1
|
Deng H, Cao H, Wang Y, Li J, Dai J, Li LF, Qiu HJ, Li S. Viral replication organelles: the highly complex and programmed replication machinery. Front Microbiol 2024; 15:1450060. [PMID: 39144209 PMCID: PMC11322364 DOI: 10.3389/fmicb.2024.1450060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Viral infections usually induce the rearrangement of cellular cytoskeletal proteins and organelle membrane structures, thus creating independent compartments [termed replication organelles (ROs)] to facilitate viral genome replication. Within the ROs, viral replicases, including polymerases, helicases, and ligases, play functional roles during viral replication. These viral replicases are pivotal in the virus life cycle, and numerous studies have demonstrated that the viral replicases could be the potential targets for drugs development. Here, we summarize primarily the key replicases within viral ROs and emphasize the advancements of antiviral drugs targeting crucial viral replicases, providing novel insights into the future development of antiviral strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Su Li
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Li Y, Zhu J, Guo Y, Yan R. Structural insight into the assembly and working mechanism of helicase-primase D5 from Mpox virus. Nat Struct Mol Biol 2024; 31:68-81. [PMID: 38177671 DOI: 10.1038/s41594-023-01142-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/27/2023] [Indexed: 01/06/2024]
Abstract
The Mpox pandemic, caused by the Mpox virus (or monkeypox virus, MPXV), has gained global attention. The D5 protein, a putative helicase-primase found in MPXV, plays a vital role in viral replication and genome uncoating. Here we determined multiple cryo-EM structures of full-length hexameric D5 in diverse states. These states were captured during ATP hydrolysis while moving along the single-stranded DNA (ssDNA) track. Through comprehensive structural analysis combined with the helicase activity system, we revealed that when the primase domain is truncated or the interaction between the primase and helicase domains is disrupted, the double-stranded DNA (dsDNA) unwinds into ssDNA, suggesting a critical regulatory role of the primase domain. Two transition states bound with ssDNA substrate during unwinding reveals that two ATP molecules were consumed to drive DNA moving forward two nucleotides. Collectively, our findings shed light on the molecular mechanism that links ATP hydrolysis to the DNA unwinding in poxviruses.
Collapse
Affiliation(s)
- Yaning Li
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Zhu
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Yingying Guo
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| | - Renhong Yan
- Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
The Facts and Family Secrets of Plasmids That Replicate via the Rolling-Circle Mechanism. Microbiol Mol Biol Rev 2021; 86:e0022220. [PMID: 34878299 DOI: 10.1128/mmbr.00222-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmids are self-replicative DNA elements that are transferred between bacteria. Plasmids encode not only antibiotic resistance genes but also adaptive genes that allow their hosts to colonize new niches. Plasmid transfer is achieved by conjugation (or mobilization), phage-mediated transduction, and natural transformation. Thousands of plasmids use the rolling-circle mechanism for their propagation (RCR plasmids). They are ubiquitous, have a high copy number, exhibit a broad host range, and often can be mobilized among bacterial species. Based upon the replicon, RCR plasmids have been grouped into several families, the best known of them being pC194 and pUB110 (Rep_1 family), pMV158 and pE194 (Rep_2 family), and pT181 and pC221 (Rep_trans family). Genetic traits of RCR plasmids are analyzed concerning (i) replication mediated by a DNA-relaxing initiator protein and its interactions with the cognate DNA origin, (ii) lagging-strand origins of replication, (iii) antibiotic resistance genes, (iv) mobilization functions, (v) replication control, performed by proteins and/or antisense RNAs, and (vi) the participating host-encoded functions. The mobilization functions include a relaxase initiator of transfer (Mob), an origin of transfer, and one or two small auxiliary proteins. There is a family of relaxases, the MOBV family represented by plasmid pMV158, which has been revisited and updated. Family secrets, like a putative open reading frame of unknown function, are reported. We conclude that basic research on RCR plasmids is of importance, and our perspectives contemplate the concept of One Earth because we should incorporate bacteria into our daily life by diminishing their virulence and, at the same time, respecting their genetic diversity.
Collapse
|
4
|
Jarillo J, Ibarra B, Cao-García FJ. DNA replication: In vitro single-molecule manipulation data analysis and models. Comput Struct Biotechnol J 2021; 19:3765-3778. [PMID: 34285777 PMCID: PMC8267548 DOI: 10.1016/j.csbj.2021.06.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 11/05/2022] Open
Abstract
Data analysis allows to extract information from the noisy single-molecule data. Models provide insight in the underlying biochemical processes. Ligands can activate or inhibit DNA replication and DNA unwinding.
DNA replication is a key biochemical process of the cell cycle. In the last years, analysis of in vitro single-molecule DNA replication events has provided new information that cannot be obtained with ensembles studies. Here, we introduce crucial techniques for the proper analysis and modelling of DNA replication in vitro single-molecule manipulation data. Specifically, we review some of the main methods to analyze and model the real-time kinetics of the two main molecular motors of the replisome: DNA polymerase and DNA helicase. Our goal is to facilitate access to and understanding of these techniques to promotetheir use in the study of DNA replication at the single-molecule level. A proper analysis of single-molecule data is crucial to obtain a detailed picture of, among others, the kinetics rates, equilibrium contants and conformational changes of the system under study. The techniques presented here have been used or can be adapted to study the operation of other proteins involved in nucleic acids metabolism.
Collapse
Affiliation(s)
- Javier Jarillo
- University of Namur, Institute of Life-Earth-Environment, Namur Center for Complex Systems, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Borja Ibarra
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, C/ Faraday 9, 28049 Madrid, Spain
| | - Francisco Javier Cao-García
- Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, C/ Faraday 9, 28049 Madrid, Spain.,Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| |
Collapse
|
5
|
Bocanegra R, Ismael Plaza GA, Pulido CR, Ibarra B. DNA replication machinery: Insights from in vitro single-molecule approaches. Comput Struct Biotechnol J 2021; 19:2057-2069. [PMID: 33995902 PMCID: PMC8085672 DOI: 10.1016/j.csbj.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 11/16/2022] Open
Abstract
The replisome is the multiprotein molecular machinery that replicates DNA. The replisome components work in precise coordination to unwind the double helix of the DNA and replicate the two strands simultaneously. The study of DNA replication using in vitro single-molecule approaches provides a novel quantitative understanding of the dynamics and mechanical principles that govern the operation of the replisome and its components. ‘Classical’ ensemble-averaging methods cannot obtain this information. Here we describe the main findings obtained with in vitro single-molecule methods on the performance of individual replisome components and reconstituted prokaryotic and eukaryotic replisomes. The emerging picture from these studies is that of stochastic, versatile and highly dynamic replisome machinery in which transient protein-protein and protein-DNA associations are responsible for robust DNA replication.
Collapse
Affiliation(s)
- Rebeca Bocanegra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - G A Ismael Plaza
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Carlos R Pulido
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| | - Borja Ibarra
- IMDEA Nanociencia, Faraday 9, Campus Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Woo HJ, Yang JY, Lee MH, Kim HW, Kwon HJ, Park M, Kim SK, Park SY, Kim SH, Kim JB. Inhibitory Effects of β-Caryophyllene on Helicobacter pylori Infection In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21031008. [PMID: 32028744 PMCID: PMC7037973 DOI: 10.3390/ijms21031008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/01/2023] Open
Abstract
The human specific bacterial pathogen Helicobacter pylori (H. pylori) is associated with severe gastric diseases, including gastric cancer. Recently, the increasing resistance makes the usage of antibiotics less effectively. Therefore, development of a new antimicrobial agent is required to control H. pylori infection. In the current study, the inhibitory effect of β-caryophyllene on H. pylori growth, as well as the antibacterial therapeutic effect, has been demonstrated. β-caryophyllene inhibited H. pylori growth via the downregulation of dnaE, dnaN, holB, and gyrA and also downregulated virulence factors such as CagA, VacA, and SecA proteins. β-caryophyllene inhibited expression of several T4SS components, so that CagA translocation into H. pylori-infected AGS gastric cancer cells was decreased by β-caryophyllene treatment. β-caryophyllene also inhibited VacA entry through the downregulation of T5aSS. After β-caryophyllene administration on Mongolian gerbils, the immunohistochemistry (IHC) and Hematoxylin&Eosin stains showed therapeutic effects in the treated groups. Hematological data, which was consistent with histological data, support the therapeutic effect of β-caryophyllene administration. Such a positive effect of β-caryophyllene on H. pylori infection potently substantiates the natural compound as being capable of being used as a new antimicrobial agent or functional health food to help patients who are suffering from gastroduodenal diseases due to H. pylori infection.
Collapse
Affiliation(s)
- Hyun Jun Woo
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.J.W.); (J.Y.Y.); (H.W.K.); (H.J.K.)
- Department of Clinical Laboratory Science, College of Medical Sciences, Daegu Haany University, Gyeongsan 38610, Korea
| | - Ji Yeong Yang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.J.W.); (J.Y.Y.); (H.W.K.); (H.J.K.)
| | - Min Ho Lee
- Forensic DNA Division, National Forensic Service, Wonju 26460, Korea;
| | - Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.J.W.); (J.Y.Y.); (H.W.K.); (H.J.K.)
| | - Hye Jin Kwon
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.J.W.); (J.Y.Y.); (H.W.K.); (H.J.K.)
| | - Min Park
- Department of Biomedical Laboratory Science, Daekyeung University, Gyeongsan 38547, Korea;
| | - Sung-kyu Kim
- SFC BIO Co., Ltd. 1505-1ho, Daerung-town, 25, Gasan digital 1 ro, Geumcheon-gu 08594, Seoul, Korea;
| | - So-Young Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan-si, Chungnam 31116, Korea;
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jaecheon 27136, Korea
- Correspondence: (S.-H.K.); (J.-B.K.)
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.J.W.); (J.Y.Y.); (H.W.K.); (H.J.K.)
- Correspondence: (S.-H.K.); (J.-B.K.)
| |
Collapse
|