1
|
Wondimagegnhu B, Ma W, Paul T, Liao TW, Lee C, Sanford S, Opresko P, Myong S. The molecular mechanism for TERRA recruitment and annealing to telomeres. Nucleic Acids Res 2024; 52:10490-10503. [PMID: 39189448 PMCID: PMC11417404 DOI: 10.1093/nar/gkae732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Telomeric repeat containing RNA (TERRA) is a noncoding RNA that is transcribed from telomeres. Previous study showed that TERRA trans anneals by invading into the telomeric duplex to form an R-loop in mammalian cells. Here, we elucidate the molecular mechanism underlying TERRA recruitment and invasion into telomeres in the context of shelterin proteins, RAD51 and RNase H using single molecule (sm) assays. We demonstrate that TERRA trans annealing into telomeric DNA exhibits dynamic movement that is stabilized by TRF2. TERRA annealing to the telomeric duplex results in the formation of a stable triplex structure which differs from a conventional R-loop. We identified that the presence of a sub-telomeric DNA and a telomeric overhang in the form of a G-quadruplex significantly enhances TERRA annealing to telomeric duplex. We also demonstrate that RAD51-TERRA complex invades telomere duplex more efficiently than TERRA alone. Additionally, TRF2 increases TERRA affinity to telomeric duplex and protects it from RNase H digestion. In contrast, TRF1 represses TERRA annealing to telomeric duplex and fails to provide protection against RNase H digestion. Our findings provide an in-depth molecular mechanism underpinning TERRA recruitment and annealing to the telomere.
Collapse
Affiliation(s)
- Bersabel Wondimagegnhu
- Program in Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wen Ma
- Department of Physics, The University of Vermont, Burlington, VT 05405, USA
| | - Tapas Paul
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ting-Wei Liao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chun Ying Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Wang Y, Wei S. Influence of hydrogen bonds on the reaction of guanine and hydroxyl radical: DFT calculations in C(H +)GC motif. Phys Chem Chem Phys 2024; 26:5683-5692. [PMID: 38288746 DOI: 10.1039/d3cp05885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
A comprehensive theoretical investigation was performed to illuminate the influence of hydrogen bonds (H-bonds) on the obscure reaction of a hydroxyl radical (HO˙) and guanine (G) by selecting the building block of parallel triplex DNA, C(H+)GC, as the model. By mapping the energy profiles for addition and hydrogen abstraction reactions, the favorable pathway is predicted. The results reveal that in the C(H+)GC context, barrierless hydrogen abstraction from N2 of G leading to a neutral radical G(N2-H)˙ appears to become significant, but electrophilic attack by HO˙ on C8 of G resulting in 8-oxoG is the most thermodynamically favorable course. This shows a strong structural dependence due to the context constrained by the H-bond, which is dramatically different from the situation in unencumbered G. More interestingly, it proves that the stability order of resulting adduct radicals is not altered by H-bonding, but the activity for possible sites of the hydroxylation reaction changes. The significant influence of the H-bond on elementary reactions involved in the reaction is emphasized in the C(H+)GC context but is not restricted to the H-abstraction reaction. It is greatly anticipated that the present study could provide thoughtful insights into the vague hydroxyl radical-induced oxidation chemistry.
Collapse
Affiliation(s)
- Yinghui Wang
- College of Science, Chang'an University, Xi'an 710064, China.
| | - Simin Wei
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712083, China.
| |
Collapse
|
3
|
Wang YJ, Valotteau C, Aimard A, Villanueva L, Kostrz D, Follenfant M, Strick T, Chames P, Rico F, Gosse C, Limozin L. Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds. Biophys J 2023; 122:2518-2530. [PMID: 37290437 PMCID: PMC10323022 DOI: 10.1016/j.bpj.2023.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Single-molecule data are of great significance in biology, chemistry, and medicine. However, new experimental tools to characterize, in a multiplexed manner, protein bond rupture under force are still needed. Acoustic force spectroscopy is an emerging manipulation technique which generates acoustic waves to apply force in parallel on multiple microbeads tethered to a surface. We here exploit this configuration in combination with the recently developed modular junctured-DNA scaffold that has been designed to study protein-protein interactions at the single-molecule level. By applying repetitive constant force steps on the FKBP12-rapamycin-FRB complex, we measure its unbinding kinetics under force at the single-bond level. Special efforts are made in analyzing the data to identify potential pitfalls. We propose a calibration method allowing in situ force determination during the course of the unbinding measurement. We compare our results with well-established techniques, such as magnetic tweezers, to ensure their accuracy. We also apply our strategy to study the force-dependent rupture of a single-domain antibody with its antigen. Overall, we get a good agreement with the published parameters that have been obtained at zero force and population level. Thus, our technique offers single-molecule precision for multiplexed measurements of interactions of biotechnological and medical interest.
Collapse
Affiliation(s)
- Yong Jian Wang
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| | - Claire Valotteau
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Adrien Aimard
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Lorenzo Villanueva
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Dorota Kostrz
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Maryne Follenfant
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Terence Strick
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Patrick Chames
- Aix-Marseille Université, CNRS, INSERM, Institut Paoli-Calmettes, Centre de Recherche en Cancerologie de Marseille, Marseille, France
| | - Felix Rico
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France
| | - Charlie Gosse
- Institut de Biologie de l'Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France.
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, Laboratoire Adhesion et Inflammation, Turing Centre for Living systems, Marseille, France.
| |
Collapse
|
4
|
Lostao A, Lim K, Pallarés MC, Ptak A, Marcuello C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale - A comprehensive review of AFM-based force spectroscopy. Int J Biol Macromol 2023; 238:124089. [PMID: 36948336 DOI: 10.1016/j.ijbiomac.2023.124089] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023]
Abstract
Biomolecular interactions underpin most processes inside the cell. Hence, a precise and quantitative understanding of molecular association and dissociation events is crucial, not only from a fundamental perspective, but also for the rational design of biomolecular platforms for state-of-the-art biomedical and industrial applications. In this context, atomic force microscopy (AFM) appears as an invaluable experimental technique, allowing the measurement of the mechanical strength of biomolecular complexes to provide a quantitative characterization of their interaction properties from a single molecule perspective. In the present review, the most recent methodological advances in this field are presented with special focus on bioconjugation, immobilization and AFM tip functionalization, dynamic force spectroscopy measurements, molecular recognition imaging and theoretical modeling. We expect this work to significantly aid in grasping the principles of AFM-based force spectroscopy (AFM-FS) technique and provide the necessary tools to acquaint the type of data that can be achieved from this type of experiments. Furthermore, a critical assessment is done with other nanotechnology techniques to better visualize the future prospects of AFM-FS.
Collapse
Affiliation(s)
- Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain; Fundación ARAID, Aragón, Spain.
| | - KeeSiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Ishikawa 920-1192, Japan
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain
| | - Arkadiusz Ptak
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Poznan 60-925, Poland
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Zaragoza 50018, Spain.
| |
Collapse
|
5
|
Bekkouche I, Shishonin AY, Vetcher AA. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers (Basel) 2023; 15:858. [PMID: 36850142 PMCID: PMC9964087 DOI: 10.3390/polym15040858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| |
Collapse
|
6
|
An extended catalogue of ncRNAs in Streptomyces coelicolor reporting abundant tmRNA, RNase-P RNA and RNA fragments derived from pre-ribosomal RNA leader sequences. Arch Microbiol 2022; 204:582. [PMID: 36042049 DOI: 10.1007/s00203-022-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Streptomyces coelicolor is a model organism for studying streptomycetes. This genus possesses relevant medical and economical roles, because it produces many biologically active metabolites of pharmaceutical interest, including the majority of commercialized antibiotics. In this bioinformatic study, the transcriptome of S. coelicolor has been analyzed to identify novel RNA species and quantify the expression of both annotated and novel transcripts in solid and liquid growth medium cultures at different times. The major characteristics disclosed in this study are: (i) the diffuse antisense transcription; (ii) the great abundance of transfer-messenger RNAs (tmRNA); (iii) the abundance of rnpB transcripts, paramount for the RNase-P complex; and (iv) the presence of abundant fragments derived from pre-ribosomal RNA leader sequences of unknown biological function. Overall, this study extends the catalogue of ncRNAs in S. coelicolor and suggests an important role of non-coding transcription in the regulation of biologically active molecule production.
Collapse
|
7
|
Abstract
Invention of DNA origami has transformed the fabrication and application of biological nanomaterials. In this review, we discuss DNA origami nanoassemblies according to their four fundamental mechanical properties in response to external forces: elasticity, pliability, plasticity and stability. While elasticity and pliability refer to reversible changes in structures and associated properties, plasticity shows irreversible variation in topologies. The irreversible property is also inherent in the disintegration of DNA nanoassemblies, which is manifested by its mechanical stability. Disparate DNA origami devices in the past decade have exploited the mechanical regimes of pliability, elasticity, and plasticity, among which plasticity has shown its dominating potential in biomechanical and physiochemical applications. On the other hand, the mechanical stability of the DNA origami has been used to understand the mechanics of the assembly and disassembly of DNA nano-devices. At the end of this review, we discuss the challenges and future development of DNA origami nanoassemblies, again, from these fundamental mechanical perspectives.
Collapse
Affiliation(s)
- Jiahao Ji
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Deepak Karna
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44240, USA.
| |
Collapse
|
8
|
Liang L, Ma K, Wang Z, Janissen R, Yu Z. Dynamics and inhibition of MLL1 CXXC domain on DNA revealed by single-molecule quantification. Biophys J 2021; 120:3283-3291. [PMID: 34280370 DOI: 10.1016/j.bpj.2021.03.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
CpG islands recruit MLL1 via the CXXC domain to modulate chromatin structure and regulate gene expression. The amino acid motif of CXXC also plays a pivotal role in MLL1's structure and function and serves as a target for drug design. In addition, the CpG pattern in an island governs spatially dependent collaboration among CpGs in recruiting epigenetic enzymes. However, current studies using short DNA fragments cannot probe the dynamics of CXXC on long DNA with crowded CpG motifs. Here, we used single-molecule magnetic tweezers to examine the binding dynamics of MLL1's CXXC domain on a long DNA with a CpG island. The mechanical strand separation assay allows profiling of protein-DNA complexes and reports force-dependent unfolding times. Further design of a hairpin detector reveals the unfolding time of individual CXXC-CpG complexes. Finally, in a proof of concept we demonstrate the inhibiting effect of dimethyl fumarate on the CXXC-DNA complexes by measuring the dose response curve of the unfolding time. This demonstrates the potential feasibility of using single-molecule strand separation as a label-free detector in drug discovery and chemical biology.
Collapse
Affiliation(s)
- Lin Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Kangkang Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zeyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Richard Janissen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft, South-Holland, The Netherlands
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Li X, Wang M, Zheng W, Huang W, Wang Z, Jin K, Liu L, Yu Z. Dynamics of TRF1 organizing a single human telomere. Nucleic Acids Res 2021; 49:760-775. [PMID: 33347580 PMCID: PMC7826288 DOI: 10.1093/nar/gkaa1222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Chromosome stability is primarily determined by telomere length. TRF1 is the core subunit of shelterin that plays a critical role in telomere organization and replication. However, the dynamics of TRF1 in scenarios of telomere-processing activities remain elusive. Using single-molecule magnetic tweezers, we here investigated the dynamics of TRF1 upon organizing a human telomere and the protein-DNA interactions at a moving telomeric fork. We first developed a method to obtain telomeres from human cells for directly measuring the telomere length by single-molecule force spectroscopy. Next, we examined the compaction and decompaction of a telomere by TRF1 dimers. TRF1 dissociates from a compacted telomere with heterogenous loops in ∼20 s. We also found a negative correlation between the number of telomeric loops and loop sizes. We further characterized the dynamics of TRF1 at a telomeric DNA fork. With binding energies of 11 kBT, TRF1 can modulate the forward and backward steps of DNA fork movements by 2-9 s at a critical force of F1/2, temporarily maintaining the telomeric fork open. Our results shed light on the mechanisms of how TRF1 organizes human telomeres and facilitates the efficient replication of telomeric DNA. Our work will help future research on the chemical biology of telomeres and shelterin-targeted drug discovery.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Meijie Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Wei Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Wei Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Zeyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Kairang Jin
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
10
|
Liang L, Wang Z, Qu L, Huang W, Guo S, Guan X, Zhang W, Sun F, Yuan H, Zou H, Liu H, Yu Z. Single-molecule multiplexed profiling of protein-DNA complexes using magnetic tweezers. J Biol Chem 2021; 296:100327. [PMID: 33493518 PMCID: PMC7949110 DOI: 10.1016/j.jbc.2021.100327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 01/14/2023] Open
Abstract
Epigenetics, such as the dynamic interplay between DNA methylation and demethylation, play diverse roles in critical cellular events. Enzymatic activity at CpG sites, where cytosines are methylated or demethylated, is known to be influenced by the density of CpGs, methylation states, and the flanking sequences of a CpG site. However, how the relevant enzymes are recruited to and recognize their target DNA is less clear. Moreover, although DNA-binding epigenetic enzymes are ideal targets for therapeutic intervention, these targets have been rarely exploited. Single-molecule techniques offer excellent capabilities to probe site-specific protein-DNA interactions and unravel the dynamics. Here, we develop a single-molecule approach that allows multiplexed profiling of protein-DNA complexes using magnetic tweezers. When a DNA hairpin with multiple binding sites is unzipping, strand separation pauses at the positions bound by a protein. We can thus measure site-specific binding probabilities and dissociation time directly. Taking the TET1 CXXC domain as an example, we show that TET1 CXXC binds multiple CpG motifs with various flanking nucleotides or different methylation patterns in an AT-rich DNA. We are able to establish for the first time, at nanometer resolution, that TET1 CXXC prefers G/C flanked CpG motif over C/G, A/T, or T/A flanked ones. CpG methylation strengthens TET1 CXXC recruitment but has little effect on dissociation time. Finally, we demonstrate that TET1 CXXC can distinguish five CpG clusters in a CpG island with crowded binding motifs. We anticipate that the feasibility of single-molecule multiplexed profiling assays will contribute to the understanding of protein-DNA interactions.
Collapse
Affiliation(s)
- Lin Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Zeyu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Lihua Qu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Wei Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Shuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Xiangchen Guan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Wei Zhang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Fuping Sun
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Hongrui Yuan
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Huiru Zou
- Central Laboratory of Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin, China
| | - Haitao Liu
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Yuan Z, Zhang D, Yu F, Ma Y, Liu Y, Li X, Wang H. Precise sequencing of single protected-DNA fragment molecules for profiling of protein distribution and assembly on DNA. Chem Sci 2021; 12:2039-2049. [PMID: 34163966 PMCID: PMC8179319 DOI: 10.1039/d0sc01742f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/31/2020] [Indexed: 11/21/2022] Open
Abstract
Multiple DNA-interacting protein molecules are often dynamically distributed and/or assembled along a DNA molecule to adapt to their intricate functions temporally. However, analytical technology for measuring such binding behaviours is still missing. Here, we demonstrate the unique capacity of a supernuclease for a highly efficient cutting of the unprotected-DNA segments and with complete preservation of the protein-occluded DNA segments at near single-nucleotide resolution. By exploring this high-resolution cutting, an unprecedented assay that allows a precise sequencing of single protected-DNA fragment molecules (SPDFMS) was developed. As relevant applications, relevant information was gained on the respective distribution/assembly patterns and coordinated displacement of single-stranded DNA-binding protein and recombinase RecA, two model proteins, on DNA. Benefiting from this assay, we also for the first time provide direct measurement of the length of single RecA nucleofilaments, showing the predominant stoichiometry of 5-7 RecA monomers per RecA nucleofilament under physiologically relevant conditions. This innovative assay appears as a promising analytical tool for studying diverse protein-DNA interactions implicated in DNA replication, transcription, recombination, repair, and gene editing.
Collapse
Affiliation(s)
- Zheng Yuan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- Institute of Environment and Health, Hangzhou, Institute for Advanced Study, UCAS Hangzhou 310000 P. R. China
| | - Fangzhi Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yangde Ma
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xiangjun Li
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences Beijing 100085 P. R. China +86 10 62849600 +86 10 62849600
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Institute of Environment and Health, Jianghan University Wuhan Hubei 430056 P. R. China
- Institute of Environment and Health, Hangzhou, Institute for Advanced Study, UCAS Hangzhou 310000 P. R. China
| |
Collapse
|
12
|
Wang Y, Guo X, Kou B, Zhang L, Xiao SJ. Small Circular DNA Molecules as Triangular Scaffolds for the Growth of 3D Single Crystals. Biomolecules 2020; 10:biom10060814. [PMID: 32466440 PMCID: PMC7355631 DOI: 10.3390/biom10060814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
DNA is a very useful molecule for the programmed self-assembly of 3D (three dimension) nanoscale structures. The organised 3D DNA assemblies and crystals enable scientists to conduct studies for many applications such as enzymatic catalysis, biological immune analysis and photoactivity. The first self-assembled 3D DNA single crystal was reported by Seeman and his colleagues, based on a rigid triangle tile with the tile side length of two turns. Till today, successful designs of 3D single crystals by means of programmed self-assembly are countable, and still remain as the most challenging task in DNA nanotechnology, due to the highly constrained conditions for rigid tiles and precise packing. We reported here the use of small circular DNA molecules instead of linear ones as the core triangle scaffold to grow 3D single crystals. Several crystallisation parameters were screened, DNA concentration, incubation time, water-vapour exchange speed, and pH of the sampling buffer. Several kinds of DNA single crystals with different morphologies were achieved in macroscale. The crystals can provide internal porosities for hosting guest molecules of Cy3 and Cy5 labelled triplex-forming oligonucleotides (TFOs). Success of small circular DNA molecules in self-assembling 3D single crystals encourages their use in DNA nanotechnology regarding the advantage of rigidity, stability, and flexibility of circular tiles.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.); (X.G.); (L.Z.)
| | - Xin Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.); (X.G.); (L.Z.)
| | - Bo Kou
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
| | - Ling Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.); (X.G.); (L.Z.)
| | - Shou-Jun Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.); (X.G.); (L.Z.)
- Correspondence:
| |
Collapse
|
13
|
Molecular scaffolds: when DNA becomes the hardware for single-molecule investigations. Curr Opin Chem Biol 2019; 53:192-203. [DOI: 10.1016/j.cbpa.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 01/14/2023]
|
14
|
Ma X, Zhu M, Liu J, Li X, Qu L, Liang L, Huang W, Wang J, Li N, Chen JH, Zhang W, Yu Z. Interactions between PHD3-Bromo of MLL1 and H3K4me3 Revealed by Single-Molecule Magnetic Tweezers in a Parallel DNA Circuit. Bioconjug Chem 2019; 30:2998-3006. [PMID: 31714753 DOI: 10.1021/acs.bioconjchem.9b00665] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Single-molecule force spectroscopy is a powerful tool to directly measure protein-protein interactions (PPI). The high specificity and precision of PPI measurements made it possible to reveal detailed mechanisms of intermolecular interactions. However, protein aggregation due to specific or nonspecific interactions is among the most challenging problems in PPI examination. Here, we propose a strategy of a parallel DNA circuit to probe PPI using single-molecule magnetic tweezers. In contrast to PPI examination using atomic force microscopy, microspheres as probes used in magnetic tweezers avoided the single-probe issue of a cantilever. Negatively charged DNA as a linker circumvented the severe aggregation in the PPI construct with a protein linker. The unnatural amino acid encoded in proteins of interest expanded the choices of biorthogonal conjugation. We demonstrated how to apply our strategy to probe the PPI between the PHD3-Bromo and the histone H3 methylated at K4, a critical epigenetic event in leukemia development. We found a rupture force of 12 pN for breaking the PPI, which is much higher than that required to peel DNA off from a nucleosome, 3 pN. We expect that our methods will make PPI measurements of mechanics and kinetics with great precision, facilitating PPI-related research, e.g., PPI-targeted drug discovery.
Collapse
Affiliation(s)
- Xiaofeng Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Manning Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Jianyu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Xu Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Lihua Qu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Lin Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Wei Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Junli Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Ning Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases , Key Laboratory of Parasite and Vector Biology, Ministry of Health , Shanghai 200025 , China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Zhongbo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy , Nankai University , 38 Tongyan Rd , Tianjin 300353 , China
| |
Collapse
|