in causing cancer.
Collapse
Affiliation(s)
- Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Smitha Bhat
- Department of Biotechnology and Bioinformatics, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Dharini Shashank
- Department of General Surgery, Adichunchanagiri Institute of Medical Sciences, Mandya, India
| | - Akshatha C R
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Sindhu R
- Department of Microbiology, Faculty of Life Sciences, Jagadguru Sri Shivarathreeshwara (JSS) Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Devananda Devegowda
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Prasanna K Santhekadur
- Centre of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, India
| | - Sarana Rose Sommano
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Sarri N, Wang K, Tsioumpekou M, Castillejo-López C, Lennartsson J, Heldin CH, Papadopoulos N. Deubiquitinating enzymes USP4 and USP17 finetune the trafficking of PDGFRβ and affect PDGF-BB-induced STAT3 signalling. Cell Mol Life Sci 2022; 79:85. [PMID: 35064336 PMCID: PMC8782881 DOI: 10.1007/s00018-022-04128-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
Interaction of platelet-derived growth factor (PDGF) isoforms with their receptors results in activation and internalization of receptors, with a concomitant activation of downstream signalling pathways. Ubiquitination of PDGFRs serves as a mark to direct the internalization and sorting of the receptors. By overexpressing a panel of deubiquitinating enzymes (DUBs), we found that USP17 and USP4 efficiently deubiquitinate PDGF receptor β (PDGFRβ) and are able to remove both Lys63 and Lys48-linked polyubiquitin chains from the receptor. Deubiquitination of PDGFRβ did not affect its stability, but regulated the timing of its trafficking, whereby USP17 prolonged the presence of the receptor at the cell surface, while USP4 affected the speed of trafficking towards early endosomes. Induction of each of the DUBs in BJhTERT fibroblasts and U2OS osteosarcoma cells led to prolonged and/or shifted activation of STAT3 in response to PDGF-BB stimulation, which in turn led to increased transcriptional activity of STAT3. Induction of USP17 promoted acute upregulation of the mRNA expression of STAT3-inducible genes STAT3, CSF1, junB and c-myc, while causing long-term changes in the expression of myc and CDKN1A. Deletion of USP17 was lethal to fibroblasts, while deletion of USP4 led to a decreased proliferative response to stimulation by PDGF-BB. Thus, USP17- and USP4-mediated changes in ubiquitination of PDFGRβ lead to dysregulated signalling and transcription downstream of STAT3, resulting in defects in the control of cell proliferation.
Collapse
Affiliation(s)
- Niki Sarri
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kehuan Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Maria Tsioumpekou
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Natalia Papadopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| |
Collapse
|
11
|
Yang GF, Zhang X, Su YG, Zhao R, Wang YY. The role of the deubiquitinating enzyme DUB3/USP17 in cancer: a narrative review. Cancer Cell Int 2021; 21:455. [PMID: 34454495 PMCID: PMC8400843 DOI: 10.1186/s12935-021-02160-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
The balance between ubiquitination and deubiquitination is critical for the degradation, transport, localization, and activity of proteins. Deubiquitinating enzymes (DUBs) greatly contribute to the balance of ubiquitination and deubiquitination, and they have been widely studied due to their fundamental role in cancer. DUB3/ubiquitin-specific protease 17 (USP17) is a type of DUB that has attracted much attention in cancer research. In this review, we summarize the biological functions and regulatory mechanisms of USP17 in central nervous system, head and neck, thoracic, breast, gastrointestinal, genitourinary, and gynecologic cancers as well as bone and soft tissue sarcomas, and we provide new insights into how USP17 can be used in the management of cancer.
Collapse
Affiliation(s)
- Guang-Fei Yang
- Dept. of Ultrasound, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xin Zhang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yi-Ge Su
- Graduate School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ren Zhao
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Yang Wang
- Dept. of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China. .,Cancer Institute, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
12
|
Cruz L, Soares P, Correia M. Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals (Basel) 2021; 14:ph14090848. [PMID: 34577547 PMCID: PMC8469789 DOI: 10.3390/ph14090848] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination represents a post-translational modification (PTM) essential for the maintenance of cellular homeostasis. Ubiquitination is involved in the regulation of protein function, localization and turnover through the attachment of a ubiquitin molecule(s) to a target protein. Ubiquitination can be reversed through the action of deubiquitinating enzymes (DUBs). The DUB enzymes have the ability to remove the mono- or poly-ubiquitination signals and are involved in the maturation, recycling, editing and rearrangement of ubiquitin(s). Ubiquitin-specific proteases (USPs) are the biggest family of DUBs, responsible for numerous cellular functions through interactions with different cellular targets. Over the past few years, several studies have focused on the role of USPs in carcinogenesis, which has led to an increasing development of therapies based on USP inhibitors. In this review, we intend to describe different cellular functions, such as the cell cycle, DNA damage repair, chromatin remodeling and several signaling pathways, in which USPs are involved in the development or progression of cancer. In addition, we describe existing therapies that target the inhibition of USPs.
Collapse
Affiliation(s)
- Lucas Cruz
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade Do Porto, 4200-139 Porto, Portugal
| | - Marcelo Correia
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- Correspondence:
| |
Collapse
|
13
|
Dongdem JT, Dawson SP, Layfield R. Modification of small ubiquitin-related modifier 2 (SUMO2) by phosphoubiquitin in HEK293T cells. Proteomics 2021; 21:e2000234. [PMID: 34086420 DOI: 10.1002/pmic.202000234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022]
Abstract
Additional complexity in the post-translational modification of proteins by ubiquitin is achieved by ubiquitin phosphorylation, for example within PINK1-parkin mediated mitophagy. We performed a preliminary proteomic analysis to identify proteins differentially modified by ubiquitin in HEK293T, compared to phosphomimetic ubiquitin (Ser65Asp), and identified small ubiquitin-related modifier 2 (SUMO2) as a candidate. By transfecting SUMO2 and its C-terminal-GG deletion mutant, along with phosphomimetic ubiquitin, we confirm that ubiquitin modifies SUMO2, rather than vice versa. Further investigations revealed that transfected SUMO2 can also be conjugated by endogenous phospho-Ser65-(poly)ubiquitin in HEK293T cells, pointing to a previously unappreciated level of complexity in SUMO2 modification, and that unanchored (substrate-free) polyubiquitin chains may also be subject to phosphorylation.
Collapse
Affiliation(s)
- Julius T Dongdem
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK.,Department of Biochemistry and Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Ghana
| | - Simon P Dawson
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Robert Layfield
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
14
|
Ducker C, Shaw PE. Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development. Int J Mol Sci 2021; 22:5119. [PMID: 34066106 PMCID: PMC8151852 DOI: 10.3390/ijms22105119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers.
Collapse
Affiliation(s)
- Charles Ducker
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Peter E. Shaw
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
15
|
Abstract
INTRODUCTION Various types of cancers threaten human life. The role of bacteria in causing cancer is controversial, but it has been determined that the Helicobacter pylori infection is one of the identified risk factors for gastric cancer. Helicobacter pylori infection is highly prevalent, and about half of the world,s population is infected with it. OBJECTIVE The aim of this study was the role of Helicobacter pylori in the development of gastric cancer. METHOD We obtained information from previously published articles. RESULTS AND CONCLUSION The bacterium has various virulence factors, including cytotoxin- associated gene A, vacuolating cytotoxin A, and the different outer membrane proteins that cause cancer by different mechanisms. These virulence factors activate cell signaling pathways such as PI3-kinase/Akt, JAK/STAT and Ras, Raf, and ERK signaling that control cell proliferation. Uncontrolled proliferation can lead to cancer.
Collapse
Affiliation(s)
- Majid Alipour
- Department of Cell and Molecular Biology, Islamic Azad University, Babol Branch, Babol, Iran.
| |
Collapse
|
16
|
Quintero-Barceinas RS, Gehringer F, Ducker C, Saxton J, Shaw PE. ELK-1 ubiquitination status and transcriptional activity are modulated independently of F-Box protein FBXO25. J Biol Chem 2020; 296:100214. [PMID: 33428929 PMCID: PMC7948486 DOI: 10.1074/jbc.ra120.014616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 01/12/2023] Open
Abstract
The mitogen-responsive, ETS-domain transcription factor ELK-1 stimulates the expression of immediate early genes at the onset of the cell cycle and participates in early developmental programming. ELK-1 is subject to multiple levels of posttranslational control, including phosphorylation, SUMOylation, and ubiquitination. Recently, removal of monoubiquitin from the ELK-1 ETS domain by the Ubiquitin Specific Protease USP17 was shown to augment ELK-1 transcriptional activity and promote cell proliferation. Here we have used coimmunoprecipitation experiments, protein turnover and ubiquitination assays, RNA-interference and gene expression analyses to examine the possibility that USP17 acts antagonistically with the F-box protein FBXO25, an E3 ubiquitin ligase previously shown to promote ELK-1 ubiquitination and degradation. Our data confirm that FBXO25 and ELK-1 interact in HEK293T cells and that FBXO25 is active toward Hand1 and HAX1, two of its other candidate substrates. However, our data indicate that FBXO25 neither promotes ubiquitination of ELK-1 nor impacts on its transcriptional activity and suggest that an E3 ubiquitin ligase other than FBXO25 regulates ELK-1 ubiquitination and function.
Collapse
Affiliation(s)
- Reyna Sara Quintero-Barceinas
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Franziska Gehringer
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Charles Ducker
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Janice Saxton
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Peter E Shaw
- Transcription and Signal Transduction Lab, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
17
|
USP17-mediated de-ubiquitination and cancer: Clients cluster around the cell cycle. Int J Biochem Cell Biol 2020; 130:105886. [PMID: 33227393 DOI: 10.1016/j.biocel.2020.105886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Eukaryotic cells perform a range of complex processes, some essential for life, others specific to cell type, all of which are governed by post-translational modifications of proteins. Among the repertoire of dynamic protein modifications, ubiquitination is arguably the most arcane and profound due to its complexity. Ubiquitin conjugation consists of three main steps, the last of which involves a multitude of target-specific ubiquitin ligases that conjugate a range of ubiquitination patterns to protein substrates with diverse outcomes. In contrast, ubiquitin removal is catalysed by a relatively small number of de-ubiquitinating enzymes (DUBs), which can also display target specificity and impact decisively on cell function. Here we review the current knowledge of the intriguing ubiquitin-specific protease 17 (USP17) family of DUBs, which are expressed from a highly copy number variable gene that has been implicated in multiple cancers, although available evidence points to conflicting roles in cell proliferation and survival. We show that key USP17 substrates populate two pathways that drive cell cycle progression and that USP17 activity serves to promote one pathway but inhibit the other. We propose that this arrangement enables USP17 to stimulate or inhibit proliferation depending on the mitogenic pathway that predominates in any given cell and may partially explain evidence pointing to both oncogenic and tumour suppressor properties of USP17.
Collapse
|
18
|
Chanthavixay G, Kern C, Wang Y, Saelao P, Lamont SJ, Gallardo RA, Rincon G, Zhou H. Integrated Transcriptome and Histone Modification Analysis Reveals NDV Infection Under Heat Stress Affects Bursa Development and Proliferation in Susceptible Chicken Line. Front Genet 2020; 11:567812. [PMID: 33101389 PMCID: PMC7545831 DOI: 10.3389/fgene.2020.567812] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022] Open
Abstract
Two environmental factors, Newcastle disease and heat stress, are concurrently negatively impacting poultry worldwide and warrant greater attention into developing genetic resistance within chickens. Using two genetically distinct and highly inbred layer lines, Fayoumi and Leghorn, we explored how different genetic backgrounds affect the bursal response to a treatment of simultaneous Newcastle disease virus (NDV) infection at 6 days postinfection (dpi) while under chronic heat stress. The bursa is a primary lymphoid organ within birds and is crucial for the development of B cells. We performed RNA-seq and ChIP-seq targeting histone modifications on bursa tissue. Differential gene expression revealed that Leghorn, compared to Fayoumi, had significant down-regulation in genes involved in cell proliferation, cell cycle, and cell division. Interestingly, we also found greater differences in histone modification levels in response to treatment in Leghorns than Fayoumis, and biological processes enriched in associated target genes of H3K27ac and H3K4me1 were similarly associated with cell cycle and receptor signaling of lymphocytes. Lastly, we found candidate variants between the two genetic lines within exons of differentially expressed genes and regulatory elements with differential histone modification enrichment between the lines, which provides a strong foundation for understanding the effects of genetic variation on NDV resistance under heat stress. This study provides further understanding of the cellular mechanisms affected by NDV infection under heat stress in chicken bursa and identified potential genes and regulatory regions that may be targets for developing genetic resistance within chickens.
Collapse
Affiliation(s)
- Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Rodrigo A Gallardo
- School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | | | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
19
|
Cheng JT, Wang YY, Zhu LZ, Zhang Y, Cai WQ, Han ZW, Zhou Y, Wang XW, Peng XC, Xiang Y, Yang HY, Cui SZ, Ma Z, Liu BR, Xin HW. Novel transcription regulatory sequences and factors of the immune evasion protein ICP47 (US12) of herpes simplex viruses. Virol J 2020; 17:101. [PMID: 32650799 PMCID: PMC7377220 DOI: 10.1186/s12985-020-01365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) can cause encephalitis. Its infected cell polypeptide 47 (ICP47), encoded by immediate-early gene US12, promotes immune escape. ICP47 was modified in the clinically approved oncolytic HSV (oHSV) T-Vec. However, transcription regulatory sequence (TRS) and transcription regulatory factor (TRF) of HSV US12 are seldom reported. METHODS Previously, our laboratory isolated a new HSV strain named HSV-1-LXMW from a male patient with oral herpes in Beijing, China. Firstly, the genetic tree was used to analyze its genetic relationship. The US12 TRS and TRF in HSV-1-LXMW were found by using predictive software. Secondly, the further verification by the multi-sequence comparative analysis shown that the upstream DNA sequence of HSV US12 gene contained the conserved region. Finally, the results of literature search shown that the expression of transcription factors was related to the tissue affinity of HSV-1 and HSV-2, so as to increase the new understanding of the transcriptional regulation of HSV biology and oncolytic virus (OVs) therapy. RESULTS Here we reported the transcriptional regulation region sequence of our new HSV-1-LXMW, and its close relationship with HSV-1-CR38 and HSV-1-17. Importantly we identified eight different kinds of novel TRSs and TRFs of HSV US12 for the first time, and found they are conserved among HSV-1 (c-Rel, Elk-1, Pax-4), HSV-2 (Oct-1, CF2-II, E74A, StuAp) or both HSVs (HNF-4). The TRFs c-Rel and Oct-1 are biologically functional respectively in immune escape and viral replication during HSV infection. CONCLUSIONS Our findings have important implication to HSV biology, infection, immunity and oHSVs.
Collapse
Affiliation(s)
- Jun-Ting Cheng
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying-Ying Wang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Lin-Zhong Zhu
- Department of Interventional Therapy, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. 52, Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ying Zhang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Wen-Qi Cai
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Zi-Wen Han
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yang Zhou
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xian-Wang Wang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Laboratory Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Hui-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhaowu Ma
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Bing-Rong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Wu Xin
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China. .,Lianjiang People's Hospital, Guangdong, 524400, China.
| |
Collapse
|
20
|
Novikova DD, Cherenkov PA, Sizentsova YG, Mironova VV. metaRE R Package for Meta-Analysis of Transcriptome Data to Identify the cis-Regulatory Code behind the Transcriptional Reprogramming. Genes (Basel) 2020; 11:genes11060634. [PMID: 32526881 PMCID: PMC7348973 DOI: 10.3390/genes11060634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
At the molecular level, response to an external factor or an internal condition causes reprogramming of temporal and spatial transcription. When an organism undergoes physiological and/or morphological changes, several signaling pathways are activated simultaneously. Examples of such complex reactions are the response to temperature changes, dehydration, various biologically active substances, and others. A significant part of the regulatory ensemble in such complex reactions remains unidentified. We developed metaRE, an R package for the systematic search for cis-regulatory elements enriched in the promoters of the genes significantly changed their transcription in a complex reaction. metaRE mines multiple expression profiling datasets generated to test the same organism’s response and identifies simple and composite cis-regulatory elements systematically associated with differential expression of genes. Here, we showed metaRE performance for the identification of low-temperature-responsive cis-regulatory code in Arabidopsis thaliana and Danio rerio. MetaRE identified potential binding sites for known as well as unknown cold response regulators. A notable part of cis-elements was found in both searches discovering great conservation in low-temperature responses between plants and animals.
Collapse
Affiliation(s)
- Daria D. Novikova
- Institute of Cytology and Genetics, Lavrentyeva avenue 10, 630090 Novosibirsk, Russia; (D.D.N.); (Y.G.S.)
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Pavel A. Cherenkov
- Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia;
| | - Yana G. Sizentsova
- Institute of Cytology and Genetics, Lavrentyeva avenue 10, 630090 Novosibirsk, Russia; (D.D.N.); (Y.G.S.)
| | - Victoria V. Mironova
- Institute of Cytology and Genetics, Lavrentyeva avenue 10, 630090 Novosibirsk, Russia; (D.D.N.); (Y.G.S.)
- Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia;
- Correspondence:
| |
Collapse
|
21
|
Lai KP, Chen J, Tse WKF. Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. Int J Mol Sci 2020; 21:ijms21072548. [PMID: 32268558 PMCID: PMC7177317 DOI: 10.3390/ijms21072548] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
22
|
Fukuura K, Inoue Y, Miyajima C, Watanabe S, Tokugawa M, Morishita D, Ohoka N, Komada M, Hayashi H. The ubiquitin-specific protease USP17 prevents cellular senescence by stabilizing the methyltransferase SET8 and transcriptionally repressing p21. J Biol Chem 2019; 294:16429-16439. [PMID: 31533987 DOI: 10.1074/jbc.ra119.009006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/13/2019] [Indexed: 01/12/2023] Open
Abstract
Su(var)3-9, Enhancer-of-zeste, and Trithorax (SET) domain-containing protein 8 (SET8) is the sole enzyme that monomethylates Lys-20 of histone H4 (H4K20). SET8 has been implicated in the regulation of multiple biological processes, such as gene transcription, the cell cycle, and senescence. SET8 quickly undergoes ubiquitination and degradation by several E3 ubiquitin ligases; however, the enzyme that deubiquitinates SET8 has not yet been identified. Here we demonstrated that ubiquitin-specific peptidase 17-like family member (USP17) deubiquitinates and therefore stabilizes the SET8 protein. We observed that USP17 interacts with SET8 and removes polyubiquitin chains from SET8. USP17 knockdown not only decreased SET8 protein levels and H4K20 monomethylation but also increased the levels of the cyclin-dependent kinase inhibitor p21. As a consequence, USP17 knockdown suppressed cell proliferation. We noted that USP17 was down-regulated in replicative senescence and that USP17 inhibition alone was sufficient to trigger cellular senescence. These results reveal a regulatory mechanism whereby USP17 prevents cellular senescence by removing ubiquitin marks from and stabilizing SET8 and transcriptionally repressing p21.
Collapse
Affiliation(s)
- Keishi Fukuura
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan .,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shin Watanabe
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Muneshige Tokugawa
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Masayuki Komada
- Cell Biology Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan .,Department of Innovative Therapeutics Sciences, Cooperative Major in Nanopharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|