1
|
Yang H, Patel DJ. Structures, mechanisms and applications of RNA-centric CRISPR-Cas13. Nat Chem Biol 2024; 20:673-688. [PMID: 38702571 PMCID: PMC11375968 DOI: 10.1038/s41589-024-01593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
Prokaryotes are equipped with a variety of resistance strategies to survive frequent viral attacks or invading mobile genetic elements. Among these, CRISPR-Cas surveillance systems are abundant and have been studied extensively. This Review focuses on CRISPR-Cas type VI Cas13 systems that use single-subunit RNA-guided Cas endonucleases for targeting and subsequent degradation of foreign RNA, thereby providing adaptive immunity. Notably, distinct from single-subunit DNA-cleaving Cas9 and Cas12 systems, Cas13 exhibits target RNA-activated substrate RNase activity. This Review outlines structural, biochemical and cell biological studies toward elucidation of the unique structural and mechanistic principles underlying surveillance effector complex formation, precursor CRISPR RNA (pre-crRNA) processing, self-discrimination and RNA degradation in Cas13 systems as well as insights into suppression by bacteriophage-encoded anti-CRISPR proteins and regulation by endogenous accessory proteins. Owing to its programmable ability for RNA recognition and cleavage, Cas13 provides powerful RNA targeting, editing, detection and imaging platforms with emerging biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
van Beljouw SPB, Brouns SJJ. CRISPR-controlled proteases. Biochem Soc Trans 2024; 52:441-453. [PMID: 38334140 DOI: 10.1042/bst20230962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
With the discovery of CRISPR-controlled proteases, CRISPR-Cas has moved beyond mere nucleic acid targeting into the territory of targeted protein cleavage. Here, we review the understanding of Craspase, the best-studied member of the growing CRISPR RNA-guided protease family. We recollect the original bioinformatic prediction and early experimental characterizations; evaluate some of the mechanistic structural intricacies and emerging biotechnology; discuss open questions and unexplained mysteries; and indicate future directions for the rapidly moving field of the CRISPR proteases.
Collapse
Affiliation(s)
- Sam P B van Beljouw
- Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| |
Collapse
|
3
|
Schumacher MA, Cannistraci E, Salinas R, Lloyd D, Messner E, Gozzi K. Structure of the WYL-domain containing transcription activator, DriD, in complex with ssDNA effector and DNA target site. Nucleic Acids Res 2024; 52:1435-1449. [PMID: 38142455 PMCID: PMC10853764 DOI: 10.1093/nar/gkad1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/26/2023] Open
Abstract
Transcription regulators play central roles in orchestrating responses to changing environmental conditions. Recently the Caulobacter crescentus transcription activator DriD, which belongs to the newly defined WYL-domain family, was shown to regulate DNA damage responses independent of the canonical SOS pathway. However, the molecular mechanisms by which DriD and other WYL-regulators sense environmental signals and recognize DNA are not well understood. We showed DriD DNA-binding is triggered by its interaction with ssDNA, which is produced during DNA damage. Here we describe the structure of the full-length C. crescentus DriD bound to both target DNA and effector ssDNA. DriD consists of an N-terminal winged-HTH (wHTH) domain, linker region, three-helix bundle, WYL-domain and C-terminal WCX-dimer domain. Strikingly, DriD binds DNA using a novel, asymmetric DNA-binding mechanism that results from different conformations adopted by the linker. Although the linker does not touch DNA, our data show that contacts it makes with the wHTH are key for specific DNA binding. The structure indicates how ssDNA-effector binding to the WYL-domain impacts wHTH DNA binding. In conclusion, we present the first structure of a WYL-activator bound to both effector and target DNA. The structure unveils a unique, asymmetric DNA binding mode that is likely conserved among WYL-activators.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Emily Cannistraci
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC 27710, USA
| | - Devin Lloyd
- 100 Edwin H Land Blvd, Rowland Institute at Harvard, Harvard University, Cambridge, Cambridge, MA 02142, USA
| | - Ella Messner
- 100 Edwin H Land Blvd, Rowland Institute at Harvard, Harvard University, Cambridge, Cambridge, MA 02142, USA
| | - Kevin Gozzi
- 100 Edwin H Land Blvd, Rowland Institute at Harvard, Harvard University, Cambridge, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Keller LML, Flattich K, Weber-Ban E. Novel WYL domain-containing transcriptional activator acts in response to genotoxic stress in rapidly growing mycobacteria. Commun Biol 2023; 6:1222. [PMID: 38042942 PMCID: PMC10693628 DOI: 10.1038/s42003-023-05592-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023] Open
Abstract
The WYL domain is a nucleotide-sensing module that controls the activity of transcription factors involved in the regulation of DNA damage response and phage defense mechanisms in bacteria. In this study, we investigated a WYL domain-containing transcription factor in Mycobacterium smegmatis that we termed stress-involved WYL domain-containing regulator (SiwR). We found that SiwR controls adjacent genes that belong to the DinB/YfiT-like putative metalloenzymes superfamily by upregulating their expression in response to various genotoxic stress conditions, including upon exposure to H2O2 or the natural antibiotic zeocin. We show that SiwR binds different forms of single-stranded DNA (ssDNA) with high affinity, primarily through its characteristic WYL domain. In combination with complementation studies of a M. smegmatis siwR deletion strain, our findings support a role of the WYL domains as signal-sensing activity switches of WYL domain-containing transcription factors (WYL TFs). Our study provides evidence that WYL TFs are involved in the adaptation of bacteria to changing environments and encountered stress conditions.
Collapse
Affiliation(s)
| | - Kim Flattich
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
5
|
Domgaard H, Cahoon C, Armbrust MJ, Redman O, Jolley A, Thomas A, Jackson R. CasDinG is a 5'-3' dsDNA and RNA/DNA helicase with three accessory domains essential for type IV CRISPR immunity. Nucleic Acids Res 2023; 51:8115-8132. [PMID: 37395408 PMCID: PMC10450177 DOI: 10.1093/nar/gkad546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
CRISPR-associated DinG protein (CasDinG) is essential to type IV-A CRISPR function. Here, we demonstrate that CasDinG from Pseudomonas aeruginosa strain 83 is an ATP-dependent 5'-3' DNA translocase that unwinds double-stranded (ds)DNA and RNA/DNA hybrids. The crystal structure of CasDinG reveals a superfamily 2 helicase core of two RecA-like domains with three accessory domains (N-terminal, arch, and vestigial FeS). To examine the in vivo function of these domains, we identified the preferred PAM sequence for the type IV-A system (5'-GNAWN-3' on the 5'-side of the target) with a plasmid library and performed plasmid clearance assays with domain deletion mutants. Plasmid clearance assays demonstrated that all three domains are essential for type IV-A immunity. Protein expression and biochemical assays suggested the vFeS domain is needed for protein stability and the arch for helicase activity. However, deletion of the N-terminal domain did not impair ATPase, ssDNA binding, or helicase activities, indicating a role distinct from canonical helicase activities that structure prediction tools suggest involves interaction with dsDNA. This work demonstrates CasDinG helicase activity is essential for type IV-A CRISPR immunity as well as the yet undetermined activity of the CasDinG N-terminal domain.
Collapse
Affiliation(s)
- Hannah Domgaard
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Christian Cahoon
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Matthew J Armbrust
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Olivine Redman
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Alivia Jolley
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Aaron Thomas
- Center for Integrated Biosystems, Utah State University, Logan, UT, USA
| | - Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| |
Collapse
|
6
|
Keller LM, Weber-Ban E. An emerging class of nucleic acid-sensing regulators in bacteria: WYL domain-containing proteins. Curr Opin Microbiol 2023; 74:102296. [PMID: 37027901 DOI: 10.1016/j.mib.2023.102296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 04/09/2023]
Abstract
Transcriptional regulation plays a central role in adaptation to changing environments for all living organisms. Recently, proteins belonging to a novel widespread class of bacterial transcription factors have been characterized in mycobacteria and Proteobacteria. Those multidomain proteins carry a WYL domain that is almost exclusive to the domain of bacteria. WYL domain-containing proteins act as regulators in different cellular contexts, including the DNA damage response and bacterial immunity. WYL domains have an Sm-like fold with five antiparallel β-strands arranged into a β-sandwich preceded by an α-helix. A common feature of WYL domains is their ability to bind nucleic acids that regulate their activity. In this review, we discuss recent progress made toward the understanding of WYL domain-containing proteins as transcriptional regulators, their structural features, and molecular mechanisms, as well as their functional roles in bacterial physiology.
Collapse
Affiliation(s)
- Lena Ml Keller
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Eilika Weber-Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
7
|
Abstract
CRISPR-Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR-Cas systems sense and cleave viral DNA, type III and type VI CRISPR-Cas systems sense RNA that results from viral transcription and perhaps invasion by RNA viruses. The sequence-specific detection of viral RNA evokes a cell-wide response that typically involves global damage to halt the infection. How can one make sense of an immune strategy that encompasses broad, collateral effects rather than specific, targeted destruction? In this Review, we summarize the current understanding of RNA-targeting CRISPR-Cas systems. We detail the composition and properties of type III and type VI systems, outline the cellular defence processes that are instigated upon viral RNA sensing and describe the biological rationale behind the broad RNA-activated immune responses as an effective strategy to combat viral infection.
Collapse
|
8
|
Liu L, Pei DS. Insights Gained from RNA Editing Targeted by the CRISPR-Cas13 Family. Int J Mol Sci 2022; 23:11400. [PMID: 36232699 PMCID: PMC9569848 DOI: 10.3390/ijms231911400] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems, especially type II (Cas9) systems, have been widely developed for DNA targeting and formed a set of mature precision gene-editing systems. However, the basic research and application of the CRISPR-Cas system in RNA is still in its early stages. Recently, the discovery of the CRISPR-Cas13 type VI system has provided the possibility for the expansion of RNA targeting technology, which has broad application prospects. Most type VI Cas13 effectors have dinuclease activity that catalyzes pre-crRNA into mature crRNA and produces strong RNA cleavage activity. Cas13 can specifically recognize targeted RNA fragments to activate the Cas13/crRNA complex for collateral cleavage activity. To date, the Cas13X protein is the smallest effector of the Cas13 family, with 775 amino acids, which is a promising platform for RNA targeting due to its lack of protospacer flanking sequence (PFS) restrictions, ease of packaging, and absence of permanent damage. This study highlighted the latest progress in RNA editing targeted by the CRISPR-Cas13 family, and discussed the application of Cas13 in basic research, nucleic acid diagnosis, nucleic acid tracking, and genetic disease treatment. Furthermore, we clarified the structure of the Cas13 protein family and their molecular mechanism, and proposed a future vision of RNA editing targeted by the CRISPR-Cas13 family.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Blankenchip CL, Nguyen JV, Lau RK, Ye Q, Gu Y, Corbett KD. Control of bacterial immune signaling by a WYL domain transcription factor. Nucleic Acids Res 2022; 50:5239-5250. [PMID: 35536256 PMCID: PMC9122588 DOI: 10.1093/nar/gkac343] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteria use diverse immune systems to defend themselves from ubiquitous viruses termed bacteriophages (phages). Many anti-phage systems function by abortive infection to kill a phage-infected cell, raising the question of how they are regulated to avoid cell killing outside the context of infection. Here, we identify a transcription factor associated with the widespread CBASS bacterial immune system, that we term CapW. CapW forms a homodimer and binds a palindromic DNA sequence in the CBASS promoter region. Two crystal structures of CapW suggest that the protein switches from an unliganded, DNA binding-competent state to a ligand-bound state unable to bind DNA. We show that CapW strongly represses CBASS gene expression in uninfected cells, and that phage infection causes increased CBASS expression in a CapW-dependent manner. Unexpectedly, this CapW-dependent increase in CBASS expression is not required for robust anti-phage activity, suggesting that CapW may mediate CBASS activation and cell death in response to a signal other than phage infection. Our results parallel concurrent reports on the structure and activity of BrxR, a transcription factor associated with the BREX anti-phage system, suggesting that CapW and BrxR are members of a family of universal defense signaling proteins.
Collapse
Affiliation(s)
- Chelsea L Blankenchip
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Justin V Nguyen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca K Lau
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Qiaozhen Ye
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yajie Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Luyten Y, Hausman DE, Young JC, Doyle L, Higashi K, Ubilla-Rodriguez N, Lambert AR, Arroyo CS, Forsberg K, Morgan R, Stoddard B, Kaiser B. Identification and characterization of the WYL BrxR protein and its gene as separable regulatory elements of a BREX phage restriction system. Nucleic Acids Res 2022; 50:5171-5190. [PMID: 35511079 PMCID: PMC9122589 DOI: 10.1093/nar/gkac311] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophage exclusion ('BREX') phage restriction systems are found in a wide range of bacteria. Various BREX systems encode unique combinations of proteins that usually include a site-specific methyltransferase; none appear to contain a nuclease. Here we describe the identification and characterization of a Type I BREX system from Acinetobacter and the effect of deleting each BREX ORF on growth, methylation, and restriction. We identified a previously uncharacterized gene in the BREX operon that is dispensable for methylation but involved in restriction. Biochemical and crystallographic analyses of this factor, which we term BrxR ('BREX Regulator'), demonstrate that it forms a homodimer and specifically binds a DNA target site upstream of its transcription start site. Deletion of the BrxR gene causes cell toxicity, reduces restriction, and significantly increases the expression of BrxC. In contrast, the introduction of a premature stop codon into the BrxR gene, or a point mutation blocking its DNA binding ability, has little effect on restriction, implying that the BrxR coding sequence and BrxR protein play independent functional roles. We speculate that elements within the BrxR coding sequence are involved in cis regulation of anti-phage activity, while the BrxR protein itself plays an additional regulatory role, perhaps during horizontal transfer.
Collapse
Affiliation(s)
- Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Deanna E Hausman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Juliana C Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Lindsey A Doyle
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Kerilyn M Higashi
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| | - Natalia C Ubilla-Rodriguez
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Abigail R Lambert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Corina S Arroyo
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Kevin J Forsberg
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | | | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle, WA 98109, USA
| | - Brett K Kaiser
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| |
Collapse
|
11
|
Picton DM, Harling-Lee JD, Duffner SJ, Went SC, Morgan RD, Hinton JCD, Blower TR. A widespread family of WYL-domain transcriptional regulators co-localizes with diverse phage defence systems and islands. Nucleic Acids Res 2022; 50:5191-5207. [PMID: 35544231 PMCID: PMC9122601 DOI: 10.1093/nar/gkac334] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteria are under constant assault by bacteriophages and other mobile genetic elements. As a result, bacteria have evolved a multitude of systems that protect from attack. Genes encoding bacterial defence mechanisms can be clustered into 'defence islands', providing a potentially synergistic level of protection against a wider range of assailants. However, there is a comparative paucity of information on how expression of these defence systems is controlled. Here, we functionally characterize a transcriptional regulator, BrxR, encoded within a recently described phage defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a combination of reporters and electrophoretic mobility shift assays, we discovered that BrxR acts as a repressor. We present the structure of BrxR to 2.15 Å, the first structure of this family of transcription factors, and pinpoint a likely binding site for ligands within the WYL-domain. Bioinformatic analyses demonstrated that BrxR-family homologues are widespread amongst bacteria. About half (48%) of identified BrxR homologues were co-localized with a diverse array of known phage defence systems, either alone or clustered into defence islands. BrxR is a novel regulator that reveals a common mechanism for controlling the expression of the bacterial phage defence arsenal.
Collapse
Affiliation(s)
- David M Picton
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Joshua D Harling-Lee
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, UK
| | - Samuel J Duffner
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Sam C Went
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | | | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| |
Collapse
|
12
|
Gozzi K, Salinas R, Nguyen VD, Laub MT, Schumacher MA. ssDNA is an allosteric regulator of the C. crescentus SOS-independent DNA damage response transcription activator, DriD. Genes Dev 2022; 36:618-633. [PMID: 35618312 PMCID: PMC9186387 DOI: 10.1101/gad.349541.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/12/2022] [Indexed: 12/18/2022]
Abstract
DNA damage repair systems are critical for genomic integrity. However, they must be coordinated with DNA replication and cell division to ensure accurate genomic transmission. In most bacteria, this coordination is mediated by the SOS response through LexA, which triggers a halt in cell division until repair is completed. Recently, an SOS-independent damage response system was revealed in Caulobacter crescentus. This pathway is controlled by the transcription activator, DriD, but how DriD senses and signals DNA damage is unknown. To address this question, we performed biochemical, cellular, and structural studies. We show that DriD binds a specific promoter DNA site via its N-terminal HTH domain to activate transcription of genes, including the cell division inhibitor didA A structure of the C-terminal portion of DriD revealed a WYL motif domain linked to a WCX dimerization domain. Strikingly, we found that DriD binds ssDNA between the WYL and WCX domains. Comparison of apo and ssDNA-bound DriD structures reveals that ssDNA binding orders and orients the DriD domains, indicating a mechanism for ssDNA-mediated operator DNA binding activation. Biochemical and in vivo studies support the structural model. Our data thus reveal the molecular mechanism underpinning an SOS-independent DNA damage repair pathway.
Collapse
Affiliation(s)
- Kevin Gozzi
- Department of Biology, Massachusetts Institute of Technology. Cambridge, Massachusetts 02139, USA
| | - Raul Salinas
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Viet D Nguyen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology. Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
13
|
Structural and Functional Analysis of DndE Involved in DNA Phosphorothioation in the Haloalkaliphilic Archaea Natronorubrum bangense JCM10635. mBio 2022; 13:e0071622. [PMID: 35420474 PMCID: PMC9239217 DOI: 10.1128/mbio.00716-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorothioate (PT) modification, a sequence-specific modification that replaces the nonbridging oxygen atom with sulfur in a DNA phosphodiester through the gene products of dndABCDE or sspABCD, is widely distributed in prokaryotes. DNA PT modification functions together with gene products encoded by dndFGH, pbeABCD, or sspE to form defense systems that can protect against invasion by exogenous DNA particles. While the functions of the multiple enzymes in the PT system have been elucidated, the exact role of DndE in the PT process is still obscure. Here, we solved the crystal structure of DndE from the haloalkaliphilic archaeal strain Natronorubrum bangense JCM10635 at a resolution of 2.31 Å. Unlike the tetrameric conformation of DndE in Escherichia coli B7A, DndE from N. bangense JCM10635 exists in a monomeric conformation and can catalyze the conversion of supercoiled DNA to nicked or linearized products. Moreover, DndE exhibits preferential binding affinity to nicked DNA by virtue of the R19- and K23-containing positively charged surface. This work provides insight into how DndE functions in PT modification and the potential sulfur incorporation mechanism of DNA PT modification.
Collapse
|
14
|
Gupta R, Ghosh A, Chakravarti R, Singh R, Ravichandiran V, Swarnakar S, Ghosh D. Cas13d: A New Molecular Scissor for Transcriptome Engineering. Front Cell Dev Biol 2022; 10:866800. [PMID: 35433685 PMCID: PMC9008242 DOI: 10.3389/fcell.2022.866800] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
The discovery of Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated Cas endonucleases in bacterial and archaeal species allowed scientists to modify, utilized, and revolutionize this tool for genetic alterations in any species. Especially the type II CRISPR-Cas9 system has been extensively studied and utilized for precise and efficient DNA manipulation in plant and mammalian systems over the past few decades. Further, the discovery of the type V CRISPR-Cas12 (Cpf1) system provides more flexibility and precision in DNA manipulation in prokaryotes, plants, and animals. However, much effort has been made to employ and utilize the above CRISPR tools for RNA manipulation but the ability of Cas9 and Cas12 to cut DNA involves the nuisance of off-target effects on genes and thus may not be employed in all RNA-targeting applications. Therefore, the search for new and diverse Cas effectors which can precisely detect and manipulate the targeted RNA begins and this led to the discovery of a novel RNA targeting class 2, type VI CRISPR-Cas13 system. The CRISPR-Cas13 system consists of single RNA-guided Cas13 effector nucleases that solely target single-stranded RNA (ssRNA) in a programmable way without altering the DNA. The Cas13 effectors family comprises four subtypes (a-d) and each subtype has distinctive primary sequence divergence except the two consensuses Higher eukaryotes and prokaryotes nucleotide-binding domain (HEPN) that includes RNase motifs i.e. R-X4-6-H. These two HEPN domains are solely responsible for executing targetable RNA cleavage activity with high efficiency. Further, recent studies have shown that Cas13d exhibits higher efficiency and specificity in cleaving targeted RNA in the mammalian system compared to other Cas13 endonucleases of the Cas13 enzyme family. In addition to that, Cas13d has shown additional advantages over other Cas13 variants, structurally as well as functionally which makes it a prominent and superlative tool for RNA engineering and editing. Therefore considering the advantages of Cas13d over previously characterized Cas13 subtypes, in this review, we encompass the structural and mechanistic properties of type VI CRISPR-Cas13d systems, an overview of the current reported various applications of Cas13d, and the prospects to improve Cas13d based tools for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Rahul Gupta
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Arijit Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rudra Chakravarti
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajveer Singh
- National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Velayutham Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, India
- *Correspondence: Dipanjan Ghosh, ; Snehasikta Swarnakar, ; Velayutham Ravichandiran,
| | - Snehasikta Swarnakar
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Dipanjan Ghosh, ; Snehasikta Swarnakar, ; Velayutham Ravichandiran,
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, India
- *Correspondence: Dipanjan Ghosh, ; Snehasikta Swarnakar, ; Velayutham Ravichandiran,
| |
Collapse
|
15
|
Comparative Genomics and Physiological Investigation of a New Arthrospira/Limnospira Strain O9.13F Isolated from an Alkaline, Winter Freezing, Siberian Lake. Cells 2021; 10:cells10123411. [PMID: 34943919 PMCID: PMC8700078 DOI: 10.3390/cells10123411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022] Open
Abstract
Cyanobacteria from the genus Arthrospira/Limnospira are considered haloalkalotolerant organisms with optimal growth temperatures around 35 °C. They are most abundant in soda lakes in tropical and subtropical regions. Here, we report the comprehensive genome-based characterisation and physiological investigation of the new strain O9.13F that was isolated in a temperate climate zone from the winter freezing Solenoye Lake in Western Siberia. Based on genomic analyses, the Siberian strain belongs to the Arthrospira/Limnospira genus. The described strain O9.13F showed the highest relative growth index upon cultivation at 20 °C, lower than the temperature 35 °C reported as optimal for the Arthrospira/Limnospira strains. We assessed the composition of fatty acids, proteins and photosynthetic pigments in the biomass of strain O9.13F grown at different temperatures, showing its potential suitability for cultivation in a temperate climate zone. We observed a decrease of gamma-linolenic acid favouring palmitic acid in the case of strain O9.13F compared to tropical strains. Comparative genomics showed no unique genes had been found for the Siberian strain related to its tolerance to low temperatures. In addition, this strain does not possess a different set of genes associated with the salinity stress response from those typically found in tropical strains. We confirmed the absence of plasmids and functional prophage sequences. The genome consists of a 4.94 Mbp with a GC% of 44.47% and 5355 encoded proteins. The Arthrospira/Limnospira strain O9.13F presented in this work is the first representative of a new clade III based on the 16S rRNA gene, for which a genomic sequence is available in public databases (PKGD00000000).
Collapse
|
16
|
Perčulija V, Lin J, Zhang B, Ouyang S. Functional Features and Current Applications of the RNA-Targeting Type VI CRISPR-Cas Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004685. [PMID: 34254038 PMCID: PMC8209922 DOI: 10.1002/advs.202004685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/26/2021] [Indexed: 05/14/2023]
Abstract
CRISPR-Cas systems are a form of prokaryotic adaptive immunity that employs RNA-guided endonucleases (Cas effectors) to cleave foreign genetic elements. Due to their simplicity, targeting programmability, and efficiency, single-effector CRISPR-Cas systems have great potential for application in research, biotechnology, and therapeutics. While DNA-targeting Cas effectors such as Cas9 and Cas12a have become indispensable tools for genome editing in the past decade, the more recent discovery of RNA-targeting CRISPR-Cas systems has opened the door for implementation of CRISPR-Cas technology in RNA manipulation. With an increasing number of studies reporting their application in transcriptome engineering, viral interference, nucleic acid detection, and RNA imaging, type VI CRISPR-Cas systems and the associated Cas13 effectors particularly hold promise as RNA-targeting or RNA-binding tools. However, even though previous structural and biochemical characterization provided a firm basis for leveraging type VI CRISPR-Cas systems into such tools, the lack of comprehension of certain mechanisms underlying their functions hinders more sophisticated and conventional use. This review will summarize current knowledge on structural and mechanistic properties of type VI CRISPR-Cas systems, give an overview on the reported applications, and discuss functional features that need further investigation in order to improve performance of Cas13-based tools.
Collapse
Affiliation(s)
- Vanja Perčulija
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- International College of Chinese StudiesFujian Normal UniversityFuzhou350117China
| | - Jinying Lin
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Bo Zhang
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian ProvinceProvincial University Key Laboratory of Cellular Stress Response and Metabolic RegulationBiomedical Research Center of South ChinaKey Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of EducationCollege of Life SciencesFujian Normal UniversityFuzhou350117China
- Laboratory for Marine Biology and BiotechnologyPilot National Laboratory for Marine Science and Technology (Qingdao)Qingdao266237China
- National Laboratory of BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| |
Collapse
|
17
|
Pillon MC, Gordon J, Frazier MN, Stanley RE. HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes. Crit Rev Biochem Mol Biol 2021; 56:88-108. [PMID: 33349060 PMCID: PMC7856873 DOI: 10.1080/10409238.2020.1856769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center. While the core HEPN fold is conserved, the organization surrounding the HEPN dimer can support large structural deviations that contribute to their specialized functions. HEPN RNases are conserved throughout evolution and include bacterial HEPN RNases such as CRISPR-Cas and toxin-antitoxin associated nucleases, as well as eukaryotic HEPN RNases that adopt large multi-component machines. Here we summarize the canonical elements of the growing HEPN RNase family and identify molecular features that influence RNase function and regulation. We explore similarities and differences between members of the HEPN RNase family and describe the current mechanisms for HEPN RNase activation and inhibition.
Collapse
Affiliation(s)
- Monica C. Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N. Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
18
|
Shivram H, Cress BF, Knott GJ, Doudna JA. Controlling and enhancing CRISPR systems. Nat Chem Biol 2021; 17:10-19. [PMID: 33328654 PMCID: PMC8101458 DOI: 10.1038/s41589-020-00700-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Many bacterial and archaeal organisms use clustered regularly interspaced short palindromic repeats-CRISPR associated (CRISPR-Cas) systems to defend themselves from mobile genetic elements. These CRISPR-Cas systems are classified into six types based on their composition and mechanism. CRISPR-Cas enzymes are widely used for genome editing and offer immense therapeutic opportunity to treat genetic diseases. To realize their full potential, it is important to control the timing, duration, efficiency and specificity of CRISPR-Cas enzyme activities. In this Review we discuss the mechanisms of natural CRISPR-Cas regulatory biomolecules and engineering strategies that enhance or inhibit CRISPR-Cas immunity by altering enzyme function. We also discuss the potential applications of these CRISPR regulators and highlight unanswered questions about their evolution and purpose in nature.
Collapse
Affiliation(s)
- Haridha Shivram
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Brady F Cress
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Gavin J Knott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Victoria, Australia
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, Berkeley, CA, USA.
- Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Brogan DJ, Chaverra-Rodriguez D, Lin CP, Smidler AL, Yang T, Alcantara LM, Antoshechkin I, Liu J, Raban RR, Belda-Ferre P, Knight R, Komives EA, Akbari OS. A Sensitive, Rapid, and Portable CasRx-based Diagnostic Assay for SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.14.20212795. [PMID: 33106816 PMCID: PMC7587836 DOI: 10.1101/2020.10.14.20212795] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since its first emergence from China in late 2019, the SARS-CoV-2 virus has spread globally despite unprecedented containment efforts, resulting in a catastrophic worldwide pandemic. Successful identification and isolation of infected individuals can drastically curtail virus spread and limit outbreaks. However, during the early stages of global transmission, point-of-care diagnostics were largely unavailable and continue to remain difficult to procure, greatly inhibiting public health efforts to mitigate spread. Furthermore, the most prevalent testing kits rely on reagent- and time-intensive protocols to detect viral RNA, preventing rapid and cost-effective diagnosis. Therefore the development of an extensive toolkit for point-of-care diagnostics that is expeditiously adaptable to new emerging pathogens is of critical public health importance. Recently, a number of novel CRISPR-based diagnostics have been developed to detect COVID-19. Herein, we outline the development of a CRISPR-based nucleic acid molecular diagnostic utilizing a Cas13d ribonuclease derived from Ruminococcus flavefaciens (CasRx) to detect SARS-CoV-2, an approach we term SENSR (Sensitive Enzymatic Nucleic-acid Sequence Reporter). We demonstrate SENSR robustly detects SARS-CoV-2 sequences in both synthetic and patient-derived samples by lateral flow and fluorescence, thus expanding the available point-of-care diagnostics to combat current and future pandemics.
Collapse
Affiliation(s)
- Daniel J Brogan
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Duverney Chaverra-Rodriguez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Calvin P Lin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92092
| | - Andrea L Smidler
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Ting Yang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Lenissa M. Alcantara
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Igor Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junru Liu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Robyn R Raban
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| | - Pedro Belda-Ferre
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92092
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, 92093
| |
Collapse
|
20
|
Hajizadeh Dastjerdi A, Newman A, Burgio G. The Expanding Class 2 CRISPR Toolbox: Diversity, Applicability, and Targeting Drawbacks. BioDrugs 2019; 33:503-513. [PMID: 31385197 DOI: 10.1007/s40259-019-00369-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The class 2 clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system, one of the prokaryotic adaptive immune systems, has sparked a lot of attention for its use as a gene editing tool. Currently, type II, V, and VI effector modules of this class have been characterized and extensively tested for nucleic acid editing, imaging, and disease diagnostics. Due to the unique composition of their nuclease catalytic center, the effector modules substantially vary in their function and possible biotechnology applications. In this review, we discuss the structural and functional diversity in class 2 CRISPR effectors, and debate their suitability for nucleic acid targeting and their shortcomings as gene editing tools.
Collapse
Affiliation(s)
- Arash Hajizadeh Dastjerdi
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2603, Australia
| | - Anthony Newman
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2603, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2603, Australia.
| |
Collapse
|