1
|
Chaudhuri D, Datta J, Majumder S, Giri K. In silico study on miRNA regulation and NSs protein interactome characterization of the SFTS virus. J Mol Graph Model 2022; 117:108291. [PMID: 35977432 DOI: 10.1016/j.jmgm.2022.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023]
Abstract
Severe fever with thrombocytopenia syndrome causing virus i.e. SFTS virus has increased in the last few years. The underlying cause and mechanism of disease progression and development of symptoms is not well known. Many viruses including Hepatitis B, Hepatitis C, HIV-1, Herpes virus, Dengue virus and many others have been seen to regulate their functions at the miRNA level. This study aimed to find out those cellular miRNAs, which can be mimicked or antagonized by the viral genome and analyze the effect of these miRNAs on various gene functions. Investigations in this study suggest a correlation between miRNA regulation with the disease symptoms and progression. By exhaustive literature survey we have tried to identify the interacting partners of the Non Structural S (NSs) protein and characterized the protein-protein interactions. The binding interface that can serve as target for therapeutic studies involving the interfacial residues was analyzed. This study would serve as an avenue to design therapeutics making use of not only protein-protein interactions but also miRNA based regulation as well.
Collapse
Affiliation(s)
| | - Joyeeta Datta
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
2
|
Clementel D, Del Conte A, Monzon AM, Camagni GF, Minervini G, Piovesan D, Tosatto SCE. RING 3.0: fast generation of probabilistic residue interaction networks from structural ensembles. Nucleic Acids Res 2022; 50:W651-W656. [PMID: 35554554 PMCID: PMC9252747 DOI: 10.1093/nar/gkac365] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 12/18/2022] Open
Abstract
Residue interaction networks (RINs) are used to represent residue contacts in protein structures. Thanks to the advances in network theory, RINs have been proved effective as an alternative to coordinate data in the analysis of complex systems. The RING server calculates high quality and reliable non-covalent molecular interactions based on geometrical parameters. Here, we present the new RING 3.0 version extending the previous functionality in several ways. The underlying software library has been re-engineered to improve speed by an order of magnitude. RING now also supports the mmCIF format and provides typed interactions for the entire PDB chemical component dictionary, including nucleic acids. Moreover, RING now employs probabilistic graphs, where multiple conformations (e.g. NMR or molecular dynamics ensembles) are mapped as weighted edges, opening up new ways to analyze structural data. The web interface has been expanded to include a simultaneous view of the RIN alongside a structure viewer, with both synchronized and clickable. Contact evolution across models (or time) is displayed as a heatmap and can help in the discovery of correlating interaction patterns. The web server, together with an extensive help and tutorial, is available from URL: https://ring.biocomputingup.it/.
Collapse
Affiliation(s)
- Damiano Clementel
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Alessio Del Conte
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | | | - Giorgia F Camagni
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Giovanni Minervini
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Damiano Piovesan
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Padova 35131, Italy
| |
Collapse
|
3
|
Zimmermann MT. Molecular Modeling is an Enabling Approach to Complement and Enhance Channelopathy Research. Compr Physiol 2022; 12:3141-3166. [PMID: 35578963 DOI: 10.1002/cphy.c190047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hundreds of human membrane proteins form channels that transport necessary ions and compounds, including drugs and metabolites, yet details of their normal function or how function is altered by genetic variants to cause diseases are often unknown. Without this knowledge, researchers are less equipped to develop approaches to diagnose and treat channelopathies. High-resolution computational approaches such as molecular modeling enable researchers to investigate channelopathy protein function, facilitate detailed hypothesis generation, and produce data that is difficult to gather experimentally. Molecular modeling can be tailored to each physiologic context that a protein may act within, some of which may currently be difficult or impossible to assay experimentally. Because many genomic variants are observed in channelopathy proteins from high-throughput sequencing studies, methods with mechanistic value are needed to interpret their effects. The eminent field of structural bioinformatics integrates techniques from multiple disciplines including molecular modeling, computational chemistry, biophysics, and biochemistry, to develop mechanistic hypotheses and enhance the information available for understanding function. Molecular modeling and simulation access 3D and time-dependent information, not currently predictable from sequence. Thus, molecular modeling is valuable for increasing the resolution with which the natural function of protein channels can be investigated, and for interpreting how genomic variants alter them to produce physiologic changes that manifest as channelopathies. © 2022 American Physiological Society. Compr Physiol 12:3141-3166, 2022.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
4
|
Roy P, Bhattacharyya D. Contact networks in RNA: a structural bioinformatics study with a new tool. J Comput Aided Mol Des 2022; 36:131-140. [DOI: 10.1007/s10822-021-00438-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
|
5
|
Sladek V, Yamamoto Y, Harada R, Shoji M, Shigeta Y, Sladek V. pyProGA-A PyMOL plugin for protein residue network analysis. PLoS One 2021; 16:e0255167. [PMID: 34329304 PMCID: PMC8323899 DOI: 10.1371/journal.pone.0255167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/11/2021] [Indexed: 11/18/2022] Open
Abstract
The field of protein residue network (PRN) research has brought several useful methods and techniques for structural analysis of proteins and protein complexes. Many of these are ripe and ready to be used by the proteomics community outside of the PRN specialists. In this paper we present software which collects an ensemble of (network) methods tailored towards the analysis of protein-protein interactions (PPI) and/or interactions of proteins with ligands of other type, e.g. nucleic acids, oligosaccharides etc. In parallel, we propose the use of the network differential analysis as a method to identify residues mediating key interactions between proteins. We use a model system, to show that in combination with other, already published methods, also included in pyProGA, it can be used to make such predictions. Such extended repertoire of methods allows to cross-check predictions with other methods as well, as we show here. In addition, the possibility to construct PRN models from various kinds of input is so far a unique asset of our code. One can use structural data as defined in PDB files and/or from data on residue pair interaction energies, either from force-field parameters or fragment molecular orbital (FMO) calculations. pyProGA is a free open-source software available from https://gitlab.com/Vlado_S/pyproga.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Yuta Yamamoto
- Department of Chemistry, Rikkyo University, Nishi-Ikebukuro, Tokyo, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Vladimir Sladek
- Institute of Construction and Architecture, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
6
|
Chatzigoulas A, Cournia Z. Rational design of allosteric modulators: Challenges and successes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1529] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alexios Chatzigoulas
- Biomedical Research Foundation Academy of Athens Athens Greece
- Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
| | - Zoe Cournia
- Biomedical Research Foundation Academy of Athens Athens Greece
| |
Collapse
|
7
|
Marques SM, Planas-Iglesias J, Damborsky J. Web-based tools for computational enzyme design. Curr Opin Struct Biol 2021; 69:19-34. [PMID: 33667757 DOI: 10.1016/j.sbi.2021.01.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Enzymes are in high demand for very diverse biotechnological applications. However, natural biocatalysts often need to be engineered for fine-tuning their properties towards the end applications, such as the activity, selectivity, stability to temperature or co-solvents, and solubility. Computational methods are increasingly used in this task, providing predictions that narrow down the space of possible mutations significantly and can enormously reduce the experimental burden. Many computational tools are available as web-based platforms, making them accessible to non-expert users. These platforms are typically user-friendly, contain walk-throughs, and do not require deep expertise and installations. Here we describe some of the most recent outstanding web-tools for enzyme engineering and formulate future perspectives in this field.
Collapse
Affiliation(s)
- Sérgio M Marques
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/C13, 625 00 Brno, Czech Republic; International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
8
|
Batkhishig D, Enkhbayar P, Kretsinger RH, Matsushima N. A crucial residue in the hydrophobic core of the solenoid structure of leucine rich repeats. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140631. [PMID: 33631375 DOI: 10.1016/j.bbapap.2021.140631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Leucine rich repeats (LRRs) with 20-30 residues form a super helix arrangement. Individual LRRs are separated into a highly conserved segment with a highly conserved (HCS) and a variable segment (VS). In LRRs short β-strands in HCS stack in parallel, while VS adopts various secondary structures. Among eleven classes recognized, only RI-like, Cysteine-containing (CC), and GALA classes adopt an α-helix. However, the repeat unit lengths are usually different from each other. We performed some analyses based on the atomic coordinates in the known LRR structures. In the VS consensuses of the three classes, position 8 in the VS part is, in common, occupied by conserved aliphatic residue adopting an α-helix. This aliphatic residue is near to the two conserved hydrophobic residues at position 4 (in the center of β-strands) in two adjacent HCS parts. The conserved aliphatic residue plays a crucial role to preserve two parallel β-strands.
Collapse
Affiliation(s)
- Dashdavaa Batkhishig
- Department of Physics, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar 210648, Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia.
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Norio Matsushima
- Division of Bioinformatics, Institute of Tandem Repeats, Noboribetsu 059-0464, Japan; Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.
| |
Collapse
|
9
|
Felline A, Seeber M, Fanelli F. webPSN v2.0: a webserver to infer fingerprints of structural communication in biomacromolecules. Nucleic Acids Res 2020; 48:W94-W103. [PMID: 32427333 PMCID: PMC7319592 DOI: 10.1093/nar/gkaa397] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/21/2020] [Accepted: 05/17/2020] [Indexed: 12/25/2022] Open
Abstract
A mixed Protein Structure Network (PSN) and Elastic Network Model-Normal Mode Analysis (ENM-NMA)-based strategy (i.e. PSN-ENM) was developed to investigate structural communication in bio-macromolecules. Protein Structure Graphs (PSGs) are computed on a single structure, whereas information on system dynamics is supplied by ENM-NMA. The approach was implemented in a webserver (webPSN), which was significantly updated herein. The webserver now handles both proteins and nucleic acids and relies on an internal upgradable database of network parameters for ions and small molecules in all PDB structures. Apart from the radical restyle of the server and some changes in the calculation setup, other major novelties concern the possibility to: a) compute the differences in nodes, links, and communication pathways between two structures (i.e. network difference) and b) infer links, hubs, communities, and metapaths from consensus networks computed on a number of structures. These new features are useful to identify commonalties and differences between two different functional states of the same system or structural-communication signatures in homologous or analogous systems. The output analysis relies on 3D-representations, interactive tables and graphs, also available for download. Speed and accuracy make this server suitable to comparatively investigate structural communication in large sets of bio-macromolecular systems. URL: http://webpsn.hpc.unimore.it.
Collapse
Affiliation(s)
- Angelo Felline
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Michele Seeber
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|
10
|
Grant BJ, Skjaerven L, Yao XQ. The Bio3D packages for structural bioinformatics. Protein Sci 2020; 30:20-30. [PMID: 32734663 DOI: 10.1002/pro.3923] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Bio3D is a family of R packages for the analysis of biomolecular sequence, structure, and dynamics. Major functionality includes biomolecular database searching and retrieval, sequence and structure conservation analysis, ensemble normal mode analysis, protein structure and correlation network analysis, principal component, and related multivariate analysis methods. Here, we review recent package developments, including a new underlying segregation into separate packages for distinct analysis, and introduce a new method for structure analysis named ensemble difference distance matrix analysis (eDDM). The eDDM approach calculates and compares atomic distance matrices across large sets of homologous atomic structures to help identify the residue wise determinants underlying specific functional processes. An eDDM workflow is detailed along with an example application to a large protein family. As a new member of the Bio3D family, the Bio3D-eddm package supports both experimental and theoretical simulation-generated structures, is integrated with other methods for dissecting sequence-structure-function relationships, and can be used in a highly automated and reproducible manner. Bio3D is distributed as an integrated set of platform independent open source R packages available from: http://thegrantlab.org/bio3d/.
Collapse
Affiliation(s)
- Barry J Grant
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Lars Skjaerven
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, California, USA
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Abideen ZU, Ahmad A, Usman M, Majaz S, Ali W, Noreen S, Mahmood T, Nouroz F. Dynamics and conformational propensities of staphylococcal CntA. J Biomol Struct Dyn 2020; 39:4923-4935. [PMID: 32573341 DOI: 10.1080/07391102.2020.1782263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Enzymes use transition metals as co-factors for catalytic roles in biological processes. Notably, manganese, iron, cobalt, nickel, copper and zinc are abundantly used. Staphylococcus aureus, a commensal bacterium asymptomatically, lies on the human body causing variety of infections. S. aureus is equipped by advanced virulence-regulatory circuits of metal acquisition like Cnt that acquires metals at infection sites by utilizing a nicotianamine-like metallophore staphylopine. Despite significant growth in structural studies, how CntA of Cnt system transmits conformational signal upon staphylopine recognition remains elusive. Here, we analyzed the structural changes adopted by CntA during close-to-open transition by computational approaches. CntA uses a bi-domain architectural form of domain II which performed 37° rigid body rotation and 1.1 Å translation assisted by inter-domain hinge cluster residues. Important clustered communities were found regulating the conformational changes in CntA where communities 4 and 5 are found crucial. Besides open and close states, the fluctuating regions sampled two additional intermediate states which were considered close or open previously. CntA prefers fluctuating the non-conserved regions rather than conserved where domain II turned out to be rigid and maintains a stable fold. Overall, the CntA system is a potential target for structural biologist to hamper such conformational behaviors at family level.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zain Ul Abideen
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Ashfaq Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Muhammad Usman
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Sidra Majaz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Waqar Ali
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan
| | - Shumaila Noreen
- Department of Zoology, University of Peshawar, Peshawar, KPK, Pakistan
| | - Tariq Mahmood
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan.,Department of Agriculture, Hazara University, Mansehra, KPK, Pakistan
| | - Faisal Nouroz
- Department of Bioinformatics, Hazara University, Mansehra, KPK, Pakistan.,Department of Botany, Hazara University, Mansehra, KPK, Pakistan
| |
Collapse
|
12
|
Revisiting allostery in CREB-binding protein (CBP) using residue-based interaction energy. J Comput Aided Mol Des 2020; 34:965-974. [PMID: 32430574 DOI: 10.1007/s10822-020-00316-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
CREB-binding protein (CBP) is a multi-subunit scaffold protein complex in transcription regulation process, binding and interacting with ligands such as mixed-lineage leukemia (MLL) and c-Myb allosterically. Here in this study, we have revisited the concept of allostery in CBP via residue-based interaction energy calculation based on molecular dynamics (MD) simulations. To this end, we conducted MD simulations of KIX:MLL:c-Myb ternary complex, its binary components and kinase-inducible domain (KID) interacting domain (KIX) backbone. Interaction energy profiles and cross correlation analysis were performed and the results indicated that KIX:MLL and KIX:c-Myb:MLL complexes demonstrate significant similarities according to both analysis methods. Two regions in the KIX backbone were apparent from the interaction energy and cross correlation maps that hold a key to allostery phenomena observed in CBP. While one of these regions are related to the ligand binding residues, the other comprises of L12-G2 loop and α3 helix regions that have been found to have a significant role in allosteric signal propagation. All in all, residue-based interaction energy calculation method is demonstrated to be a valuable calculation technique for the detection of allosteric signal propagation and ligand interaction regions.
Collapse
|