1
|
Inoue T, Bao X, Kageyama T, Sugino Y, Sekito S, Miyachi S, Sasaki T, Getzenberg R. Purine-Rich Element Binding Protein Alpha, a Nuclear Matrix Protein, Has a Role in Prostate Cancer Progression. Int J Mol Sci 2024; 25:6911. [PMID: 39000020 PMCID: PMC11241608 DOI: 10.3390/ijms25136911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Solid tumors as well as leukemias and lymphomas show striking changes in nuclear structure including nuclear size and shape, the number and size of nucleoli, and chromatin texture. These alterations have been used in cancer diagnosis and might be related to the altered functional properties of cancer cells. The nuclear matrix (NM) represents the structural composition of the nucleus and consists of nuclear lamins and pore complexes, an internal ribonucleic protein network, and residual nucleoli. In the nuclear microenvironment, the NM is associated with multi-protein complexes, such as basal transcription factors, signaling proteins, histone-modifying factors, and chromatin remodeling machinery directly or indirectly through scaffolding proteins. Therefore, alterations in the composition of NM could result in altered DNA topology and changes in the interaction of various genes, which could then participate in a cascade of the cancer process. Using an androgen-sensitive prostate cancer cell line, LNCaP, and its androgen-independent derivative, LN96, conventional 2D-proteomic analysis of the NM proteins revealed that purine-rich element binding protein alpha (PURα) was detected in the NM proteins and differentially expressed between the cell lines. In this article, we will review the potential role of the molecule in prostate cancer.
Collapse
Affiliation(s)
- Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Xin Bao
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Takumi Kageyama
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Yusuke Sugino
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Sho Sekito
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Shiori Miyachi
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu 514-0001, Japan; (X.B.); (T.K.); (Y.S.); (S.S.); (S.M.); (T.S.)
| | - Robert Getzenberg
- Dr. Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| |
Collapse
|
2
|
Santos JR, Park J. MATR3's Role beyond the Nuclear Matrix: From Gene Regulation to Its Implications in Amyotrophic Lateral Sclerosis and Other Diseases. Cells 2024; 13:980. [PMID: 38891112 PMCID: PMC11171696 DOI: 10.3390/cells13110980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Matrin-3 (MATR3) was initially discovered as a component of the nuclear matrix about thirty years ago. Since then, accumulating studies have provided evidence that MATR3 not only plays a structural role in the nucleus, but that it is also an active protein involved in regulating gene expression at multiple levels, including chromatin organization, DNA transcription, RNA metabolism, and protein translation in the nucleus and cytoplasm. Furthermore, MATR3 may play a critical role in various cellular processes, including DNA damage response, cell proliferation, differentiation, and survival. In addition to the revelation of its biological role, recent studies have reported MATR3's involvement in the context of various diseases, including neurodegenerative and neurodevelopmental diseases, as well as cancer. Moreover, sequencing studies of patients revealed a handful of disease-associated mutations in MATR3 linked to amyotrophic lateral sclerosis (ALS), which further elevated the gene's importance as a topic of study. In this review, we synthesize the current knowledge regarding the diverse functions of MATR3 in DNA- and RNA-related processes, as well as its involvement in various diseases, with a particular emphasis on ALS.
Collapse
Affiliation(s)
- Jhune Rizsan Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeehye Park
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
3
|
Pathak RU, Phanindhar K, Mishra RK. Transposable elements as scaffold/matrix attachment regions: shaping organization and functions in genomes. Front Mol Biosci 2024; 10:1326933. [PMID: 38455359 PMCID: PMC10918478 DOI: 10.3389/fmolb.2023.1326933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 03/09/2024] Open
Abstract
The hierarchical structure of eukaryotic genomes has regulatory layers, one of them being epigenetic "indexing" of the genome that leads to cell-type-specific patterns of gene expression. By establishing loops and defining chromatin domains, cells can achieve coordinated control over multi-locus segments of the genome. This is thought to be achieved using scaffold/matrix attachment regions (S/MARs) that establish structural and functional loops and topologically associating domains (TADs) that define a self-interacting region of the genome. Large-scale genome-wide mapping of S/MARs has begun to uncover these aspects of genome organization. A recent genome-wide study showed the association of transposable elements (TEs) with a significant fraction of S/MARs, suggesting that the multitude of TE-derived repeats constitute a class of anchorage sites of chromatin loops to nuclear architecture. In this study, we provide an insight that TE-driven dispersal of S/MARs has the potential to restructure the chromosomes by creating novel loops and domains. The combination of TEs and S/MARs, as elements that can hop through the genome along with regulatory capabilities, may provide an active mechanism of genome evolution leading to the emergence of novel features in biological systems. The significance is that a genome-wide study mapping developmental S/MARs reveals an intriguing link between these elements and TEs. This article highlights the potential of the TE-S/MAR combination to drive evolution by restructuring and shaping the genome.
Collapse
Affiliation(s)
| | | | - Rakesh K. Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Tata Institute for Genetics and Society, Bengaluru, India
| |
Collapse
|
4
|
Xu L, Zheng S, Witzel K, Van De Slijke E, Baekelandt A, Mylle E, Van Damme D, Cheng J, De Jaeger G, Inzé D, Jiang H. Chromatin attachment to the nuclear matrix represses hypocotyl elongation in Arabidopsis thaliana. Nat Commun 2024; 15:1286. [PMID: 38346986 PMCID: PMC10861482 DOI: 10.1038/s41467-024-45577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
The nuclear matrix is a nuclear compartment that has diverse functions in chromatin regulation and transcription. However, how this structure influences epigenetic modifications and gene expression in plants is largely unknown. In this study, we show that a nuclear matrix binding protein, AHL22, together with the two transcriptional repressors FRS7 and FRS12, regulates hypocotyl elongation by suppressing the expression of a group of genes known as SMALL AUXIN UP RNAs (SAURs) in Arabidopsis thaliana. The transcriptional repression of SAURs depends on their attachment to the nuclear matrix. The AHL22 complex not only brings these SAURs, which contain matrix attachment regions (MARs), to the nuclear matrix, but it also recruits the histone deacetylase HDA15 to the SAUR loci. This leads to the removal of H3 acetylation at the SAUR loci and the suppression of hypocotyl elongation. Taken together, our results indicate that MAR-binding proteins act as a hub for chromatin and epigenetic regulators. Moreover, we present a mechanism by which nuclear matrix attachment to chromatin regulates histone modifications, transcription, and hypocotyl elongation.
Collapse
Affiliation(s)
- Linhao Xu
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Shiwei Zheng
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Katja Witzel
- Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, 14979, Germany
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Jinping Cheng
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Hua Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany.
| |
Collapse
|
5
|
Kolbin D, Walker BL, Hult C, Stanton JD, Adalsteinsson D, Forest MG, Bloom K. Polymer Modeling Reveals Interplay between Physical Properties of Chromosomal DNA and the Size and Distribution of Condensin-Based Chromatin Loops. Genes (Basel) 2023; 14:2193. [PMID: 38137015 PMCID: PMC10742461 DOI: 10.3390/genes14122193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Transient DNA loops occur throughout the genome due to thermal fluctuations of DNA and the function of SMC complex proteins such as condensin and cohesin. Transient crosslinking within and between chromosomes and loop extrusion by SMCs have profound effects on high-order chromatin organization and exhibit specificity in cell type, cell cycle stage, and cellular environment. SMC complexes anchor one end to DNA with the other extending some distance and retracting to form a loop. How cells regulate loop sizes and how loops distribute along chromatin are emerging questions. To understand loop size regulation, we employed bead-spring polymer chain models of chromatin and the activity of an SMC complex on chromatin. Our study shows that (1) the stiffness of the chromatin polymer chain, (2) the tensile stiffness of chromatin crosslinking complexes such as condensin, and (3) the strength of the internal or external tethering of chromatin chains cooperatively dictate the loop size distribution and compaction volume of induced chromatin domains. When strong DNA tethers are invoked, loop size distributions are tuned by condensin stiffness. When DNA tethers are released, loop size distributions are tuned by chromatin stiffness. In this three-way interaction, the presence and strength of tethering unexpectedly dictates chromatin conformation within a topological domain.
Collapse
Affiliation(s)
- Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.K.); (J.D.S.)
| | - Benjamin L. Walker
- Department of Mathematics, University of California-Irvine, Irvine, CA 92697, USA;
| | - Caitlin Hult
- Department of Mathematics, Gettysburg College, Gettysburg, PA 17325, USA
| | - John Donoghue Stanton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.K.); (J.D.S.)
| | - David Adalsteinsson
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.); (M.G.F.)
| | - M. Gregory Forest
- Department of Mathematics and Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.A.); (M.G.F.)
- Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.K.); (J.D.S.)
| |
Collapse
|
6
|
Sarić A, Rajić J, Tolić A, Dučić T, Vidaković M. Synchrotron-based FTIR microspectroscopy reveals DNA methylation profile in DNA-HALO structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123090. [PMID: 37413921 DOI: 10.1016/j.saa.2023.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is a rapid, non-destructive and label-free technique for identifying subtle changes in all bio-macromolecules, and has been used as a method of choice for studying DNA conformation, secondary DNA structure transition and DNA damage. In addition, the specific level of chromatin complexity is introduced via epigenetic modifications forcing the technological upgrade in the analysis of such an intricacy. As the most studied epigenetic mechanism, DNA methylation is a major regulator of transcriptional activity, involved in the suppression of a broad spectrum of genes and its deregulation is involved in all non-communicable diseases. The present study was designed to explore the use of synchrotron-based FTIR analysis to monitor the subtle changes in molecule bases regarding the DNA methylation status of cytosine in the whole genome. In order to reveal the conformation-related best sample for FTIR-based DNA methylation analysis in situ, we used methodology for nuclear HALO preparations and slightly modified it to isolated DNA in HALO formations. Nuclear DNA-HALOs represent samples with preserved higher-order chromatin structure liberated of any protein residues that are closer to native DNA conformation than genomic DNA (gDNA) isolated by the standard batch procedure. Using FTIR spectroscopy we analyzed the DNA methylation profile of isolated gDNA and compared it with the DNA-HALOs. This study demonstrated the potential of FTIR microspectroscopy to detect DNA methylation marks in analyzed DNA-HALO specimens more precisely in comparison with classical DNA extraction procedures that yield unstructured whole genomic DNA. In addition, we used different cell types to assess their global DNA methylation profile, as well as defined specific infrared peaks that can be used for screening DNA methylation.
Collapse
Affiliation(s)
- Ana Sarić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Jovana Rajić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Anja Tolić
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Tanja Dučić
- ALBA CELLS Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles, 08290 Barcelona, Spain.
| | - Melita Vidaković
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| |
Collapse
|
7
|
Toms M, Toualbi L, Almeida PV, Harbottle R, Moosajee M. Successful large gene augmentation of USH2A with non-viral episomal vectors. Mol Ther 2023; 31:2755-2766. [PMID: 37337429 PMCID: PMC10491995 DOI: 10.1016/j.ymthe.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/09/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
USH2A mutations are a common cause of autosomal recessive retinitis pigmentosa (RP) and Usher syndrome, for which there are currently no approved treatments. Gene augmentation is a valuable therapeutic strategy for treating many inherited retinal diseases; however, conventional adeno-associated virus (AAV) gene therapy cannot accommodate cDNAs exceeding 4.7 kb, such as the 15.6-kb-long USH2A coding sequence. In the present study, we adopted an alternative strategy to successfully generate scaffold/matrix attachment region (S/MAR) DNA plasmid vectors containing the full-length human USH2A coding sequence, a GFP reporter gene, and a ubiquitous promoter (CMV or CAG), reaching a size of approximately 23 kb. We assessed the vectors in transfected HEK293 cells and USH2A patient-derived dermal fibroblasts in addition to ush2au507 zebrafish microinjected with the vector at the one-cell stage. pS/MAR-USH2A vectors drove persistent transgene expression in patient fibroblasts with restoration of usherin. Twelve months of GFP expression was detected in the photoreceptor cells, with rescue of Usher 2 complex localization in the photoreceptors of ush2au507 zebrafish retinas injected with pS/MAR-USH2A. To our knowledge, this is the first reported vector that can be used to express full-length usherin with functional rescue. S/MAR DNA vectors have shown promise as a novel non-viral retinal gene therapy, warranting further translational development.
Collapse
Affiliation(s)
- Maria Toms
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Lyes Toualbi
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Patrick V Almeida
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Richard Harbottle
- DNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mariya Moosajee
- Development, Ageing, and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK; Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics, Moorfields Eye Hospital, NHS Foundation Trust, London EC1V 2PD, UK.
| |
Collapse
|
8
|
Agrawal-Singh S, Bagri J, Giotopoulos G, Azazi DMA, Horton SJ, Lopez CK, Anand S, Bach AS, Stedham F, Antrobus R, Houghton JW, Vassiliou GS, Sasca D, Yun H, Whetton AD, Huntly BJP. HOXA9 forms a repressive complex with nuclear matrix-associated protein SAFB to maintain acute myeloid leukemia. Blood 2023; 141:1737-1754. [PMID: 36577137 PMCID: PMC10113176 DOI: 10.1182/blood.2022016528] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
HOXA9 is commonly upregulated in acute myeloid leukemia (AML), in which it confers a poor prognosis. Characterizing the protein interactome of endogenous HOXA9 in human AML, we identified a chromatin complex of HOXA9 with the nuclear matrix attachment protein SAFB. SAFB perturbation phenocopied HOXA9 knockout to decrease AML proliferation, increase differentiation and apoptosis in vitro, and prolong survival in vivo. Integrated genomic, transcriptomic, and proteomic analyses further demonstrated that the HOXA9-SAFB (H9SB)-chromatin complex associates with nucleosome remodeling and histone deacetylase (NuRD) and HP1γ to repress the expression of factors associated with differentiation and apoptosis, including NOTCH1, CEBPδ, S100A8, and CDKN1A. Chemical or genetic perturbation of NuRD and HP1γ-associated catalytic activity also triggered differentiation, apoptosis, and the induction of these tumor-suppressive genes. Importantly, this mechanism is operative in other HOXA9-dependent AML genotypes. This mechanistic insight demonstrates the active HOXA9-dependent differentiation block as a potent mechanism of disease maintenance in AML that may be amenable to therapeutic intervention by targeting the H9SB interface and/or NuRD and HP1γ activity.
Collapse
Affiliation(s)
- Shuchi Agrawal-Singh
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jaana Bagri
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - George Giotopoulos
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Dhoyazan M A Azazi
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J Horton
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Cecile K Lopez
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Shubha Anand
- Cancer Molecular Diagnostics Laboratory, Cancer Research UK Cambridge Centre, Cambridge, United Kingdom
| | - Anne-Sophie Bach
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Frances Stedham
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jack W Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - George S Vassiliou
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Daniel Sasca
- Department of Hematology, Oncology and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - Haiyang Yun
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Anthony D Whetton
- School of Veterinary Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| | - Brian J P Huntly
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Jaksik R, Wheeler DA, Kimmel M. Detection and characterization of constitutive replication origins defined by DNA polymerase epsilon. BMC Biol 2023; 21:41. [PMID: 36829160 PMCID: PMC9960419 DOI: 10.1186/s12915-023-01527-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Despite the process of DNA replication being mechanistically highly conserved, the location of origins of replication (ORI) may vary from one tissue to the next, or between rounds of replication in eukaryotes, suggesting flexibility in the choice of locations to initiate replication. Lists of human ORI therefore vary widely in number and location, and there are currently no methods available to compare them. Here, we propose a method of detection of ORI based on somatic mutation patterns generated by the mutator phenotype of damaged DNA polymerase epsilon (POLE). RESULTS We report the genome-wide localization of constitutive ORI in POLE-mutated human tumors using whole genome sequencing data. Mutations accumulated after many rounds of replication of unsynchronized dividing cell populations in tumors allow to identify constitutive origins, which we show are shared with high fidelity between individuals and tumor types. Using a Smith-Waterman-like dynamic programming approach, we compared replication origin positions obtained from multiple different methods. The comparison allowed us to define a consensus set of replication origins, identified consistently by multiple ORI detection methods. Many DNA features co-localized with the consensus set of ORI, including chromatin loop anchors, G-quadruplexes, S/MARs, and CpGs. Among all features, the H2A.Z histone exhibited the most significant association. CONCLUSIONS Our results show that mutation-based detection of replication origins is a viable approach to determining their location and associated sequence features.
Collapse
Affiliation(s)
- Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - David A. Wheeler
- grid.39382.330000 0001 2160 926XHuman Genome Sequencing Centre, Baylor College of Medicine, Houston, TX USA ,grid.240871.80000 0001 0224 711XPresent Address: Clinical Genomics Group, Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN 38103 USA
| | - Marek Kimmel
- grid.6979.10000 0001 2335 3149Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, Houston, TX USA
| |
Collapse
|
10
|
Soujanya M, Bihani A, Hajirnis N, Pathak RU, Mishra RK. Nuclear architecture and the structural basis of mitotic memory. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:8. [PMID: 36725757 DOI: 10.1007/s10577-023-09714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.
Collapse
Affiliation(s)
- Mamilla Soujanya
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ashish Bihani
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Nikhil Hajirnis
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | - Rashmi U Pathak
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India.
- TIGS - Tata Institute for Genetics and Society, Bangalore, India.
| |
Collapse
|
11
|
Structural and developmental dynamics of Matrix associated regions in Drosophila melanogaster genome. BMC Genomics 2022; 23:725. [PMID: 36284304 PMCID: PMC9597980 DOI: 10.1186/s12864-022-08944-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Eukaryotic genome is compartmentalized into structural and functional domains. One of the concepts of higher order organization of chromatin posits that the DNA is organized in constrained loops that behave as independent functional domains. Nuclear Matrix (NuMat), a ribo-proteinaceous nucleoskeleton, provides the structural basis for this organization. DNA sequences located at base of the loops are known as the Matrix Attachment Regions (MARs). NuMat relates to multiple nuclear processes and is partly cell type specific in composition. It is a biochemically defined structure and several protocols have been used to isolate the NuMat where some of the steps have been critically evaluated. These sequences play an important role in genomic organization it is imperative to know their dynamics during development and differentiation. Results Here we look into the dynamics of MARs when the preparation process is varied and during embryonic development of D. melanogaster. A subset of MARs termed as “Core-MARs” present abundantly in pericentromeric heterochromatin, are constant unalterable anchor points as they associate with NuMat through embryonic development and are independent of the isolation procedure. Euchromatic MARs are dynamic and reflect the transcriptomic profile of the cell. New MARs are generated by nuclear stabilization, and during development, mostly at paused RNA polymerase II promoters. Paused Pol II MARs depend on RNA transcripts for NuMat association. Conclusions Our data reveals the role of MARs in functionally dynamic nucleus and contributes to the current understanding of nuclear architecture in genomic context. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08944-4.
Collapse
|
12
|
Podgornaya OI. Nuclear organization by satellite DNA, SAF-A/hnRNPU and matrix attachment regions. Semin Cell Dev Biol 2022; 128:61-68. [PMID: 35484025 DOI: 10.1016/j.semcdb.2022.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
The need of large-scale chromatin organization in the nucleus has become more and more appreciated. The higher order nuclear organization ultimately regulate a plethora of biological processes including transcription, DNA replication, and DNA repair. In this context, it is of critical importance to understand the mechanisms that allow higher order nuclear organization. Scaffold Attachment Factor A (SAF-A/hnRNPU), which was originally identified as the component of nuclear matrix, has emerged as an important regulator of higher order nuclear organization. It is shown that SAF-A/hnRNPU binds to tandem repeats (TRs) and scaffold/matrix attachment regions (S/MAR) in a sequence-non-specific, but structure-specific manner (e.g. DNA curvature). Recent studies showed that SAF-A interacts with chromatin-associated RNAs (caRNAs) to regulate interphase chromatin structures in a transcription-dependent manner. It is proposed that SAF-A/hnRNPU and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes chromatin in a large scale. The common structural features of S/MAR and pericentromeric (periCEN) TR promotes SAF-A-mediated association with each other. Collectively a model is presented wherein SAF-A/hnRNPU and periCEN TR are the key players in large-scale nuclear organization that supports general transcription.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology RAS, St. Petersburg State University, Russia.
| |
Collapse
|
13
|
LRF Promotes Indirectly Advantageous Chromatin Conformation via BGLT3-lncRNA Expression and Switch from Fetal to Adult Hemoglobin. Int J Mol Sci 2022; 23:ijms23137025. [PMID: 35806029 PMCID: PMC9266405 DOI: 10.3390/ijms23137025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
The hemoglobin switch from fetal (HbF) to adult (HbA) has been studied intensively as an essential model for gene expression regulation, but also as a beneficial therapeutic approach for β-hemoglobinopathies, towards the objective of reactivating HbF. The transcription factor LRF (Leukemia/lymphoma-related), encoded from the ZBTB7A gene has been implicated in fetal hemoglobin silencing, though has a wide range of functions that have not been fully clarified. We thus established the LRF/ZBTB7A-overexpressing and ZBTB7A-knockdown K562 (human erythroleukemia cell line) clones to assess fetal vs. adult hemoglobin production pre- and post-induction. Transgenic K562 clones were further developed and studied under the influence of epigenetic chromatin regulators, such as DNA methyl transferase 3 (DNMT3) and Histone Deacetylase 1 (HDAC1), to evaluate LRF’s potential disturbance upon the aberrant epigenetic background and provide valuable information of the preferable epigenetic frame, in which LRF unfolds its action on the β-type globin’s expression. The ChIP-seq analysis demonstrated that LRF binds to γ-globin genes (HBG2/1) and apparently associates BCL11A for their silencing, but also during erythropoiesis induction, LRF binds the BGLT3 gene, promoting BGLT3-lncRNA production through the γ-δ intergenic region of β-type globin’s locus, triggering the transcriptional events from γ- to β-globin switch. Our findings are supported by an up-to-date looping model, which highlights chromatin alterations during erythropoiesis at late stages of gestation, to establish an “open” chromatin conformation across the γ-δ intergenic region and accomplish β-globin expression and hemoglobin switch.
Collapse
|
14
|
Razin SV, Kantidze OL. The twisted path of the 3D genome: where does it lead? Trends Biochem Sci 2022; 47:736-744. [DOI: 10.1016/j.tibs.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/19/2022] [Accepted: 04/11/2022] [Indexed: 01/01/2023]
|
15
|
Quantification of Epigenetic DNA Modifications of Subchromatin Structures by UHPLC-MS/MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Dynamics of nuclear matrix attachment regions during 5 th instar posterior silk gland development in Bombyx mori. BMC Genomics 2022; 23:247. [PMID: 35361117 PMCID: PMC8973518 DOI: 10.1186/s12864-022-08446-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Chromatin architecture is critical for gene expression during development. Matrix attachment regions (MARs) control and regulate chromatin dynamics. The position of MARs in the genome determines the expression of genes in the organism. In this study, we set out to elucidate how MARs temporally regulate the expression of the fibroin heavy chain (FIBH) gene during development. We addressed this by identifying MARs and studying their distribution and differentiation, in the posterior silk glands of Bombyx mori during 5th instar development. Results Of the MARs identified on three different days, 7.15% MARs were common to all 3 days, whereas, 1.41, 19.27 and 52.47% MARs were unique to day 1, day 5, and day 7, respectively highlighting the dynamic nature of the matrix associated DNA. The average chromatin loop length based on the chromosome wise distribution of MARs and the distances between these MAR regions decreased from day 1 (253.91 kb) to day 5 (73.54 kb) to day 7 (39.19 kb). Further significant changes in the MARs in the vicinity of the FIBH gene were found during different days of 5th instar development which implied their role in the regulation and expression of the FIBH gene. Conclusions The presence of MARs in the flanking regions of genes found to exhibit differential expression during 5th instar development indicates their possible role in the regulation of their expression. This reiterates the importance of MARs in the genomic functioning as regulators of the molecular mechanisms in the nucleus. This is the first study that takes into account the tissue specific genome-wide MAR association and the potential role of these MARs in developmentally regulated gene expression. The current study lays a foundation to understand the genome wide regulation of chromatin during development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08446-3.
Collapse
|
17
|
Bell RAV, Al-Khalaf MH, Brunette S, Alsowaida D, Chu A, Bandukwala H, Dechant G, Apostolova G, Dilworth FJ, Megeney LA. Chromatin Reorganization during Myoblast Differentiation Involves the Caspase-Dependent Removal of SATB2. Cells 2022; 11:cells11060966. [PMID: 35326417 PMCID: PMC8946544 DOI: 10.3390/cells11060966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
The induction of lineage-specific gene programs are strongly influenced by alterations in local chromatin architecture. However, key players that impact this genome reorganization remain largely unknown. Here, we report that the removal of the special AT-rich binding protein 2 (SATB2), a nuclear protein known to bind matrix attachment regions, is a key event in initiating myogenic differentiation. The deletion of myoblast SATB2 in vitro initiates chromatin remodeling and accelerates differentiation, which is dependent on the caspase 7-mediated cleavage of SATB2. A genome-wide analysis indicates that SATB2 binding within chromatin loops and near anchor points influences both loop and sub-TAD domain formation. Consequently, the chromatin changes that occur with the removal of SATB2 lead to the derepression of differentiation-inducing factors while also limiting the expression of genes that inhibit this cell fate change. Taken together, this study demonstrates that the temporal control of the SATB2 protein is critical in shaping the chromatin environment and coordinating the myogenic differentiation program.
Collapse
Affiliation(s)
- Ryan A. V. Bell
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mohammad H. Al-Khalaf
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- University of Ottawa Heart Institute, Ottawa, ON K1Y 4W7, Canada
| | - Steve Brunette
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
| | - Dalal Alsowaida
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Alphonse Chu
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hina Bandukwala
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
| | - Georg Dechant
- Institute of Neuroscience, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (G.D.); (G.A.)
| | - Galina Apostolova
- Institute of Neuroscience, Medical University of Innsbruck, A-6020 Innsbruck, Austria; (G.D.); (G.A.)
| | - F. Jeffrey Dilworth
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Lynn A. Megeney
- Regenerative Medicine Program, Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada; (R.A.V.B.); (M.H.A.-K.); (S.B.); (D.A.); (A.C.); (H.B.); (F.J.D.)
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence:
| |
Collapse
|
18
|
Abstract
Sperm nuclei present a highly organized and condensed chromatin due to the interchange of histones by protamines during spermiogenesis. This high DNA condensation leads to almost inert chromatin, with the impossibility of conducting gene transcription as in most other somatic cells. The major chromosomal structure responsible for DNA condensation is the formation of protamine-DNA toroids containing 25-50 kilobases of DNA. These toroids are connected by toroid linker regions (TLR), which attach them to the nuclear matrix, as matrix attachment regions (MAR) do in somatic cells. Despite this high degree of condensation, evidence shows that sperm chromatin contains vulnerable elements that can be degraded even in fully condensed chromatin, which may correspond to chromatin regions that transfer functionality to the zygote at fertilization. This chapter covers an updated review of our model for sperm chromatin structure and its potential functional elements that affect embryo development.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Hieu Nguyen
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hongwen Wu
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - W. Steven Ward
- Department Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
19
|
Zhang R, Lai W, Wang H. Quantification of Epigenetic DNA Modifications in the Subchromatin Structure Matrix Attachment Regions by Stable Isotope Dilution UHPLC-MS/MS Analysis. Anal Chem 2021; 93:15567-15572. [PMID: 34783527 DOI: 10.1021/acs.analchem.1c04151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To date, subchromatin structure-based quantification of epigenetic DNA modifications is limited. Matrix attachment regions (MARs), an important subchromatin structure, contain DNA elements that specifically bind chromatin to the nuclear matrix in eukaryotes and are involved in a number of diseases. Here, we exploited a high-salt extraction-based subchromatin fractionation approach for the isolation of MAR DNA and other fractions and further developed heavy stable isotope-diluted ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) for the specific quantification of epigenetic DNA modifications in the subchromatin structures. By this approach, we showed for the first time that the content of a DNA demethylation intermediate, 5-hydroxymethylcytosine (5hmdC), in MARs decreased significantly in four tested cell lines compared to the contents in genomic DNA. In particular, the content of DNA 5hmdC in the MARs of 293T cell lines decreased the most at approximately 41.09%. Together, our findings implicate that MAR DNA is less sensitive than genomic DNA to DNA demethylation.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
20
|
Cortijo-Gutiérrez M, Sánchez-Hernández S, Tristán-Manzano M, Maldonado-Pérez N, Lopez-Onieva L, Real PJ, Herrera C, Marchal JA, Martin F, Benabdellah K. Improved Functionality of Integration-Deficient Lentiviral Vectors (IDLVs) by the Inclusion of IS 2 Protein Docks. Pharmaceutics 2021; 13:pharmaceutics13081217. [PMID: 34452178 PMCID: PMC8401568 DOI: 10.3390/pharmaceutics13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Integration-deficient lentiviral vectors (IDLVs) have recently generated increasing interest, not only as a tool for transient gene delivery, but also as a technique for detecting off-target cleavage in gene-editing methodologies which rely on customized endonucleases (ENs). Despite their broad potential applications, the efficacy of IDLVs has historically been limited by low transgene expression and by the reduced sensitivity to detect low-frequency off-target events. We have previously reported that the incorporation of the chimeric sequence element IS2 into the long terminal repeat (LTR) of IDLVs increases gene expression levels, while also reducing the episome yield inside transduced cells. Our study demonstrates that the effectiveness of IDLVs relies on the balance between two parameters which can be modulated by the inclusion of IS2 sequences. In the present study, we explore new IDLV configurations harboring several elements based on IS2 modifications engineered to mediate more efficient transgene expression without affecting the targeted cell load. Of all the insulators and configurations analysed, the insertion of the IS2 into the 3′LTR produced the best results. After demonstrating a DAPI-low nuclear gene repositioning of IS2-containing episomes, we determined whether, in addition to a positive effect on transcription, the IS2 could improve the capture of IDLVs on double strand breaks (DSBs). Thus, DSBs were randomly generated, using the etoposide or locus-specific CRISPR-Cas9. Our results show that the IS2 element improved the efficacy of IDLV DSB detection. Altogether, our data indicate that the insertion of IS2 into the LTR of IDLVs improved, not only their transgene expression levels, but also their ability to be inserted into existing DSBs. This could have significant implications for the development of an unbiased detection tool for off-target cleavage sites from different specific nucleases.
Collapse
Affiliation(s)
- Marina Cortijo-Gutiérrez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Sabina Sánchez-Hernández
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - María Tristán-Manzano
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Noelia Maldonado-Pérez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Lourdes Lopez-Onieva
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Pedro J. Real
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
- Personalized Oncology Group, Bio-Health Research Institute (ibs Granada), 18016 Granada, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain;
- Department of Haematology, Reina Sofía University Hospital, 14004 Cordoba, Spain
| | - Juan Antonio Marchal
- Biomedical Research Institute (ibs. Granada), 18012 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Excellence Research Unit: Modeling Nature (MNat), University of Granada, 18016 Granada, Spain
| | - Francisco Martin
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Karim Benabdellah
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
- Correspondence: ; Tel.: +34-958-715-500
| |
Collapse
|
21
|
Szyman K, Wilczyński B, Dąbrowski M. K-mer Content Changes with Node Degree in Promoter-Enhancer Network of Mouse ES Cells. Int J Mol Sci 2021; 22:ijms22158067. [PMID: 34360860 PMCID: PMC8347099 DOI: 10.3390/ijms22158067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022] Open
Abstract
Maps of Hi-C contacts between promoters and enhancers can be analyzed as networks, with cis-regulatory regions as nodes and their interactions as edges. We checked if in the published promoter-enhancer network of mouse embryonic stem (ES) cells the differences in the node type (promoter or enhancer) and the node degree (number of regions interacting with a given promoter or enhancer) are reflected by sequence composition or sequence similarity of the interacting nodes. We used counts of all k-mers (k = 4) to analyze the sequence composition and the Euclidean distance between the k-mer count vectors (k-mer distance) as the measure of sequence (dis)similarity. The results we obtained with 4-mers are interpretable in terms of dinucleotides. Promoters are GC-rich as compared to enhancers, which is known. Enhancers are enriched in scaffold/matrix attachment regions (S/MARs) patterns and depleted of CpGs. Furthermore, we show that promoters are more similar to their interacting enhancers than vice-versa. Most notably, in both promoters and enhancers, the GC content and the CpG count increase with the node degree. As a consequence, enhancers of higher node degree become more similar to promoters, whereas higher degree promoters become less similar to enhancers. We confirmed the key results also for human keratinocytes.
Collapse
Affiliation(s)
- Kinga Szyman
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | - Bartek Wilczyński
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland;
| | - Michał Dąbrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
22
|
DNA sequence-dependent positioning of the linker histone in a nucleosome: A single-pair FRET study. Biophys J 2021; 120:3747-3763. [PMID: 34293303 DOI: 10.1016/j.bpj.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/25/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
Linker histones (LHs) bind to nucleosomes with their globular domain (gH) positioned in either an on- or an off-dyad binding mode. Here, we study the effect of the linker DNA (L-DNA) sequence on the binding of a full-length LH, Xenopus laevis H1.0b, to a Widom 601 nucleosome core particle (NCP) flanked by two 40 bp long L-DNA arms, by single-pair FRET spectroscopy. We varied the sequence of the 11 bp of L-DNA adjoining the NCP on either side, making the sequence either A-tract, purely GC, or mixed with 64% AT. The labeled gH consistently exhibited higher FRET efficiency with the labeled L-DNA containing the A-tract than that with the pure-GC stretch, even when the stretches were swapped. However, it did not exhibit higher FRET efficiency with the L-DNA containing 64% AT-rich mixed DNA when compared to the pure-GC stretch. We explain our observations with a model that shows that the gH binds on dyad and that two arginines mediate recognition of the A-tract via its characteristically narrow minor groove. To investigate whether this on-dyad minor groove-based recognition was distinct from previously identified off-dyad major groove-based recognition, a nucleosome was designed with A-tracts on both the L-DNA arms. One A-tract was complementary to thymine and the other to deoxyuridine. The major groove of the thymine-tract was lined with methyl groups that were absent from the major groove of the deoxyuridine tract. The gH exhibited similar FRET for both these A-tracts, suggesting that it does not interact with the thymine methyl groups exposed on the major groove. Our observations thus complement previous studies that suggest that different LH isoforms may employ different ways of recognizing AT-rich DNA and A-tracts. This adaptability may enable the LH to universally compact scaffold-associated regions and constitutive heterochromatin, which are rich in such sequences.
Collapse
|
23
|
Ribas-Maynou J, Garcia-Bonavila E, Hidalgo CO, Catalán J, Miró J, Yeste M. Species-Specific Differences in Sperm Chromatin Decondensation Between Eutherian Mammals Underlie Distinct Lysis Requirements. Front Cell Dev Biol 2021; 9:669182. [PMID: 33996825 PMCID: PMC8120241 DOI: 10.3389/fcell.2021.669182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Sperm present a highly particular DNA condensation that is acquired during their differentiation. Protamines are key elements for DNA condensation. However, whereas the presence of protamine 1 (P1) is conserved across mammalian species, that of protamine 2 (P2) has evolved differentially, existing only few species that use both protamines for sperm DNA condensation. In addition, altered P1/P2 ratios and alterations in the expression of P1 have previously been associated to infertility and DNA damage disorders. On the other hand, different methods evaluating DNA integrity, such as Sperm Chromatin Dispersion (SCD) and Comet tests, need a previous complete DNA decondensation to properly assess DNA breaks. Related with this, the present study aims to analyze the resilience of sperm DNA to decodensation in different eutherian mammals. Sperm samples from humans, horses, cattle, pigs and donkeys were used. Samples were embedded in low melting point agarose and treated with lysis solutions to induce DNA decondensation and formation of sperm haloes. The treatment consisted of three steps: (1) incubation in SDS + DTT for 30 min; (2) incubation in DTT + NaCl for 30 min; and (3) incubation in DTT + NaCl with or without proteinase K for a variable time of 0, 30, or 180 min. How incubation with the third lysis solution (with or without proteinase K) for 0, 30, and 180 min affected DNA decondensation was tested through analyzing core and halo diameters in 50 sperm per sample. Halo/core length ratio was used as an indicator of complete chromatin decondensation. While incubation time with the third lysis solution had no impact on halo/core length ratios in species having P1 and P2 (human, equine and donkey), DNA decondensation of pig and cattle sperm, which only present P1, significantly (P < 0.05) increased following incubation with the third lysis solution for 180 min. In addition, the inclusion of proteinase K was found to accelerate DNA decondensation. In conclusion, longer incubations in lysis solution including proteinase K lead to higher DNA decondensation in porcine and bovine sperm. This suggests that tests intended to analyze DNA damage, such as halo or Comet assays, require complete chromatin deprotamination to achieve high sensitivity in the detection of DNA breaks.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Estela Garcia-Bonavila
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Carlos O Hidalgo
- Department of Animal Selection and Reproduction, Regional Agrifood Research and Development Service of Asturias (SERIDA), Gijón, Spain
| | - Jaime Catalán
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
24
|
Ivanova NG, Ostromyshenskii D, Podgornaya O. Tandem Repeat-Based Probes Support the Loop Model of Pericentromere Packing. Cytogenet Genome Res 2021; 161:93-102. [PMID: 33601374 DOI: 10.1159/000513228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/18/2020] [Indexed: 11/19/2022] Open
Abstract
Constitutive heterochromatin is the most mysterious part of the eukaryotic genome. It forms vital chromosome regions such as the centromeric and the pericentromeric ones. The main component of heterochromatic regions are tandem repeats (TR), and their specific organization complicates assembly, annotation, and mapping of these regions. Unannotated and unmapped TR arrays are still present in database contigs. In this study, we used a set of TR in the genomes of the pig (Sus scrofa) and the Chinese hamster (Cricetulus griseus) identified with the help of bioinformatics techniques and determined the specificity of the designed probes. The signal of the 4 pig TR probes in spermatogenic cells was often ring-shaped, especially in primary spermatocytes. The rings were located in the regions relatively weakly stained with DAPI. The unique assembly of the centromeric region was traced using the hamster meiotic chromosomes. The probe specific to chromosome 5 was used. Two signals, arranged as rings, were seen at the pachytene stage, similar to those in the pig spermatogenic cells. In the spermatogenic cells of both pig and hamster, the rings appeared on the chromosomes with pericentromeric TR probes. Our observations support the loop model of the centromeric region, the size of the loops being about 50 kb.
Collapse
Affiliation(s)
- Nadezhda G Ivanova
- Laboratory of Non-coding DNA, Institute of Cytology RAS, St. Petersburg, Russian Federation,
| | | | - Olga Podgornaya
- Laboratory of Non-coding DNA, Institute of Cytology RAS, St. Petersburg, Russian Federation.,Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
25
|
Serna-Pujol N, Salinas-Pena M, Mugianesi F, Lopez-Anguita N, Torrent-Llagostera F, Izquierdo-Bouldstridge A, Marti-Renom MA, Jordan A. TADs enriched in histone H1.2 strongly overlap with the B compartment, inaccessible chromatin, and AT-rich Giemsa bands. FEBS J 2020; 288:1989-2013. [PMID: 32896099 DOI: 10.1111/febs.15549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/22/2020] [Accepted: 09/01/2020] [Indexed: 01/04/2023]
Abstract
Giemsa staining of metaphase chromosomes results in a characteristic banding useful for identification of chromosomes and its alterations. We have investigated in silico whether Giemsa bands (G bands) correlate with epigenetic and topological features of the interphase genome. Staining of G-positive bands decreases with GC content; nonetheless, G-negative bands are GC heterogeneous. High GC bands are enriched in active histone marks, RNA polymerase II, and SINEs and associate with gene richness, gene expression, and early replication. Low GC bands are enriched in repressive marks, lamina-associated domains, and LINEs. Histone H1 variants distribute heterogeneously among G bands: H1X is enriched at high GC bands and H1.2 is abundant at low GC, compacted bands. According to epigenetic features and H1 content, G bands can be organized in clusters useful to compartmentalize the genome. Indeed, we have obtained Hi-C chromosome interaction maps and compared topologically associating domains (TADs) and A/B compartments to G banding. TADs with high H1.2/H1X ratio strongly overlap with B compartment, late replicating, and inaccessible chromatin and low GC bands. We propose that GC content is a strong driver of chromatin compaction and 3D genome organization, that Giemsa staining recapitulates this organization denoted by high-throughput techniques, and that H1 variants distribute at distinct chromatin domains. DATABASES: Hi-C data on T47D breast cancer cells have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE147627.
Collapse
Affiliation(s)
| | | | - Francesca Mugianesi
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain
| | | | | | | | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Spain.,Centre for Genomic Regulation, The Barcelona Institute for Science and Technology, Spain.,Pompeu Fabra University, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Spain
| |
Collapse
|
26
|
piggyBac-Based Non-Viral In Vivo Gene Delivery Useful for Production of Genetically Modified Animals and Organs. Pharmaceutics 2020; 12:pharmaceutics12030277. [PMID: 32204422 PMCID: PMC7151002 DOI: 10.3390/pharmaceutics12030277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
In vivo gene delivery involves direct injection of nucleic acids (NAs) into tissues, organs, or tail-veins. It has been recognized as a useful tool for evaluating the function of a gene of interest (GOI), creating models for human disease and basic research targeting gene therapy. Cargo frequently used for gene delivery are largely divided into viral and non-viral vectors. Viral vectors have strong infectious activity and do not require the use of instruments or reagents helpful for gene delivery but bear immunological and tumorigenic problems. In contrast, non-viral vectors strictly require instruments (i.e., electroporator) or reagents (i.e., liposomes) for enhanced uptake of NAs by cells and are often accompanied by weak transfection activity, with less immunological and tumorigenic problems. Chromosomal integration of GOI-bearing transgenes would be ideal for achieving long-term expression of GOI. piggyBac (PB), one of three transposons (PB, Sleeping Beauty (SB), and Tol2) found thus far, has been used for efficient transfection of GOI in various mammalian cells in vitro and in vivo. In this review, we outline recent achievements of PB-based production of genetically modified animals and organs and will provide some experimental concepts using this system.
Collapse
|