1
|
Gerber PP, Donde MJ, Matheson NJ, Taylor AI. XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection. Nat Commun 2022; 13:6716. [PMID: 36385143 PMCID: PMC9668987 DOI: 10.1038/s41467-022-34339-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
Abstract
The unprecedented emergence and spread of SARS-CoV-2, the coronavirus responsible for the COVID-19 pandemic, underscores the need for diagnostic and therapeutic technologies that can be rapidly tailored to novel threats. Here, we show that site-specific RNA endonuclease XNAzymes - artificial catalysts composed of single-stranded synthetic xeno-nucleic acid oligonucleotides (in this case 2'-deoxy-2'-fluoro-β-D-arabino nucleic acid) - may be designed, synthesised and screened within days, enabling the discovery of a range of enzymes targeting SARS-CoV-2 ORF1ab, ORF7b, spike- and nucleocapsid-encoding RNA. Three of these are further engineered to self-assemble into a catalytic nanostructure with enhanced biostability. This XNA nanostructure is capable of cleaving genomic SARS-CoV-2 RNA under physiological conditions, and when transfected into cells inhibits infection with authentic SARS-CoV-2 virus by RNA knockdown. These results demonstrate the potential of XNAzymes to provide a platform for the rapid generation of antiviral reagents.
Collapse
Affiliation(s)
- Pehuén Pereyra Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Maria J Donde
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Alexander I Taylor
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Šulc P, Ouldridge TE, Romano F, Doye JPK, Louis AA. Modelling toehold-mediated RNA strand displacement. Biophys J 2016; 108:1238-47. [PMID: 25762335 DOI: 10.1016/j.bpj.2015.01.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 12/24/2022] Open
Abstract
We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds.
Collapse
Affiliation(s)
- Petr Šulc
- Center for Studies in Physics and Biology, Rockefeller University, New York, New York; Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom.
| | - Thomas E Ouldridge
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom; Department of Mathematics, Imperial College, London, United Kingdom
| | - Flavio Romano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Pallesen J. Structure of the HIV-1 5' untranslated region dimer alone and in complex with gold nanocolloids: support of a TAR-TAR-containing 5' dimer linkage site (DLS) and a 3' DIS-DIS-containing DLS. Biochemistry 2011; 50:6170-7. [PMID: 21663314 DOI: 10.1021/bi200488h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of a genomic RNA dimer is critical for the HIV-1 replication cycle, and dimerization is known to initiate within the 5'UTR (5' untranslated region) of the viral RNA. However, the 5'UTR constitutes the 335 terminal nucleotides, and because of this considerable size, it has been difficult to study the global structure using conventional structural methods. Here, the atomic force microscope has been used to directly visualize the dimer formed from RNAs including HIV-1 nucleotides 1-744. Gold nanocolloids were deposited on the primer binding site regions in the dimer as an internal control. The dimer showed distinct ring morphology with up to two gold nanocolloids deposited within the ring and one or two strands extending from the ring. This morphology implies a dimer including a DIS-DIS (dimerization initiation site)-containing 3' dimer linkage site (DLS) and a TAR-TAR (trans-activation region)-containing 5'DLS. Furthermore, the dimer was formed under the influence of Mg(2+) and was imaged with an atomic force microscope under buffer conditions. The overall ring morphology containing a 5'DLS and a 3'DLS with one or two strands extending from it was conserved in these atomic force microscopy images. This indicates that the observed dimer morphology is physiologically significant. Moreover, evidence of multiple dimer interstrand contacts downstream of the major splice donor were observed, which indicates a component in the selection of full-length genomic RNA in dimer formation during virion packaging.
Collapse
Affiliation(s)
- Jesper Pallesen
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032, United States.
| |
Collapse
|
4
|
Pongratz C, Yazdanpanah B, Kashkar H, Lehmann MJ, Kräusslich HG, Krönke M. Selection of potent non-toxic inhibitory sequences from a randomized HIV-1 specific lentiviral short hairpin RNA library. PLoS One 2010; 5:e13172. [PMID: 20949027 PMCID: PMC2951894 DOI: 10.1371/journal.pone.0013172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/08/2010] [Indexed: 12/30/2022] Open
Abstract
RNA interference (RNAi) has been considered as an efficient therapeutic approach against the human immunodeficiency virus type 1 (HIV-1). However, to establish a durable inhibition of HIV-1, multiple effective short hairpin RNAs (shRNAs) need to be stably expressed to prevent the emergence of viral escape variants. In this study, we engineered a randomized lentiviral H1-promoter driven shRNA-library against the viral genome. Potent HIV-1 specific shRNAs were selected by ganciclovir treatment of cell lines stably expressing the cDNA of Herpes Simplex Virus thymidine kinase (HSV-TK) fused to HIV-1 nucleotide sequences. More than 50% of 200 selected shRNAs inhibited an HIV-1 based luciferase reporter assay by more than 70%. Stable expression of some of those shRNAs in an HIV-1 permissive HeLa cell line inhibited infection of wild-type HIV-1 by more than 90%. The combination of a randomized shRNA-library directed against HIV-1 with a live cell selection procedure yielded non-toxic and highly efficient HIV-1 specific inhibitory sequences that could serve as valuable candidates for gene therapy studies.
Collapse
Affiliation(s)
- Carola Pongratz
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) at the Institute for Genetics, University of Cologne, Cologne, Germany
| | - Benjamin Yazdanpanah
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine at the University of Cologne, Cologne, Germany
- * E-mail:
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) at the Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine at the University of Cologne, Cologne, Germany
| | - Maik J. Lehmann
- Department of Virology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) at the Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine at the University of Cologne, Cologne, Germany
| |
Collapse
|
5
|
Identification of hookworm DAF-16/FOXO response elements and direct gene targets. PLoS One 2010; 5:e12289. [PMID: 20808816 PMCID: PMC2924398 DOI: 10.1371/journal.pone.0012289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/29/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The infective stage of the parasitic nematode hookworm is developmentally arrested in the environment and needs to infect a specific host to complete its life cycle. The canine hookworm (Ancylostoma caninum) is an excellent model for investigating human hookworm infections. The transcription factor of A. caninum, Ac-DAF-16, which has a characteristic fork head or "winged helix" DNA binding domain (DBD), has been implicated in the resumption of hookworm development in the host. However, the precise roles of Ac-DAF-16 in hookworm parasitism and its downstream targets are unknown. In the present study, we combined molecular techniques and bioinformatics to identify a group of Ac-DAF-16 binding sites and target genes. METHODOLOGY/PRINCIPAL FINDINGS The DNA binding domain of Ac-DAF-16 was used to select genomic fragments by in vitro genomic selection. Twenty four bound genomic fragments were analyzed for the presence of the DAF-16 family binding element (DBE) and possible alternative Ac-DAF-16 bind motifs. The 22 genes linked to these genomic fragments were identified using bioinformatics tools and defined as candidate direct gene targets of Ac-DAF-16. Their developmental stage-specific expression patterns were examined. Also, a new putative DAF-16 binding element was identified. CONCLUSIONS/SIGNIFICANCE Our results show that Ac-DAF-16 is involved in diverse biological processes throughout hookworm development. Further investigation of these target genes will provide insights into the molecular basis by which Ac-DAF-16 regulates its downstream gene network in hookworm infection.
Collapse
|
6
|
Moore MD, Hu WS. HIV-1 RNA dimerization: It takes two to tango. AIDS Rev 2009; 11:91-102. [PMID: 19529749 PMCID: PMC3056336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Each viral particle of HIV-1, the infectious agent of AIDS, contains two copies of the full-length viral genomic RNA. Encapsidating two copies of genomic RNA is one of the characteristics of the retrovirus family. The two RNA molecules are both positive-sense and often identical; furthermore, each RNA encodes the full complement of genetic information required for viral replication. The two strands of RNA are intricately entwined within the core of the mature infectious virus as a ribonuclear complex with the viral proteins, including nucleocapsid. Multiple steps in the biogenesis of the genomic full-length RNA are involved in achieving this location and dimeric state. The viral sequences and proteins involved in the process of RNA dimerization, both for the initial interstrand contact and subsequent steps that result in the condensed, stable conformation of the genomic RNA, are outlined in this review. In addition, the impact of the dimeric state of HIV-1 viral RNA is discussed with respect to its importance in efficient viral replication and, consequently, the potential development of antiviral strategies designed to disrupt the formation of dimeric RNA.
Collapse
Affiliation(s)
- Michael D Moore
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | | |
Collapse
|
7
|
Grossmann TN, Röglin L, Seitz O. Target-catalyzed transfer reactions for the amplified detection of RNA. Angew Chem Int Ed Engl 2008; 47:7119-22. [PMID: 18677727 DOI: 10.1002/anie.200801355] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tom N Grossmann
- Institut für Chemie der Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | | | |
Collapse
|
8
|
Grossmann T, Röglin L, Seitz O. Target-katalysierte Transferreaktionen für den signalverstärkten RNA-Nachweis. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Brown D, Joy E, Greatorex J, Gait MJ, Lever AML. Steric block high affinity oligonucleotide analogues: a new tool for mapping RNA-protein binding sites. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:196-212. [PMID: 18205073 DOI: 10.1080/15257770701795961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Steric-block ON analogues are efficient inhibitors of RNA-protein interaction and therefore have potential to probe RNA sequences for putative protein binding sites and to investigate mechanisms of protein binding. The packaging process of HIV-1 is highly specific involving an interaction between the Gag protein and a conserved sequence that is only present on genomic viral RNA. Using oligonucleotide probes we have confirmed that the terminal purine loop is the major Gag binding site on SL3 and that a secondary Gag binding site exists at an internal purine bulge. We also demonstrate direct binding of oligonucleotide to their binding sites and confirm this interaction does not alter global RNA conformation, making them highly specific, nondisruptive probes of RNA protein interactions.
Collapse
Affiliation(s)
- Douglas Brown
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
10
|
Gondai T, Yamaguchi K, Miyano-Kurosaki N, Habu Y, Takaku H. Short-hairpin RNAs synthesized by T7 phage polymerase do not induce interferon. Nucleic Acids Res 2008; 36:e18. [PMID: 18208841 PMCID: PMC2241887 DOI: 10.1093/nar/gkm1043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RNA interference (RNAi) mediated by small-interfering RNAs (siRNAs) is a highly effective gene-silencing mechanism with great potential for gene-therapeutic applications. siRNA agents also exert non-target-related biological effects and toxicities, including immune-system stimulation. Specifically, siRNA synthesized from the T7 RNA polymerase system triggers a potent induction of type-I interferon (IFN) in a variety of cells. Single-stranded RNA also stimulates innate cytokine responses in mammals. We found that pppGn (n = 2,3) associated with the 5′-end of the short-hairpin RNA (shRNA) from the T7 RNA polymerase system did not induce detectable amounts of IFN. The residual amount of guanine associated with the 5′-end and hairpin structures of the transcript was proportional to the reduction of the IFN response. Here we describe a T7 pppGn (n = 2,3) shRNA synthesis that does not induce the IFN response, and maintains the full efficacy of siRNA.
Collapse
Affiliation(s)
- Takuma Gondai
- Department of Life and Environmental Science, High Technology Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016 Japan
| | | | | | | | | |
Collapse
|
11
|
Jakobsen MR, Haasnoot J, Wengel J, Berkhout B, Kjems J. Efficient inhibition of HIV-1 expression by LNA modified antisense oligonucleotides and DNAzymes targeted to functionally selected binding sites. Retrovirology 2007; 4:29. [PMID: 17459171 PMCID: PMC1866241 DOI: 10.1186/1742-4690-4-29] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/26/2007] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A primary concern when targeting HIV-1 RNA by means of antisense related technologies is the accessibility of the targets. Using a library selection approach to define the most accessible sites for 20-mer oligonucleotides annealing within the highly structured 5'-UTR of the HIV-1 genome we have shown that there are at least four optimal targets available. RESULTS The biological effect of antisense DNA and LNA oligonucleotides, DNA- and LNAzymes targeted to the four most accessible sites was tested for their abilities to block reverse transcription and dimerization of the HIV-1 RNA template in vitro, and to suppress HIV-1 production in cell culture. The neutralization of HIV-1 expression declined in the following order: antisense LNA > LNAzymes > DNAzymes and antisense DNA. The LNA modifications strongly enhanced the in vivo inhibitory activity of all the antisense constructs and some of the DNAzymes. Notably, two of the LNA modified antisense oligonucleotides inhibited HIV-1 production in cell culture very efficiently at concentration as low as 4 nM. CONCLUSION LNAs targeted to experimentally selected binding sites can function as very potent inhibitors of HIV-1 expression in cell culture and may potentially be developed as antiviral drug in patients.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Department of Molecular Biology, University of Aarhus C.F. Møllers Allé, building 130, DK-8000 Århus C, Denmark
| | - Joost Haasnoot
- Department of Human Retrovirology Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Jesper Wengel
- Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ben Berkhout
- Department of Human Retrovirology Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Jørgen Kjems
- Department of Molecular Biology, University of Aarhus C.F. Møllers Allé, building 130, DK-8000 Århus C, Denmark
| |
Collapse
|
12
|
Abstract
Antisense agents are powerful tools to inhibit gene expression in a sequence-specific manner. They are used for functional genomics, as diagnostic tools and for therapeutic purposes. Three classes of antisense agents can be distinguished by their mode of action: single-stranded antisense oligodeoxynucleotides; catalytic active RNA/DNA such as ribozymes, DNA- or locked nucleic acid (LNA)zymes; and small interfering RNA molecules known as siRNA. The selection of target sites in highly structured RNA molecules is crucial for their successful application. This is a difficult task, since RNA is assembled into nucleoprotein complexes and forms stable secondary structures in vivo, rendering most of the molecule inaccessible to intermolecular base pairing with complementary nucleic acids. In this review, we discuss several selection strategies to identify potential target sites in RNA molecules. In particular, we focus on combinatorial library approaches that allow high throughput screening of sequences for the design of antisense agents.
Collapse
Affiliation(s)
- M Lützelberger
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé 130, 8000 Aarhus C, Denmark
| | | |
Collapse
|
13
|
Turner JJ, Fabani M, Arzumanov AA, Ivanova G, Gait MJ. Targeting the HIV-1 RNA leader sequence with synthetic oligonucleotides and siRNA: chemistry and cell delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1758:290-300. [PMID: 16337923 DOI: 10.1016/j.bbamem.2005.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/27/2005] [Accepted: 10/28/2005] [Indexed: 01/22/2023]
Abstract
New candidates for development as potential drugs or virucides against HIV-1 infection and AIDS continue to be needed. The HIV-1 RNA leader sequence has many essential functional sites for virus replication and regulation that includes several highly conserved sequences. The review describes the historical context of targeting the HIV-1 RNA leader sequence with antisense phosphorothioate oligonucleotides, such as GEM 91, and goes on to describe modern approaches to targeting this region with steric blocking oligonucleotide analogues having newer and more advantageous chemistries, as well as recent studies on siRNA, towards the attainment of antiviral activity. Recent attempts to obtain improved cell delivery are highlighted, including exciting new developments in the use of peptide conjugates of peptide nucleic acid (PNA) as potential virucides.
Collapse
Affiliation(s)
- John J Turner
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | | | |
Collapse
|
14
|
Elmén J, Zhang HY, Zuber B, Ljungberg K, Wahren B, Wahlestedt C, Liang Z. Locked nucleic acid containing antisense oligonucleotides enhance inhibition of HIV-1 genome dimerization and inhibit virus replication. FEBS Lett 2005; 578:285-90. [PMID: 15589834 PMCID: PMC7232750 DOI: 10.1016/j.febslet.2004.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 11/05/2004] [Accepted: 11/09/2004] [Indexed: 01/22/2023]
Abstract
We have evaluated antisense design and efficacy of locked nucleic acid (LNA) and DNA oligonucleotide (ON) mix‐mers targeting the conserved HIV‐1 dimerization initiation site (DIS). LNA is a high affinity nucleotide analog, nuclease resistant and elicits minimal toxicity. We show that inclusion of LNA bases in antisense ONs augments the interference of HIV‐1 genome dimerization. We also demonstrate the concomitant RNase H activation by six consecutive DNA bases in an LNA/DNA mix‐mer. We show ON uptake via receptor‐mediated transfection of a human T‐cell line in which the mix‐mers subsequently inhibit replication of a clinical HIV‐1 isolate. Thus, the technique of LNA/DNA mix‐mer antisense ONs targeting the conserved HIV‐1 DIS region may provide a strategy to prevent HIV‐1 assembly in the clinic.
Collapse
Affiliation(s)
- Joacim Elmén
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzeliusväg 35, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|