1
|
André T, van Berkel AA, Singh G, Abualrous ET, Diwan GD, Schmenger T, Braun L, Malsam J, Toonen RF, Freund C, Russell RB, Verhage M, Söllner TH. Reduced Protein Stability of 11 Pathogenic Missense STXBP1/MUNC18-1 Variants and Improved Disease Prediction. Biol Psychiatry 2024; 96:125-136. [PMID: 38490366 DOI: 10.1016/j.biopsych.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Pathogenic variants in STXBP1/MUNC18-1 cause severe encephalopathies that are among the most common in genetic neurodevelopmental disorders. Different molecular disease mechanisms have been proposed, and pathogenicity prediction is limited. In this study, we aimed to define a generalized disease concept for STXBP1-related disorders and improve prediction. METHODS A cohort of 11 disease-associated and 5 neutral variants (detected in healthy individuals) were tested in 3 cell-free assays and in heterologous cells and primary neurons. Protein aggregation was tested using gel filtration and Triton X-100 insolubility. PRESR (predicting STXBP1-related disorder), a machine learning algorithm that uses both sequence- and 3-dimensional structure-based features, was developed to improve pathogenicity prediction using 231 known disease-associated variants and comparison to our experimental data. RESULTS Disease-associated variants, but none of the neutral variants, produced reduced protein levels. Cell-free assays demonstrated directly that disease-associated variants have reduced thermostability, with most variants denaturing around body temperature. In addition, most disease-associated variants impaired SNARE-mediated membrane fusion in a reconstituted assay. Aggregation/insolubility was observed for none of the variants in vitro or in neurons. PRESR outperformed existing tools substantially: Matthews correlation coefficient = 0.71 versus <0.55. CONCLUSIONS These data establish intrinsic protein instability as the generalizable, primary cause for STXBP1-related disorders and show that protein-specific ortholog and 3-dimensional information improve disease prediction. PRESR is a publicly available diagnostic tool.
Collapse
Affiliation(s)
- Timon André
- Heidelberg University Biochemistry Centre, Heidelberg, Germany
| | - Annemiek A van Berkel
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNRC), University Medical Center Amsterdam; Amsterdam 1081 HV, the Netherlands
| | - Gurdeep Singh
- Heidelberg University Biochemistry Centre, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Esam T Abualrous
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany; Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gaurav D Diwan
- Heidelberg University Biochemistry Centre, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Torsten Schmenger
- Heidelberg University Biochemistry Centre, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lara Braun
- Heidelberg University Biochemistry Centre, Heidelberg, Germany
| | - Jörg Malsam
- Heidelberg University Biochemistry Centre, Heidelberg, Germany
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Robert B Russell
- Heidelberg University Biochemistry Centre, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, the Netherlands; Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNRC), University Medical Center Amsterdam; Amsterdam 1081 HV, the Netherlands.
| | | |
Collapse
|
2
|
Arora C, Matic M, Bisceglia L, Di Chiaro P, De Oliveira Rosa N, Carli F, Clubb L, Nemati Fard LA, Kargas G, Diaferia GR, Vukotic R, Licata L, Wu G, Natoli G, Gutkind JS, Raimondi F. The landscape of cancer-rewired GPCR signaling axes. CELL GENOMICS 2024; 4:100557. [PMID: 38723607 PMCID: PMC11099383 DOI: 10.1016/j.xgen.2024.100557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/17/2024] [Accepted: 04/10/2024] [Indexed: 05/15/2024]
Abstract
We explored the dysregulation of G-protein-coupled receptor (GPCR) ligand systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes. Multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes and are associated to specific transcriptional programs and to patient survival patterns. The expression of both receptor-ligand (or enzymes) partners improved patient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer phenotypes. Remarkably, we identified many such axes across several cancer molecular subtypes, including many involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these actionable axes, including, e.g., muscarinic, adenosine, 5-hydroxytryptamine, and chemokine receptors, are the targets of multiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens, which we further validated. We have made the results generated in this study freely available through a webapp (gpcrcanceraxes.bioinfolab.sns.it).
Collapse
Affiliation(s)
- Chakit Arora
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Luisa Bisceglia
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Natalia De Oliveira Rosa
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Lauren Clubb
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lorenzo Amir Nemati Fard
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giorgos Kargas
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Giuseppe R Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Ranka Vukotic
- Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67, 56126 Pisa, Italy
| | - Luana Licata
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
| |
Collapse
|
3
|
Velloso JPL, Kovacs AS, Pires DEV, Ascher DB. AI-driven GPCR analysis, engineering, and targeting. Curr Opin Pharmacol 2024; 74:102427. [PMID: 38219398 DOI: 10.1016/j.coph.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
This article investigates the role of recent advances in Artificial Intelligence (AI) to revolutionise the study of G protein-coupled receptors (GPCRs). AI has been applied to many areas of GPCR research, including the application of machine learning (ML) in GPCR classification, prediction of GPCR activation levels, modelling GPCR 3D structures and interactions, understanding G-protein selectivity, aiding elucidation of GPCRs structures, and drug design. Despite progress, challenges in predicting GPCR structures and addressing the complex nature of GPCRs remain, providing avenues for future research and development.
Collapse
Affiliation(s)
- João P L Velloso
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Aaron S Kovacs
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Douglas E V Pires
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia.
| | - David B Ascher
- Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia; Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia; Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
4
|
Arora C, Matic M, DiChiaro P, Rosa NDO, Carli F, Clubb L, Fard LAN, Kargas G, Diaferia G, Vukotic R, Licata L, Wu G, Natoli G, Gutkind JS, Raimondi F. The landscape of cancer rewired GPCR signaling axes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532291. [PMID: 37398064 PMCID: PMC10312480 DOI: 10.1101/2023.03.13.532291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We explored the dysregulation of GPCR ligand signaling systems in cancer transcriptomics datasets to uncover new therapeutics opportunities in oncology. We derived an interaction network of receptors with ligands and their biosynthetic enzymes, which revealed that multiple GPCRs are differentially regulated together with their upstream partners across cancer subtypes. We showed that biosynthetic pathway enrichment from enzyme expression recapitulated pathway activity signatures from metabolomics datasets, providing valuable surrogate information for GPCRs responding to organic ligands. We found that several GPCRs signaling components were significantly associated with patient survival in a cancer type-specific fashion. The expression of both receptor-ligand (or enzymes) partners improved patient stratification, suggesting a synergistic role for the activation of GPCR networks in modulating cancer phenotypes. Remarkably, we identified many such axes across several cancer molecular subtypes, including many pairs involving receptor-biosynthetic enzymes for neurotransmitters. We found that GPCRs from these actionable axes, including e.g., muscarinic, adenosine, 5-hydroxytryptamine and chemokine receptors, are the targets of multiple drugs displaying anti-growth effects in large-scale, cancer cell drug screens. We have made the results generated in this study freely available through a webapp (gpcrcanceraxes.bioinfolab.sns.it).
Collapse
Affiliation(s)
- Chakit Arora
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Pierluigi DiChiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Natalia De Oliveira Rosa
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Lauren Clubb
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lorenzo Amir Nemati Fard
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Giorgos Kargas
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Giuseppe Diaferia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - Ranka Vukotic
- Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67, 56126 Pisa
| | - Luana Licata
- Department of Biology, University of Rome ‘Tor Vergata’, Rome 00133, Italy
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milano, Italy
| | - J. Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| |
Collapse
|
5
|
Ono Y, Ito R, Arai K, Singh G, Saitoh T, Russell RB, Raimondi F, Aoki J, Sakai J, Inoue A. Chemogenetic activation of G 12 signaling enhances adipose tissue browning. Signal Transduct Target Ther 2023; 8:307. [PMID: 37599327 PMCID: PMC10440338 DOI: 10.1038/s41392-023-01524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/13/2023] [Accepted: 05/28/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Yuki Ono
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Ryo Ito
- Division of Molecular Physiology and Metabolism, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8574, Japan
| | - Kaito Arai
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Gurdeep Singh
- Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Robert B Russell
- Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
- Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8574, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Asuka Inoue
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| |
Collapse
|
6
|
Wu VH, Yung BS, Faraji F, Saddawi-Konefka R, Wang Z, Wenzel AT, Song MJ, Pagadala MS, Clubb LM, Chiou J, Sinha S, Matic M, Raimondi F, Hoang TS, Berdeaux R, Vignali DAA, Iglesias-Bartolome R, Carter H, Ruppin E, Mesirov JP, Gutkind JS. The GPCR-Gα s-PKA signaling axis promotes T cell dysfunction and cancer immunotherapy failure. Nat Immunol 2023; 24:1318-1330. [PMID: 37308665 PMCID: PMC10735169 DOI: 10.1038/s41590-023-01529-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/06/2023] [Indexed: 06/14/2023]
Abstract
Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 has revolutionized cancer treatment. However, many cancers do not respond to ICB, prompting the search for additional strategies to achieve durable responses. G-protein-coupled receptors (GPCRs) are the most intensively studied drug targets but are underexplored in immuno-oncology. Here, we cross-integrated large singe-cell RNA-sequencing datasets from CD8+ T cells covering 19 distinct cancer types and identified an enrichment of Gαs-coupled GPCRs on exhausted CD8+ T cells. These include EP2, EP4, A2AR, β1AR and β2AR, all of which promote T cell dysfunction. We also developed transgenic mice expressing a chemogenetic CD8-restricted Gαs-DREADD to activate CD8-restricted Gαs signaling and show that a Gαs-PKA signaling axis promotes CD8+ T cell dysfunction and immunotherapy failure. These data indicate that Gαs-GPCRs are druggable immune checkpoints that might be targeted to enhance the response to ICB immunotherapies.
Collapse
Affiliation(s)
- Victoria H Wu
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Septerna, Inc., South San Francisco, CA, USA
| | - Bryan S Yung
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, USA
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Robert Saddawi-Konefka
- Department of Otolaryngology-Head and Neck Surgery, University of California San Diego Health, La Jolla, CA, USA
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Zhiyong Wang
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Alexander T Wenzel
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Miranda J Song
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Meghana S Pagadala
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lauren M Clubb
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Chiou
- Biomedical Sciences Graduate Studies Program, University of California, San Diego, La Jolla, CA, USA
- Internal Medicine Research Unit, Pfizer Worldwide Research, Cambridge, MA, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | | | - Thomas S Hoang
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health Houston and CellChorus INC, Houston, TX, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Hannah Carter
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jill P Mesirov
- UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Matic M, Miglionico P, Tatsumi M, Inoue A, Raimondi F. GPCRome-wide analysis of G-protein-coupling diversity using a computational biology approach. Nat Commun 2023; 14:4361. [PMID: 37468476 DOI: 10.1038/s41467-023-40045-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
GPCRs are master regulators of cell signaling by transducing extracellular stimuli into the cell via selective coupling to intracellular G-proteins. Here we present a computational analysis of the structural determinants of G-protein-coupling repertoire of experimental and predicted 3D GPCR-G-protein complexes. Interface contact analysis recapitulates structural hallmarks associated with G-protein-coupling specificity, including TM5, TM6 and ICLs. We employ interface contacts as fingerprints to cluster Gs vs Gi complexes in an unsupervised fashion, suggesting that interface residues contribute to selective coupling. We experimentally confirm on a promiscuous receptor (CCKAR) that mutations of some of these specificity-determining positions bias the coupling selectivity. Interestingly, Gs-GPCR complexes have more conserved interfaces, while Gi/o proteins adopt a wider number of alternative docking poses, as assessed via structural alignments of representative 3D complexes. Binding energy calculations demonstrate that distinct structural properties of the complexes are associated to higher stability of Gs than Gi/o complexes. AlphaFold2 predictions of experimental binary complexes confirm several of these structural features and allow us to augment the structural coverage of poorly characterized complexes such as G12/13.
Collapse
Affiliation(s)
- Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, 56126, Italy
| | - Pasquale Miglionico
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, 56126, Italy
| | - Manae Tatsumi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan.
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, 56126, Italy.
| |
Collapse
|
8
|
Shaw TI, Zhao B, Li Y, Wang H, Wang L, Manley B, Stewart PA, Karolak A. Multi-omics approach to identifying isoform variants as therapeutic targets in cancer patients. Front Oncol 2022; 12:1051487. [PMID: 36505834 PMCID: PMC9730332 DOI: 10.3389/fonc.2022.1051487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer-specific alternatively spliced events (ASE) play a role in cancer pathogenesis and can be targeted by immunotherapy, oligonucleotide therapy, and small molecule inhibition. However, identifying actionable ASE targets remains challenging due to the uncertainty of its protein product, structure impact, and proteoform (protein isoform) function. Here we argue that an integrated multi-omics profiling strategy can overcome these challenges, allowing us to mine this untapped source of targets for therapeutic development. In this review, we will provide an overview of current multi-omics strategies in characterizing ASEs by utilizing the transcriptome, proteome, and state-of-art algorithms for protein structure prediction. We will discuss limitations and knowledge gaps associated with each technology and informatics analytics. Finally, we will discuss future directions that will enable the full integration of multi-omics data for ASE target discovery.
Collapse
Affiliation(s)
- Timothy I. Shaw
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States,*Correspondence: Timothy I. Shaw,
| | - Bi Zhao
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Hong Wang
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Brandon Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Paul A. Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Aleksandra Karolak
- Department of Machine Learning, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| |
Collapse
|
9
|
Dong X, Limjunyawong N, Sypek EI, Wang G, Ortines RV, Youn C, Alphonse MP, Dikeman D, Wang Y, Lay M, Kothari R, Vasavda C, Pundir P, Goff L, Miller LS, Lu W, Garza LA, Kim BS, Archer NK, Dong X. Keratinocyte-derived defensins activate neutrophil-specific receptors Mrgpra2a/b to prevent skin dysbiosis and bacterial infection. Immunity 2022; 55:1645-1662.e7. [PMID: 35882236 PMCID: PMC9474599 DOI: 10.1016/j.immuni.2022.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/19/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Healthy skin maintains a diverse microbiome and a potent immune system to fight off infections. Here, we discovered that the epithelial-cell-derived antimicrobial peptides defensins activated orphan G-protein-coupled receptors (GPCRs) Mrgpra2a/b on neutrophils. This signaling axis was required for effective neutrophil-mediated skin immunity and microbiome homeostasis. We generated mutant mouse lines lacking the entire Defensin (Def) gene cluster in keratinocytes or Mrgpra2a/b. Def and Mrgpra2 mutant animals both exhibited skin dysbiosis, with reduced microbial diversity and expansion of Staphylococcus species. Defensins and Mrgpra2 were critical for combating S. aureus infections and the formation of neutrophil abscesses, a hallmark of antibacterial immunity. Activation of Mrgpra2 by defensin triggered neutrophil release of IL-1β and CXCL2 which are vital for proper amplification and propagation of the antibacterial immune response. This study demonstrated the importance of epithelial-neutrophil signaling via the defensin-Mrgpra2 axis in maintaining healthy skin ecology and promoting antibacterial host defense.
Collapse
Affiliation(s)
- Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth I Sypek
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gaofeng Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger V Ortines
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine Youn
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin P Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dustin Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Lay
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Priyanka Pundir
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Loyal Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luis A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
What Makes GPCRs from Different Families Bind to the Same Ligand? Biomolecules 2022; 12:biom12070863. [PMID: 35883418 PMCID: PMC9313020 DOI: 10.3390/biom12070863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 12/10/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptor proteins with important functions in signal transduction and often serve as therapeutic drug targets. With the rapidly growing public data on three dimensional (3D) structures of GPCRs and GPCR-ligand interactions, computational prediction of GPCR ligand binding becomes a convincing option to high throughput screening and other experimental approaches during the beginning phases of ligand discovery. In this work, we set out to computationally uncover and understand the binding of a single ligand to GPCRs from several different families. Three-dimensional structural comparisons of the GPCRs that bind to the same ligand revealed local 3D structural similarities and often these regions overlap with locations of binding pockets. These pockets were found to be similar (based on backbone geometry and side-chain orientation using APoc), and they correlate positively with electrostatic properties of the pockets. Moreover, the more similar the pockets, the more likely a ligand binding to the pockets will interact with similar residues, have similar conformations, and produce similar binding affinities across the pockets. These findings can be exploited to improve protein function inference, drug repurposing and drug toxicity prediction, and accelerate the development of new drugs.
Collapse
|
11
|
Korona B, Korona D, Zhao W, Wotherspoon AC, Du MQ. CCR6 activation links innate immune responses to mucosa-associated lymphoid tissue lymphoma development. Haematologica 2022; 107:1384-1396. [PMID: 35142152 PMCID: PMC9152962 DOI: 10.3324/haematol.2021.280067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
The genesis of extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) is driven by oncogenic co-operation among immunological stimulations and acquired genetic changes. We previously identified recurrent CCR6 mutations in MALT lymphoma, with majority predicted to result in truncated proteins lacking the phosphorylation motif important for receptor desensitization. Functional consequences of these mutational changes, the molecular mechanisms of CCR6 activation and how this receptor signaling contributes to MALT lymphoma development remain to be investigated. In the present study, we demonstrated that these mutations impaired CCR6 receptor internalization and were activating changes, being more potent in apoptosis resistance, malignant transformation, migration and intracellular signaling, particularly in the presence of the ligands CCL20, HBD2 (human b defensin 2) and HD5 (human a defensin 5). CCR6 was highly expressed in malignant B cells irrespective of the lymphoma sites. HBD2 and CCL20 were constitutively expressed by the duct epithelial cells of salivary glands, and also those involved in lymphoepithelial lesions (LEL) in salivary gland MALT lymphoma. While in the gastric setting, HBD2, and HD5, to a less extent CCL20, were highly expressed in epithelial cells of pyloric and intestinal metaplasia respectively including those involved in LEL, which are adaptive responses to chronic Helicobacter pylori infection. These findings suggest that CCR6 signaling is most likely active in MALT lymphoma, independent of its mutation status. The observations explain why the emergence of malignant B cells and their clonal expansion in MALT lymphoma are typically around LEL, linking the innate immune responses to lymphoma genesis.
Collapse
Affiliation(s)
- Boguslawa Korona
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge
| | - Dagmara Korona
- Department of Genetics, University of Cambridge, Cambridge
| | - Wanfeng Zhao
- The Human Research Tissue Bank, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | | | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK; Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge.
| |
Collapse
|
12
|
Matic M, Singh G, Carli F, Oliveira Rosa ND, Miglionico P, Magni L, Gutkind JS, Russell RB, Inoue A, Raimondi F. PRECOGx: exploring GPCR signaling mechanisms with deep protein representations. Nucleic Acids Res 2022; 50:W598-W610. [PMID: 35639758 PMCID: PMC9252787 DOI: 10.1093/nar/gkac426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
In this study we show that protein language models can encode structural and functional information of GPCR sequences that can be used to predict their signaling and functional repertoire. We used the ESM1b protein embeddings as features and the binding information known from publicly available studies to develop PRECOGx, a machine learning predictor to explore GPCR interactions with G protein and β-arrestin, which we made available through a new webserver (https://precogx.bioinfolab.sns.it/). PRECOGx outperformed its predecessor (e.g. PRECOG) in predicting GPCR-transducer couplings, being also able to consider all GPCR classes. The webserver also provides new functionalities, such as the projection of input sequences on a low-dimensional space describing essential features of the human GPCRome, which is used as a reference to track GPCR variants. Additionally, it allows inspection of the sequence and structural determinants responsible for coupling via the analysis of the most important attention maps used by the models as well as through predicted intramolecular contacts. We demonstrate applications of PRECOGx by predicting the impact of disease variants (ClinVar) and alternative splice forms from healthy tissues (GTEX) of human GPCRs, revealing the power to dissect system biasing mechanisms in both health and disease.
Collapse
Affiliation(s)
- Marin Matic
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Gurdeep Singh
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany.,BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Francesco Carli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Natalia De Oliveira Rosa
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Pasquale Miglionico
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Lorenzo Magni
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - J Silvio Gutkind
- Department of Pharmacology and Moores Cancer Center, University of CA, San Diego, La Jolla, CA 92093, USA
| | - Robert B Russell
- Heidelberg University Biochemistry Centre, 69120 Heidelberg, Germany.,BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Francesco Raimondi
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| |
Collapse
|
13
|
Voss JH, Mahardhika AB, Inoue A, Müller CE. Agonist-Dependent Coupling of the Promiscuous Adenosine A 2B Receptor to Gα Protein Subunits. ACS Pharmacol Transl Sci 2022; 5:373-386. [PMID: 35592437 PMCID: PMC9112290 DOI: 10.1021/acsptsci.2c00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 12/28/2022]
Abstract
The adenosine A2B receptor (A2BAR) belongs to the rhodopsin-like G protein-coupled receptor (GPCR) family. It is upregulated under hypoxic conditions, in inflammation and cancer. Previous studies indicated the coupling of the A2BAR to different G proteins, mainly Gs, but in some cases Gq/11 or Gi, depending on the cell type. We have now utilized novel technologies, (i) heterologous expression of individual members of the Gαq/11 protein family (Gαq, Gα11, Gα14, and Gα15) in Gαq/11 knockout cells, and (ii) the TRUPATH platform, allowing the direct observation of Gα protein activation for each of the Gα subunits by bioluminescence resonance energy transfer (BRET) measurements. Three structurally diverse A2BAR agonists were studied: the cognate agonist adenosine, its metabolically stable analog NECA, and the non-nucleosidic partial agonist BAY 60-6583. Adenosine and NECA activated most members of all four Gα protein families (Gαs, Gαq/11, Gαi, and Gα12/13). Significant differences in potencies and efficacies were observed; the highest efficacies were determined at the Gα15, Gαs, and Gα12 proteins, and for NECA additionally at the Gαi2 protein. In contrast, the partial agonist BAY 60-6583 only activated Gα15, Gαs, and Gα12 proteins. Adenosine deaminase, an allosteric modulator of ARs, selectively increased the potency and efficacy of NECA and BAY 60-6583 at the Gα15 protein, while it had no effect or decreased efficacy at the other Gα proteins. We conclude that the A2BAR is preferably coupled to the Gα15, Gαs, and Gα12 proteins. Upon upregulation of receptor or Gα protein expression, coupling to further Gα proteins likely occurs. Importantly, different agonists can display different activation profiles.
Collapse
Affiliation(s)
- Jan Hendrik Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Andhika B Mahardhika
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.,Research Training Group GRK1873, University of Bonn, D-53121 Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.,Research Training Group GRK1873, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
14
|
Pándy-Szekeres G, Esguerra M, Hauser AS, Caroli J, Munk C, Pilger S, Keserű G, Kooistra A, Gloriam D. The G protein database, GproteinDb. Nucleic Acids Res 2022; 50:D518-D525. [PMID: 34570219 PMCID: PMC8728128 DOI: 10.1093/nar/gkab852] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023] Open
Abstract
Two-thirds of signaling substances, several sensory stimuli and over one-third of drugs act via receptors coupling to G proteins. Here, we present an online platform for G protein research with reference data and tools for analysis, visualization and design of scientific studies across disciplines and areas. This platform may help translate new pharmacological, structural and genomic data into insights on G protein signaling vital for human physiology and medicine. The G protein database is accessible at https://gproteindb.org.
Collapse
Affiliation(s)
- Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Mauricio Esguerra
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jimmy Caroli
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Christian Munk
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Steven Pilger
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest H-1117, Hungary
| | - Albert J Kooistra
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
15
|
GPR34 activation potentially bridges lymphoepithelial lesion to genesis of salivary gland MALT lymphoma. Blood 2021; 139:2186-2197. [PMID: 34086889 DOI: 10.1182/blood.2020010495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
GPR34 translocation and mutation are specifically associated with salivary gland MALT lymphoma (SG-MALT-Lymphoma). Majority of GPR34 mutations are clustered in its C-terminus, resulting in truncated proteins lacking the phosphorylation motif important for receptor desensitization. It is unclear why GPR34 genetic changes associate with SG-MALT-Lymphoma and how these mutations contribute to the lymphoma development. We generated isogenic Flp-InTRex293 cell lines that stably expressed a single copy of GPR34 or its various mutants, and performed a range of in vitro assays. We showed that the GPR34 Q340X truncation, but not R84H and D151A mutants conferred a significantly increased resistance to apoptosis, and greater transforming potential than the GPR34 wild type. The GPR34 truncation mutant had a significantly delayed internalization than the wild type following ligand (lysophosphatidylserine) stimulation. Among 9 signaling pathways examined, the GPR34 Q340X truncation, to a lesser extent the D151A mutant, significantly activated CRE, NFkB and AP1 reporter activities, particularly in the presence of ligand stimulation. We further demonstrated enhanced activities of phospholipase-A1/2 in the culture supernatant of Flp-InTRex293 cells that expressed the GPR34 Q340X mutant, and their potential to catalyze the synthesis of lysophosphatidylserine from phosphatidylserine. Importantly, phospholipase-A1 was abundantly expressed in the duct epithelium of salivary glands and those involved in lymphoepithelial lesions (LELs). Our findings advocate a model of paracrine stimulation of malignant B-cells via GPR34, in which PLA is released by LELs, and hydrolyzes the phosphatidylserine exposed on apoptotic cells, generating lysophosphatidylserine, the ligand for GPR34. Thus, GPR34 activation potentially bridges LELs to genesis of SG-MALT-Lymphoma.
Collapse
|
16
|
Torrens-Fontanals M, Stepniewski TM, Gloriam DE, Selent J. Structural dynamics bridge the gap between the genetic and functional levels of GPCRs. Curr Opin Struct Biol 2021; 69:150-159. [PMID: 34052782 DOI: 10.1016/j.sbi.2021.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are implicated in nearly all physiological processes in the human body and represent an important drug targeting class. The genes encoding the different GPCR (sub)types determine their specific functionality, which can be altered by natural genetic variants and isoforms. Deciphering the molecular link between sequence diversity and its functional consequences is a current challenge and critical for the comprehension of the physiological response of GPCRs. It requires a global understanding of how protein sequence translates into protein structure, how this impacts the structural motions of the protein, and, finally, how all these factors determine the receptor functionality. Here, we discuss available resources and state-of-the-art computational approaches to address this question.
Collapse
Affiliation(s)
- Mariona Torrens-Fontanals
- Research Programme on Biomedical Informatics (GRIB), Hospital Del Mar Medical Research Institute (IMIM)-Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Tomasz M Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital Del Mar Medical Research Institute (IMIM)-Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain; InterAx Biotech AG, PARK InnovAARE, 5234 Villigen, Switzerland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital Del Mar Medical Research Institute (IMIM)-Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
17
|
The N-terminus of GPR37L1 is proteolytically processed by matrix metalloproteases. Sci Rep 2020; 10:19995. [PMID: 33203955 PMCID: PMC7673139 DOI: 10.1038/s41598-020-76384-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
GPR37L1 is an orphan G protein-coupled receptor expressed exclusively in the brain and linked to seizures, neuroprotection and cardiovascular disease. Based upon the observation that fragments of the GPR37L1 N-terminus are found in human cerebrospinal fluid, we hypothesized that GPR37L1 was subject to post-translational modification. Heterologous expression of GPR37L1-eYFP in either HEK293 or U87 glioblastoma cells yielded two cell surface species of approximately equivalent abundance, the larger of which is N-glycosylated at Asn105. The smaller species is produced by matrix metalloprotease/ADAM-mediated proteolysis (shown by the use of pharmacological inhibitors) and has a molecular weight identical to that of a mutant lacking the entire N-terminus, Δ122 GPR37L1. Serial truncation of the N-terminus prevented GPR37L1 expression except when the entire N-terminus was removed, narrowing the predicted site of N-terminal proteolysis to residues 105–122. Using yeast expressing different G protein chimeras, we found that wild type GPR37L1, but not Δ122 GPR37L1, coupled constitutively to Gpa1/Gαs and Gpa1/Gα16 chimeras, in contrast to previous studies. We tested the peptides identified in cerebrospinal fluid as well as their putative newly-generated N-terminal ‘tethered’ counterparts in both wild type and Δ122 GPR37L1 Gpa1/Gαs strains but saw no effect, suggesting that GPR37L1 does not signal in a manner akin to the protease-activated receptor family. We also saw no evidence of receptor activation or regulation by the reported GPR37L1 ligand, prosaptide/TX14A. Finally, the proteolytically processed species predominated both in vivo and ex vivo in organotypic cerebellar slice preparations, suggesting that GPR37L1 is rapidly processed to a signaling-inactive form. Our data indicate that the function of GPR37L1 in vivo is tightly regulated by metalloprotease-dependent N-terminal cleavage.
Collapse
|