1
|
Hamasaki M, Takamatsu S, Nagata M, Wilson E, Suzuki H, Tanaka A, Ikebukuro K, Sode K, Asano R. Development of DNA aptamers universally bound to single-chain fragment variables and their applications in bioprocess monitoring. Biosens Bioelectron 2024; 261:116511. [PMID: 38917513 DOI: 10.1016/j.bios.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Single-chain fragment variables (scFvs), composed of variable heavy and light chains joined together by a peptide linker, can be produced using a cost-effective bacterial expression system, making them promising candidates for pharmaceutical applications. However, a versatile method for monitoring recombinant-protein production has not yet been developed. Herein, we report a novel anti-scFv aptamer-based biosensing system with high specificity and versatility. First, anti-scFv aptamers were screened using the competitive systematic evolution of ligands by exponential enrichment, focusing on a unique scFv-specific peptide linker. We selected two aptamers, P1-12 and P2-63, with KD = 2.1 μM or KD = 1.6 μM toward anti-human epidermal growth factor receptor (EGFR) scFv, respectively. These two aptamers can selectively bind to scFv but not to anti-EGFR Fv. Furthermore, the selected aptamers recognized various scFvs with different CDRs, such as anti-4-1BB and anti-hemoglobin scFv, indicating that they recognized a unique peptide linker region. An electrochemical sensor for anti-EGFR scFv was developed using anti-scFv aptamers based on square wave voltammetry. Thus, the constructed sensor could monitor anti-EGFR scFv concentrations in the range of 10-500 nM in a diluted medium for bacterial cultivation, which covered the expected concentration range for the recombinant production of scFvs. These achievements promise the realization of continuous monitoring sensors for pharmaceutical scFv, which will enable the real-time and versatile monitoring of large-scale scFv production.
Collapse
Affiliation(s)
- Mai Hamasaki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Shouhei Takamatsu
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Madoka Nagata
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Ellie Wilson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA
| | - Hirobumi Suzuki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ayumi Tanaka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 183-8538, Japan.
| |
Collapse
|
2
|
Sun H, Zhao D, He Y, Meng H, Li Z. Aptamer-Based DNA Allosteric Switch for Regulation of Protein Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402531. [PMID: 38864341 PMCID: PMC11321679 DOI: 10.1002/advs.202402531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Allostery is a fundamental way to regulate the function of biomolecules playing crucial roles in cell metabolism and proliferation and is deemed the second secret of life. Given the limited understanding of the structure of natural allosteric molecules, the development of artificial allosteric molecules brings a huge opportunity to transform the allosteric mechanism into practical applications. In this study, the concept of bionics is introduced into the design of artificial allosteric molecules and an allosteric DNA switch with an activity site and an allosteric site based on two aptamers for selective inhibition of thrombin activity. Compared with the single aptamer, the allosteric switch possesses a significantly enhanced inhibition ability, which can be precisely regulated by converting the switch states. Moreover, the dynamic allosteric switch is further subjected to the control of the DNA threshold circuit for realizing automatic concentration determination and activity inhibition of thrombin. These compelling results confirm that this allosteric switch equipped with self-sensing and information-processing modules puts a new slant on the research of allosteric mechanisms and further application of allosteric tactics in chemical and biomedical fields.
Collapse
Affiliation(s)
- Hongzhi Sun
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Di Zhao
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Yating He
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Hong‐Min Meng
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Zhaohui Li
- College of ChemistryInstitute of Analytical Chemistry for Life ScienceZhengzhou UniversityZhengzhou450001China
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| |
Collapse
|
3
|
Nagano M, Kubota K, Sakata A, Nakamura R, Yoshitomi T, Wakui K, Yoshimoto K. A neutralizable dimeric anti-thrombin aptamer with potent anticoagulant activity in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:762-772. [PMID: 37621412 PMCID: PMC10445101 DOI: 10.1016/j.omtn.2023.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Heparin-induced thrombocytopenia (HIT) is a complication caused by administration of the anticoagulant heparin. Although the number of patients with HIT has drastically increased because of coronavirus disease 2019 (COVID-19), the currently used thrombin inhibitors for HIT therapy do not have antidotes to arrest the severe bleeding that occurs as a side effect; therefore, establishment of safer treatments for HIT patients is imperative. Here, we devised a potent thrombin inhibitor based on bivalent aptamers with a higher safety profile via combination with the antidote. Using an anti-thrombin DNA aptamer M08s-1 as a promising anticoagulant, its homodimer and heterodimer with TBA29 linked by a conformationally flexible linker or a rigid duplex linker were designed. The dimerized M08s-1-based aptamers had about 100-fold increased binding affinity to human and mouse thrombin compared with the monomer counterparts. Administration of these bivalent aptamers into mice revealed that the anticoagulant activity of the dimers significantly surpassed that of an approved drug for HIT treatment, argatroban. Moreover, adding protamine sulfate as an antidote against the most potent bivalent aptamer completely suppressed the anticoagulant activity of the dimer. Emerging potent and neutralizable anticoagulant aptamers will be promising candidates for HIT treatment with a higher safety profile.
Collapse
Affiliation(s)
- Masanobu Nagano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Kazuki Kubota
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Asuka Sakata
- Medicinal Biology of Thrombosis and Hemostasis, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Rei Nakamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Koji Wakui
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Wang G, He C, Zou J, Liu J, Du Y, Chen T. Enzymatic Synthesis of DNA with an Expanded Genetic Alphabet Using Terminal Deoxynucleotidyl Transferase. ACS Synth Biol 2022; 11:4142-4155. [PMID: 36455255 DOI: 10.1021/acssynbio.2c00456] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Development of unnatural base pairs (UBPs) has significantly expanded the genetic alphabet both in vitro and in vivo and led to numerous potential applications in the biotechnology and biopharmaceutical industry. Efficient synthesis of oligonucleotides containing unnatural nucleobases is undoubtedly an essential prerequisite for making full use of the UBPs, and de novo synthesis of oligonucleotides with terminal deoxynucleotidyl transferases (TdTs) has emerged as a method of great potential to overcome limitations of traditional solid-phase synthesis. Herein, we report the efficient template-independent incorporation of nucleotides of unnatural nucleobases dTPT3 and dNaM, which have been designed to make one of the most successful UBPs to date, dTPT3-dNaM, into DNA oligonucleotides with a TdT enzyme under optimized conditions. We also demonstrate the efficient TdT incorporation of dTPT3 derivatives with different functional linkers into oligonucleotides for orthogonal labeling of nucleic acids and applications thereof. The development of a method for the daily laboratory preparation of DNAs with UBPs at arbitrary sites with the assistance of TdT is also described.
Collapse
Affiliation(s)
- Guangyuan Wang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chuanping He
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jinrong Zou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiayun Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Abstract
Thrombin facilitates the aggregation of platelet in hemostatic processes and participates in the regulation of cell signaling. Therefore, the development of thrombin sensors is conducive to comprehending the role of thrombin in the course of a disease. Biosensors based on aptamers screened by SELEX have exhibited superiority for thrombin detection. In this review, we summarized the aptamer-based sensors for thrombin detection which rely on the specific recognitions between thrombin and aptamer. Meanwhile, the unique advantages of different sensors including optical and electrochemical sensors were also highlighted. Especially, these sensors based on electrochemistry have the potential to be miniaturized, and thus have gained comprehensive attention. Furthermore, concerns about aptamer-based sensors for thrombin detection, prospects of the future and promising avenues in this field were also presented.
Collapse
|
6
|
Yılmaz D, Muslu T, Parlar A, Kurt H, Yüce M. SELEX against whole-cell bacteria resulted in lipopolysaccharide binding aptamers. J Biotechnol 2022; 354:10-20. [PMID: 35700936 DOI: 10.1016/j.jbiotec.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Nucleic acid aptamers are target-specific oligonucleotides selected from combinatorial libraries through an iterative in vitro screening process known as Systemic Evolution of Ligands by Exponential Enrichment (SELEX). In this report, the selection of bacteria differentiating ssDNA aptamer candidates from a combinatorial library through the whole-cell SELEX method was performed. The enriched SELEX pool was sequenced using Illumina Next-Generation Sequencing (NGS) technology and analyzed for the most abundant sequences using CLC Genomics Workbench. The sequencing data resulted in several oligonucleotide families from which three individual sequences were chosen per SELEX based on the copy numbers. The binding performance of the selected aptamers was assessed by flow cytometry and fluorescence spectroscopy, and the binding constants were estimated using binding saturation curves. Varying results were obtained from two independent SELEX procedures where the SELEX against the model gram-negative bacterium Escherichia coli provided more selective sequences while the SELEX library used against gram-positive bacterium Listeria monocytogenes did not evolve as expected. The sequences that emerged from E. coli SELEX were shown to bind Lipopolysaccharide residues (LPS) and inhibit LPS-induced macrophage polarization. Thus, it can be said that, performed whole-cell SELEX could be resulted as the selection of aptamers which can bind LPS and inhibit LPS induced inflammation response and thus can be candidates for the inhibition of bacterial infections. In future studies, the selected aptamer sequences could be structurally and chemically modified and exploited as potential diagnostic tools and therapeutic agents as LPS antagonists.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Tuzla 34956, Istanbul, Turkey
| | - Tuğdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Ayhan Parlar
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Hasan Kurt
- School of Engineering and Natural Sciences, Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey; Nanosolar Plasmonics Ltd., Gebze, 41400 Kocaeli, Turkey
| | - Meral Yüce
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
7
|
Hu X, Tang L, Zheng M, Liu J, Zhang Z, Li Z, Yang Q, Xiang S, Fang L, Ren Q, Liu X, Huang CZ, Mao C, Zuo H. Structure-Guided Designing Pre-Organization in Bivalent Aptamers. J Am Chem Soc 2022; 144:4507-4514. [PMID: 35245025 DOI: 10.1021/jacs.1c12593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multivalent interaction is often used in molecular design and leads to engineered multivalent ligands with increased binding avidities toward target molecules. The resulting binding avidity relies critically on the rigid scaffold that joins multiple ligands as the scaffold controls the relative spatial positions and orientations toward target molecules. Currently, no general design rules exist to construct a simple and rigid DNA scaffold for properly joining multiple ligands. Herein, we report a crystal structure-guided strategy for the rational design of a rigid bivalent aptamer with precise control over spatial separation and orientation. Such a pre-organization allows the two aptamer moieties simultaneously to bind to the target protein at their native conformations. The bivalent aptamer binding has been extensively characterized, and an enhanced binding has been clearly observed. This strategy, we believe, could potentially be generally applicable to design multivalent aptamers.
Collapse
Affiliation(s)
- Xiaoli Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Linlin Tang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Mengxi Zheng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jian Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhe Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Quan Yang
- Department of Cardiology, The Fourth People's Hospital of Sichuan Province, Chengdu 610016, China
| | - Shoubo Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Liang Fang
- Department of Oncology, The Ninth People's Hospital of Chongqing, Chongqing 400700, China
| | - Qiao Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuemei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengde Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.,Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hua Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Fenati RA, Chen Z, Yamagishi Y, Tsukakoshi K, Ikebukuor K, Manian A, Russo SP, Yamazaki T, Ellis AV. Enhancement of DNAzymatic activity using iterative in silico maturation. J Mater Chem B 2022; 10:8960-8969. [DOI: 10.1039/d2tb01638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enhancement of DNZymatic activity using a combined iterative in silico and in vitro method as a cheaper and more stable alternative to antibodies or enzymes.
Collapse
Affiliation(s)
- Renzo A. Fenati
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia, 5042, Australia
- School of Chemical and Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Zifei Chen
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, 3010, Australia
| | - Yasuko Yamagishi
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuor
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Anjay Manian
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Salvy P. Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Tomohiko Yamazaki
- Nanomedicine Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0047, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0808, Japan
| | - Amanda V. Ellis
- School of Chemical and Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| |
Collapse
|
9
|
Murakami K, Izuo N, Bitan G. Aptamers targeting amyloidogenic proteins and their emerging role in neurodegenerative diseases. J Biol Chem 2022; 298:101478. [PMID: 34896392 PMCID: PMC8728582 DOI: 10.1016/j.jbc.2021.101478] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 01/08/2023] Open
Abstract
Aptamers are oligonucleotides selected from large pools of random sequences based on their affinity for bioactive molecules and are used in similar ways to antibodies. Aptamers provide several advantages over antibodies, including their small size, facile, large-scale chemical synthesis, high stability, and low immunogenicity. Amyloidogenic proteins, whose aggregation is relevant to neurodegenerative diseases, such as Alzheimer's, Parkinson's, and prion diseases, are among the most challenging targets for aptamer development due to their conformational instability and heterogeneity, the same characteristics that make drug development against amyloidogenic proteins difficult. Recently, chemical tethering of aptagens (equivalent to antigens) and advances in high-throughput sequencing-based analysis have been used to overcome some of these challenges. In addition, internalization technologies using fusion to cellular receptors and extracellular vesicles have facilitated central nervous system (CNS) aptamer delivery. In view of the development of these techniques and resources, here we review antiamyloid aptamers, highlighting preclinical application to CNS therapy.
Collapse
Affiliation(s)
- Kazuma Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | - Naotaka Izuo
- Laboratory of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
10
|
Mousivand M, Bagherzadeh K, Anfossi L, Javan-Nikkhah M. Key criteria for engineering mycotoxin binding aptamers via computational simulations: Aflatoxin B1 as a case study. Biotechnol J 2021; 17:e2100280. [PMID: 34800084 DOI: 10.1002/biot.202100280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
Due to the difficulties in monoclonal antibody production specific to mycotoxins, aptameric probes have been considered as suitable alternatives. The low efficiency of the SELEX procedure in screening high affinity aptamers for binding mycotoxins as small molecules can be significantly improved through computational techniques. Previously, we designed five new aptamers to aflatoxin B1 (AFB1) based on a known aptamer sequence (Patent: PCT/CA2010/001 292, Apt1) through a genetic algorithm-based in silico maturation strategy and experimentally measured their affinity to the target toxin. Here, integrated molecular dynamic simulation (MDs) studies with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis to clarify the binding modes, critical interacting nucleic bases and energy component contributions in the six AFB1-binding aptamers. The aptamer F20, which was selected in the first work, showed the best free binding energy and complex stability compared to other aptamers. The trajectory analysis revealed that AFB1 recognized F20 through the groove binding mode along with precise shape complementarity. The MD simulation results revealed that dynamic water intermediate interactions also play a key role in promoting complex stability. According to the MM-PBSA calculations, van der Waals contacts were identified as dominant energy components in all complexes. Interestingly, a high consistency is observed between the experimentally obtained binding affinities of the six aptamers with their free energy solvation. The computational findings, confirmed via previous experiments, highlighted the binding modes, the dynamic hydration of complex components and the total free interacting energy as the crucial criteria in discovering high functional aptameric probes.
Collapse
Affiliation(s)
- Maryam Mousivand
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Department of Plant Protection, College of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| | - Kowsar Bagherzadeh
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Department of Plant Protection, College of Agricultural Sciences and Engineering, University of Tehran, Turin, Italy
| | - Mohammad Javan-Nikkhah
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Department of Plant Protection, College of Agricultural Sciences and Engineering, University of Tehran, Karaj, Iran
| |
Collapse
|
11
|
Safitri FA, Tu ATT, Hoshi K, Shobo M, Zhao D, Witarto AB, Sumarsono SH, Giri-Rachman EA, Tsukakoshi K, Ikebukuro K, Yamazaki T. Enhancement of the Immunostimulatory Effect of Phosphodiester CpG Oligodeoxynucleotides by an Antiparallel Guanine-Quadruplex Structural Scaffold. Biomolecules 2021; 11:1617. [PMID: 34827615 PMCID: PMC8615816 DOI: 10.3390/biom11111617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Guanine-quadruplex-based CpG oligodeoxynucleotides (G4 CpG ODNs) have been developed as potent immunostimulatory agents with reduced sensitivity to nucleases. We designed new monomeric G4 ODNs with an antiparallel topology using antiparallel type duplex/G4 ODNs as robust scaffolds, and we characterized their topology and effects on cytokine secretion. Based on circular dichroism analysis and quantification of mRNA levels of immunostimulatory cytokines, it was found that monomeric antiparallel G4 CpG ODNs containing two CpG motifs in the first functional loop, named G2.0.0, could maintain antiparallel topology and generate a high level of immunostimulatory cytokines in RAW264 mouse macrophage-like cell lines. We also found that the flanking sequence in the CpG motif altered the immunostimulatory effects. Gc2c.0.0 and Ga2c.0.0 are monomeric antiparallel G4 CpG ODNs with one cytosine in the 3' terminal and one cytosine/adenine in the 5' terminal of CpG motifs that maintained the same resistance to degradation in serum as G2.0.0 and improved interleukin-6 production in RAW264 and bone marrow-derived macrophages. The immunostimulatory activity of antiparallel G4 CpG ODNs is superior to that of linear natural CpG ODNs. These results provide insights for the rational design of highly potent CpG ODNs using antiparallel G4 as a robust scaffold.
Collapse
Affiliation(s)
- Fika Ayu Safitri
- Doctoral Program in Biology, School of Life Sciences and Technology, Institut Teknologi Bandung (ITB), Bandung 40132, West Java, Indonesia;
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
| | - Anh Thi Tram Tu
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| | - Kazuaki Hoshi
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
| | - Miwako Shobo
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
| | - Dandan Zhao
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
| | - Arief Budi Witarto
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Indonesia Defense University, Bogor 16810, West Java, Indonesia;
| | - Sony Heru Sumarsono
- Physiology, Developmental Biology and Biomedical Sciences Research Group, School of Life Sciences and Technology, ITB, Bandung 40132, West Java, Indonesia; (S.H.S.); (E.A.G.-R.)
| | - Ernawati Arifin Giri-Rachman
- Physiology, Developmental Biology and Biomedical Sciences Research Group, School of Life Sciences and Technology, ITB, Bandung 40132, West Java, Indonesia; (S.H.S.); (E.A.G.-R.)
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan; (K.T.); (K.I.)
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei 184-8588, Japan; (K.T.); (K.I.)
| | - Tomohiko Yamazaki
- Research Center for Functional Materials, National Institute for Materials Science, 1-2-1, Sengen, Tsukuba 305-0047, Japan; (A.T.T.T.); (K.H.); (M.S.); (D.Z.)
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0808, Japan
| |
Collapse
|
12
|
Beyond G-Quadruplexes-The Effect of Junction with Additional Structural Motifs on Aptamers Properties. Int J Mol Sci 2021; 22:ijms22189948. [PMID: 34576112 PMCID: PMC8466185 DOI: 10.3390/ijms22189948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022] Open
Abstract
G-quadruplexes constitute an important type of nucleic acid structure, which can be found in living cells and applied by cell machinery as pivotal regulatory elements. Importantly, robust development of SELEX technology and modern, nucleic acid-based therapeutic strategies targeted towards various molecules have also revealed a large group of potent aptamers whose structures are grounded in G-quadruplexes. In this review, we analyze further extension of tetraplexes by additional structural elements and investigate whether G-quadruplex junctions with duplex, hairpin, triplex, or second G-quadruplex motifs are favorable for aptamers stability and biological activity. Furthermore, we indicate the specific and pivotal role of the G-quadruplex domain and the additional structural elements in interactions with target molecules. Finally, we consider the potency of G-quadruplex junctions in future applications and indicate the emerging research area that is still waiting for development to obtain highly specific and effective nucleic acid-based molecular tools.
Collapse
|
13
|
Tsukakoshi K, Yamagishi Y, Kanazashi M, Nakama K, Oshikawa D, Savory N, Matsugami A, Hayashi F, Lee J, Saito T, Sode K, Khunathai K, Kuno H, Ikebukuro K. G-quadruplex-forming aptamer enhances the peroxidase activity of myoglobin against luminol. Nucleic Acids Res 2021; 49:6069-6081. [PMID: 34095949 PMCID: PMC8216272 DOI: 10.1093/nar/gkab388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/25/2021] [Accepted: 06/03/2021] [Indexed: 01/07/2023] Open
Abstract
Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin's peroxidase activity was discovered. Through our strategy—in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.
Collapse
Affiliation(s)
- Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasuko Yamagishi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mana Kanazashi
- DENSO CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Kenta Nakama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Daiki Oshikawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Akimasa Matsugami
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Fumiaki Hayashi
- Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Jinhee Lee
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Taiki Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koji Sode
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA
| | | | - Hitoshi Kuno
- DENSO CORPORATION, 1-1 Showa-cho, Kariya, Aichi 448-8661, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
14
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
15
|
De Fenza M, Eremeeva E, Troisi R, Yang H, Esposito A, Sica F, Herdewijn P, D'Alonzo D, Guaragna A. Structure-Activity Relationship Study of a Potent α-Thrombin Binding Aptamer Incorporating Hexitol Nucleotides. Chemistry 2020; 26:9589-9597. [PMID: 32363791 DOI: 10.1002/chem.202001504] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Indexed: 12/13/2022]
Abstract
The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Elena Eremeeva
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Romualdo Troisi
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Hui Yang
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Anna Esposito
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Filomena Sica
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Piet Herdewijn
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Daniele D'Alonzo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Annalisa Guaragna
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| |
Collapse
|
16
|
Cheng N, Liu Y, Mukama O, Han X, Huang H, Li S, Zhou P, Lu X, Li Z. A signal-enhanced and sensitive lateral flow aptasensor for the rapid detection of PDGF-BB. RSC Adv 2020; 10:18601-18607. [PMID: 35518307 PMCID: PMC9053969 DOI: 10.1039/d0ra02662j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023] Open
Abstract
Platelet-derived growth factor BB (PDGF-BB) is a potential biomarker of tumor angiogenesis. For the first time, we developed a highly sensitive aptasensor for PDGF-BB with an enhanced test line signal by using two different gold nanoparticles (AuNPs). Herein, we describe a highly sensitive biosensor for PDGF-BB detection that combines biotinylated aptamer on a sample pad and poly thymine-Cy3-AuNP-monoclonal antibody complexes against PDGF-BB immobilized on conjugate pad A. Streptavidin (SA) and rabbit anti-mouse polyclonal antibody were also immobilized in the nitrocellulose membrane at the test and control zones, respectively. When the target PDGF-BB protein was added, it first bound the aptamer, and later the monoclonal antibody to form a biotinylated complex that was captured by SA, resulting in a visual red line on the test zone. In addition, to enhance the sensitivity, another monoclonal antibody against Cy3 was conjugated on AuNP B and immobilized on conjugate pad B to form a AuNPs (A&B)-antibody-(PDGF-BB-Cy3)-aptamer-biotin-SA complex on the test line when a loading buffer was subsequently added. This approach showed a linear response to PDGF-BB from 3 ng mL−1 to 300 ng mL−1 with a limit of detection as low as 1 ng mL−1 obtained in 10 minutes. Our biosensor displayed results through red lines readable by the naked eye. Interestingly, our approach has been successfully applied for real sample verification, proving its applicability for cancer monitoring and diagnosis. Platelet-derived growth factor BB (PDGF-BB) is a potential biomarker of tumor angiogenesis.![]()
Collapse
Affiliation(s)
- Na Cheng
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University Changsha China
| | - Yujie Liu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 China.,School of Basic Medicine, Guizhou Medical University Guizhou China
| | - Omar Mukama
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 China.,Department of Biology, College of Science and Technology, University of Rwanda Avenue de l'armée, P. O. Box: 3900 Kigali Rwanda
| | - Xiaobo Han
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 China
| | - Hualin Huang
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 China
| | - Shuai Li
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 China
| | - Peng Zhou
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University Changsha China
| | - Xuewen Lu
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University Changsha China .,Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou 510530 China.,GZMU-GIBH Joint School of Life Sciences, Guangzhou Medical University Guangzhou China
| |
Collapse
|
17
|
Zaitseva SO, Baleeva NS, Zatsepin TS, Myasnyanko IN, Turaev AV, Pozmogova GE, Khrulev AA, Varizhuk AM, Baranov MS, Aralov AV. Short Duplex Module Coupled to G-Quadruplexes Increases Fluorescence of Synthetic GFP Chromophore Analogues. SENSORS 2020; 20:s20030915. [PMID: 32050425 PMCID: PMC7038953 DOI: 10.3390/s20030915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Aptasensors became popular instruments in bioanalytical chemistry and molecular biology. To increase specificity, perspective signaling elements in aptasensors can be separated into a G-quadruplex (G4) part and a free fluorescent dye that lights up upon binding to the G4 part. However, current systems are limited by relatively low enhancement of fluorescence upon dye binding. Here, we added duplex modules to G4 structures, which supposedly cause the formation of a dye-binding cavity between two modules. Screening of multiple synthetic GFP chromophore analogues and variation of the duplex module resulted in the selection of dyes that light up after complex formation with two-module structures and their RNA analogues by up to 20 times compared to parent G4s. We demonstrated that the short duplex part in TBA25 is preferable for fluorescence light up in comparison to parent TBA15 molecule as well as TBA31 and TBA63 stabilized by longer duplexes. Duplex part of TBA25 may be partially unfolded and has reduced rigidity, which might facilitate optimal dye positioning in the joint between G4 and the duplex. We demonstrated dye enhancement after binding to modified TBA, LTR-III, and Tel23a G4 structures and propose that such architecture of short duplex-G4 signaling elements will enforce the development of improved aptasensors.
Collapse
Affiliation(s)
- Snizhana O. Zaitseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (S.O.Z.); (N.S.B.); (I.N.M.); (A.A.K.)
| | - Nadezhda S. Baleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (S.O.Z.); (N.S.B.); (I.N.M.); (A.A.K.)
| | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia;
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Ivan N. Myasnyanko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (S.O.Z.); (N.S.B.); (I.N.M.); (A.A.K.)
| | - Anton V. Turaev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia; (A.V.T.); (G.E.P.); (A.M.V.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Galina E. Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia; (A.V.T.); (G.E.P.); (A.M.V.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Alexei A. Khrulev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (S.O.Z.); (N.S.B.); (I.N.M.); (A.A.K.)
| | - Anna M. Varizhuk
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow 119435, Russia; (A.V.T.); (G.E.P.); (A.M.V.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow 119435, Russia
| | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (S.O.Z.); (N.S.B.); (I.N.M.); (A.A.K.)
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Correspondence: (M.S.B.); (A.V.A.)
| | - Andrey V. Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (S.O.Z.); (N.S.B.); (I.N.M.); (A.A.K.)
- Correspondence: (M.S.B.); (A.V.A.)
| |
Collapse
|
18
|
Mousivand M, Anfossi L, Bagherzadeh K, Barbero N, Mirzadi-Gohari A, Javan-Nikkhah M. In silico maturation of affinity and selectivity of DNA aptamers against aflatoxin B 1 for biosensor development. Anal Chim Acta 2020; 1105:178-186. [PMID: 32138917 DOI: 10.1016/j.aca.2020.01.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/27/2022]
Abstract
A high affinity and selectivity DNA aptamer for aflatoxin B1 (AFB1) was designed through Genetic Algorithm (GA) based in silico maturation (ISM) strategy. The sequence of a known AFB1 aptamer (Patent: PCT/CA2010/001292, Apt1) applied as a probe in many aptasensors was modified using seven GA rounds to generate an initial library and three different generations of ss DNA oligonucleotides as new candidate aptamers. Molecular docking methodology was used to screen and analyze the best aptamer-AFB1 complexes. Also, a new pipeline was proposed to faithfully predict the tertiary structure of all single stranded DNA sequences. By the second generation, aptamer Apt1 sequence was optimized in the local search space and five aptamers including F20, g12, C52, C32 and H1 were identified as the best aptamers for AFB1. The selected aptamers were applied as probes in an unmodified gold nanoparticles-based aptasensor to evaluate their binding affinity to AFB1 and their selectivity against other mycotoxins (aflatoxins B2, G1, G2, M1, ochratoxin A and zearalenone). In addition, a novel direct fluorescent anisotropy aptamer assay was developed to confirm the binding interaction of the selected aptamers over AFB1. The ISM allowed the identification of an aptamer, F20, with up to 9.4 and 2 fold improvement in affinity and selectivity compared to the parent aptamer, respectively.
Collapse
Affiliation(s)
- Maryam Mousivand
- Department of Plant Protection, College of Agricultural Sciences & Engineering, University of Tehran, Karaj, 31587-77871, Iran; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, 3135933151, Karaj, Iran
| | - Laura Anfossi
- Department of Chemistry and NIS Interdepartmental Center, University of Turin, Via Pietro Giuria 5, 7, 10125, Turin, Italy; Department of Chemistry, University of Turin, Via Giuria, 5, I-10125, Turin, Italy.
| | - Kowsar Bagherzadeh
- Eye Research Center, The Five Senses Institute Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nadia Barbero
- Department of Chemistry and NIS Interdepartmental Center, University of Turin, Via Pietro Giuria 5, 7, 10125, Turin, Italy; Department of Chemistry, University of Turin, Via Giuria, 5, I-10125, Turin, Italy
| | - Amir Mirzadi-Gohari
- Department of Plant Protection, College of Agricultural Sciences & Engineering, University of Tehran, Karaj, 31587-77871, Iran
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agricultural Sciences & Engineering, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
19
|
An aptamer cocktail-based electrochemical aptasensor for direct capture and rapid detection of tetracycline in honey. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Four steps for revealing and adjusting the 3D structure of aptamers in solution by small-angle X-ray scattering and computer simulation. Anal Bioanal Chem 2019; 411:6723-6732. [PMID: 31396648 DOI: 10.1007/s00216-019-02045-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
Abstract
Nucleic acid (NA) aptamers bind to their targets with high affinity and selectivity. The three-dimensional (3D) structures of aptamers play a major role in these non-covalent interactions. Here, we use a four-step approach to determine a true 3D structure of aptamers in solution using small-angle X-ray scattering (SAXS) and molecular structure restoration (MSR). The approach consists of (i) acquiring SAXS experimental data of an aptamer in solution, (ii) building a spatial distribution of the molecule's electron density using SAXS results, (iii) constructing a 3D model of the aptamer from its nucleotide primary sequence and secondary structure, and (iv) comparing and refining the modeled 3D structures with the experimental SAXS model. In the proof-of-principle we analyzed the 3D structure of RE31 aptamer to thrombin in a native free state at different temperatures and validated it by circular dichroism (CD). The resulting 3D structure of RE31 has the most energetically favorable conformation and the same elements such as a B-form duplex, non-complementary region, and two G-quartets which were previously reported by X-ray diffraction (XRD) from a single crystal. More broadly, this study demonstrates the complementary approach for constructing and adjusting the 3D structures of aptamers, DNAzymes, and ribozymes in solution, and could supply new opportunities for developing functional nucleic acids. Graphical abstract.
Collapse
|
21
|
Wakui K, Yoshitomi T, Yamaguchi A, Tsuchida M, Saito S, Shibukawa M, Furusho H, Yoshimoto K. Rapidly Neutralizable and Highly Anticoagulant Thrombin-Binding DNA Aptamer Discovered by MACE SELEX. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 16:348-359. [PMID: 30986696 PMCID: PMC6462803 DOI: 10.1016/j.omtn.2019.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
We present a rapidly neutralizable and highly anticoagulant thrombin-binding aptamer with a short toehold sequence, originally discovered by systematic evolution of ligands by exponential enrichment (SELEX) with microbead-assisted capillary electrophoresis (MACE). MACE is a novel CE-partitioning method for SELEX and able to separate aptamers from a library of unbound nucleic acids, where the aptamer and target complexes can be detected reliably and partitioned with high purity even in the first selection cycle. Three selection rounds of MACE-SELEX discovered several TBAs with a nanomolar affinity (Kd = 4.5-8.2 nM) that surpasses previously reported TBAs such as HD1, HD22, and NU172 (Kd = 118, 13, and 12 nM, respectively). One of the obtained aptamers, M08, showed a 10- to 20-fold longer prolonged clotting time than other anticoagulant TBAs, such as HD1, NU172, RE31, and RA36. Analyses of the aptamer and thrombin complexes using both bare and coated capillaries suggested that a large number of efficient aptamers are missed in conventional CE-SELEX because of increased interaction between the complex and the capillary. In addition, the toehold-mediated rapid antidote was designed for safe administration. The efficient aptamer and antidote system developed in the present study could serve as a new candidate for anticoagulant therapy.
Collapse
Affiliation(s)
- Koji Wakui
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Akane Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Maho Tsuchida
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Masami Shibukawa
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hitoshi Furusho
- Chemical General Division, Nissan Chemical Industries, Ltd., 2-10-2 Tsuboi-nishi, Funabashi, Chiba 274-8507, Japan
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; JST, PRESTO, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.
| |
Collapse
|
22
|
Kotkowiak W, Wengel J, Scotton CJ, Pasternak A. Improved RE31 Analogues Containing Modified Nucleic Acid Monomers: Thermodynamic, Structural, and Biological Effects. J Med Chem 2019; 62:2499-2507. [PMID: 30735377 DOI: 10.1021/acs.jmedchem.8b01806] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RE31 is a 31-nt DNA aptamer, consisting of the G-quadruplex and a duplex domain, which is able to effectively prolong thrombin time. This article reports on the influence of certain modified nucleotide residues on thermodynamic and biological properties as well as the folding topology of RE31. Particularly, the effect of the presence of nucleosides in unlocked nucleic acid (UNA), locked nucleic acid (LNA), or β-l-RNA series was evaluated. The studies presented herein show that all modified residues can influence thermal and biological stabilities of G-quadruplex in a position-dependent manner. The aptamers modified simultaneously with UNA at the T15 position and LNAs in the duplex part possess the highest value of melting temperature and a 2-fold higher anticoagulant effect. Importantly, RE31 variants modified with nucleosides in UNA, LNA, or β-l-RNA series exhibit unchanged G-quadruplex folding topology. Crucially, introduction of any of the modified residues into RE31 causes prolongation of aptamer stability in human serum.
Collapse
Affiliation(s)
- Weronika Kotkowiak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry , Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| | - Jesper Wengel
- Department of Physics, Chemistry, and Pharmacy, Biomolecular Nanoscale Engineering Center , University of Southern Denmark , Campusvej 55 , Odense M 5230 , Denmark
| | - Chris J Scotton
- Institute of Biomedical and Clinical Science, College of Medicine & Health , University of Exeter, St Luke's Campus , Exeter EX1 2LU , U.K
| | - Anna Pasternak
- Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry , Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland
| |
Collapse
|
23
|
Park KS. Nucleic acid aptamer-based methods for diagnosis of infections. Biosens Bioelectron 2018; 102:179-188. [PMID: 29136589 PMCID: PMC7125563 DOI: 10.1016/j.bios.2017.11.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Infectious diseases are a serious global problem, which not only take an enormous human toll but also incur tremendous economic losses. In combating infectious diseases, rapid and accurate diagnostic tests are required for pathogen identification at the point of care (POC). In this review, investigations of diagnostic strategies for infectious diseases that are based on aptamers, especially nucleic acid aptamers, oligonucleotides that have high affinities and specificities toward their targets, are described. Owing to their unique features including low cost of production, easy chemical modification, high chemical stability, reproducibility, and low levels of immunogenicity and toxicity, aptamers have been widely utilized as bio-recognition elements (bio-receptors) for the development of infection diagnostic systems. We discuss nucleic acid aptamer-based methods that have been developed for diagnosis of infections using a format that organizes discussion according to the target pathogenic analytes including toxins or proteins, whole cells and nucleic acids. Also included is, a summary of recent advances made in the sensitive detection of pathogenic bacteria utilizing the isothermal nucleic acid amplification method. Lastly, a nucleic acid aptamer-based POC system is described and future directions of studies in this area are discussed.
Collapse
Affiliation(s)
- Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
24
|
Spiridonova VA, Novikova TM, Nikulina DM, Shishkina TA, Golubkina EV, Dyukareva OS, Trizno NN. Complex formation with protamine prolongs the thrombin-inhibiting effect of DNA aptamer in vivo. Biochimie 2017; 145:158-162. [PMID: 28935443 DOI: 10.1016/j.biochi.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/13/2017] [Indexed: 01/19/2023]
Abstract
Antithrombin DNA aptamersRE31 are single-chain oligonucleotides that fold into three-dimensional forms allowing them to bind the enzyme with high affinity and inhibit its activity in vivo. They are rapidly degraded by a nonspecific nuclease, and, to prolong the lifetime of the aptamer DNA in the bloodstream, it is necessary to coat it with a polymer envelope. A new approach to solving this problem based on preparation of DNA-polyelectrolyte complexes with a minimal particle size that can circulate with blood flow. In our experiments, the negatively charged aptamer DNA RE31 was coated step-by-step with positively charged protamine. They had protamine/aptamer ratios of 0.2/1 and 0.4/1 by charge, with particle size being determined by dynamic light scattering. The aptamer DNA-protamine complexes were administered to rats, followed by ex vivo analysis of blood samples. The results showed that prothrombin time (PT) increased by a factor of 5.6-6.7 within 2 h after injection and remained at approximately the same level for 6 h, while injections of pure protamine did not lead to any noticeable change in clotting time. Thus, complexation with protamine proved to prolong the inhibitory activity of the RE31 DNA aptamer.
Collapse
Affiliation(s)
- V A Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - T M Novikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - D M Nikulina
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| | - T A Shishkina
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| | - E V Golubkina
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| | - O S Dyukareva
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| | - N N Trizno
- Astrakhan State Medical University Ministry of Public Health of the Russian Federation, Astrakhan, Russia
| |
Collapse
|
25
|
Yokoyama T, Tsukakoshi K, Yoshida W, Saito T, Teramoto K, Savory N, Abe K, Ikebukuro K. Development of HGF-binding aptamers with the combination of G4 promoter-derived aptamer selection and in silico maturation. Biotechnol Bioeng 2017. [PMID: 28627727 DOI: 10.1002/bit.26354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We describe the selection of aptamers based on bioinformatics-based approaches without Systematic Evolution of Ligands by EXponential enrichment (SELEX). SELEX is a potent method; however, it is time intensive and the PCR-amplification step, which is essential step for SELEX, leads to the loss of good aptamers. We have developed an aptamer-screening method, G4 promoter-derived aptamer selection (G4PAS), and an aptamer-improving method, in silico maturation (ISM). They are based on in silico sequence selection and computer assisted directed evolution, respectively. In this study, we succeeded in identifying new aptamers against hepatocyte growth factor (HGF) by G4PAS as well as improving the specificity of the HGF aptamers by ISM. Using ISM improved the specificity of the aptamer for HGF by up to 45-fold in comparison with the original aptamer. These methods enable easy and efficient identification of good aptamers, and the combination of G4PAS with ISM can thus serve as a potent approach for aptamer identification. Biotechnol. Bioeng. 2017;114: 2196-2203. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomomi Yokoyama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wataru Yoshida
- School of Biotechnology and Bioscience, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Taiki Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kentaro Teramoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Koichi Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
26
|
Nunes ARD, Chavante SF, Rocha HAO, Lanza DCF. "In-House" Production of Single Stranded Oligodeoxyribonucleotides. Nucleic Acid Ther 2017; 27:115-120. [PMID: 28051347 DOI: 10.1089/nat.2016.0625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The most widely used technique for the production of DNA aptamers/oligonucleotides is chemical synthesis. Despite its effectiveness, this technique cannot be performed "in house", making the user fully dependent on a supplier. In this work, we present a simplified method by which it is possible to enzymatically produce DNA aptamers "in house". This new method uses the rolling circle replication followed by a unique cleavage step using the SchI endonuclease. Potentially, any oligonucleotide can be produced by the enzymatic method proposed in this study. To illustrate, we present the production of three variations of the 31-TBA aptamer, a single stranded DNA which has anticoagulant action.
Collapse
Affiliation(s)
- Allan R D Nunes
- 1 Laboratório de Biologia Molecular Aplicada-LAPLIC, Departamento de Bioquímica, Centro de Biocieências Universidade Federal do Rio Grande do Norte , Natal, Brazil .,2 Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Centro de Biocieências Universidade Federal do Rio Grande do Norte , Natal, Brazil
| | - Suely F Chavante
- 2 Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Centro de Biocieências Universidade Federal do Rio Grande do Norte , Natal, Brazil
| | - Hugo A O Rocha
- 2 Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Centro de Biocieências Universidade Federal do Rio Grande do Norte , Natal, Brazil
| | - Daniel C F Lanza
- 1 Laboratório de Biologia Molecular Aplicada-LAPLIC, Departamento de Bioquímica, Centro de Biocieências Universidade Federal do Rio Grande do Norte , Natal, Brazil .,2 Programa de Pós-Graduação em Bioquímica, Departamento de Bioquímica, Centro de Biocieências Universidade Federal do Rio Grande do Norte , Natal, Brazil
| |
Collapse
|
27
|
Zavyalova E, Tagiltsev G, Reshetnikov R, Arutyunyan A, Kopylov A. Cation Coordination Alters the Conformation of a Thrombin-Binding G-Quadruplex DNA Aptamer That Affects Inhibition of Thrombin. Nucleic Acid Ther 2016; 26:299-308. [PMID: 27159247 DOI: 10.1089/nat.2016.0606] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Thrombin-binding aptamers are promising anticoagulants. HD1 is a monomolecular antiparallel G-quadruplex with two G-quartets linked by three loops. Aptamer-thrombin interactions are mediated with two TT-loops that bind thrombin exosite I. Several cations were shown to be coordinated inside the G-quadruplex, including K+, Na+, NH4+, Ba2+, and Sr2+; on the contrary, Mn2+ was coordinated in the grooves, outside the G-quadruplex. K+ or Na+ coordination provides aptamer functional activity. The effect of other cations on aptamer functional activity has not yet been described, because of a lack of relevant tests. Interactions between aptamer HD1 and a series of cations were studied. A previously developed enzymatic method was applied to evaluate aptamer inhibitory activity. The structure-function correlation was studied using the characterization of G-quadruplex conformation by circular dichroism spectroscopy. K+ coordination provided the well-known high inhibitory activity of the aptamer, whereas Na+ coordination supported low activity. Although NH4+ coordination yielded a typical antiparallel G-quadruplex, no inhibitory activity was shown; a similar effect was observed for Ba2+ and Sr2+ coordination. Mn2+ coordination destabilized the G-quadruplex that drastically diminished aptamer inhibitory activity. Therefore, G-quadruplex existence per se is insufficient for aptamer inhibitory activity. To elicit the nature of these effects, we thoroughly analyzed nuclear magnetic resonance (NMR) and X-ray data on the structure of the HD1 G-quadruplex with various cations. The most reasonable explanation is that cation coordination changes the conformation of TT-loops, affecting thrombin binding and inhibition. HD1 counterparts, aptamers 31-TBA and NU172, behaved similarly with some distinctions. In 31-TBA, an additional duplex module stabilized antiparallel G-quadruplex conformation at high concentrations of divalent cations; whereas in NU172, a different sequence of loops in the G-quadruplex module provided an equilibrium of antiparallel and parallel G-quadruplexes that shifted with cation binding. In conclusion, structures of G-quadruplex aptamers are flexible enough and are fine-tuned with different cation coordination.
Collapse
Affiliation(s)
- Elena Zavyalova
- 1 Chemistry Department, Lomonosov Moscow State University , Moscow, Russia
| | - Grigory Tagiltsev
- 1 Chemistry Department, Lomonosov Moscow State University , Moscow, Russia
| | - Roman Reshetnikov
- 2 Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University , Moscow, Russia
| | - Alexander Arutyunyan
- 2 Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University , Moscow, Russia
| | - Alexey Kopylov
- 1 Chemistry Department, Lomonosov Moscow State University , Moscow, Russia
| |
Collapse
|
28
|
Methods for Improving Aptamer Binding Affinity. Molecules 2016; 21:421. [PMID: 27043498 PMCID: PMC6273865 DOI: 10.3390/molecules21040421] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/06/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022] Open
Abstract
Aptamers are single stranded oligonucleotides that bind a wide range of biological targets. Although aptamers can be isolated from pools of random sequence oligonucleotides using affinity-based selection, aptamers with high affinities are not always obtained. Therefore, further refinement of aptamers is required to achieve desired binding affinities. The optimization of primary sequences and stabilization of aptamer conformations are the main approaches to refining the binding properties of aptamers. In particular, sequence optimization using combined in silico sequence recombinations and in vitro functional evaluations is effective for the improvement of binding affinities, however, the binding affinities of aptamers are limited by the low hydrophobicity of nucleic acids. Accordingly, introduction of hydrophobic moieties into aptamers expands the diversity of interactions between aptamers and targets. Moreover, construction of multivalent aptamers by connecting aptamers that recognize distinct epitopes is an attractive approach to substantial increases in binding affinity. In addition, binding affinities can be tuned by optimizing the scaffolds of multivalent constructs. In this review, we summarize the various techniques for improving the binding affinities of aptamers.
Collapse
|
29
|
Russo Krauss I, Spiridonova V, Pica A, Napolitano V, Sica F. Different duplex/quadruplex junctions determine the properties of anti-thrombin aptamers with mixed folding. Nucleic Acids Res 2015; 44:983-91. [PMID: 26673709 PMCID: PMC4737158 DOI: 10.1093/nar/gkv1384] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/26/2015] [Indexed: 11/26/2022] Open
Abstract
Mixed duplex/quadruplex oligonucleotides have attracted great interest as therapeutic targets as well as effective biomedical aptamers. In the case of thrombin-binding aptamer (TBA), the addition of a duplex motif to the G-quadruplex module improves the aptamer resistance to biodegradation and the affinity for thrombin. In particular, the mixed oligonucleotide RE31 is significantly more effective than TBA in anticoagulation experiments and shows a slower disappearance rate in human plasma and blood. In the crystal structure of the complex with thrombin, RE31 adopts an elongated structure in which the duplex and quadruplex regions are perfectly stacked on top of each other, firmly connected by a well-structured junction. The lock-and-key shape complementarity between the TT loops of the G-quadruplex and the protein exosite I gives rise to the basic interaction that stabilizes the complex. However, our data suggest that the duplex motif may have an active role in determining the greater anti-thrombin activity in biological fluids with respect to TBA. This work gives new information on mixed oligonucleotides and highlights the importance of structural data on duplex/quadruplex junctions, which appear to be varied, unpredictable, and fundamental in determining the aptamer functional properties.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| | - Vera Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrea Pica
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| | - Valeria Napolitano
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples 'Federico II', Naples, Italy Institute of Biostructures and Bioimages, C.N.R, Naples, Italy
| |
Collapse
|
30
|
Reshetnikov R, Golovin A, Spiridonova V, Kopylov A, Šponer J. Structural Dynamics of Thrombin-Binding DNA Aptamer d(GGTTGGTGTGGTTGG) Quadruplex DNA Studied by Large-Scale Explicit Solvent Simulations. J Chem Theory Comput 2015; 6:3003-14. [PMID: 26616765 DOI: 10.1021/ct100253m] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The thrombin-binding aptamer (15-TBA) is a 15-mer DNA oligonucleotide with sequence d(GGTTGGTGTGGTTGG). 15-TBA folds into a quadruplex DNA (G-DNA) structure with two planar G-quartets connected by three single-stranded loops. The arrangement of the 15-TBA-thrombin complex is unclear, particularly with respect to the precise 15-TBA residues that interact with the thrombin structure. Our present understanding suggests either the 15-TBA single stranded loops containing sequential thymidines (TT) or alternatively a single-stranded loop, containing a guanine flanked by 2 thymidines (TGT), physically associates with thrombin protein. In the present study, the explicit solvent molecular dynamics (MD) simulation method was utilized to further analyze the 15-TBA-thrombin three-dimensional structure. Functional annotation of the loop residues was made with long simulations in the parmbsc0 force field. In total, the elapsed time of simulations carried out in this study exceeds 12 microseconds, substantially surpassing previous G-DNA simulation reports. Our simulations suggest that the TGT-loop function is to stabilize the structure of the aptamer, while the TT-loops participate in direct binding to thrombin. The findings of the present report advance our understanding of the molecular structure of the 15-TBA-thrombin structure further enabling the construction of biosensors for aptamer bases and the development of anticoagulant agents.
Collapse
Affiliation(s)
- Roman Reshetnikov
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Andrey Golovin
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Vera Spiridonova
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Alexei Kopylov
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| | - Jiří Šponer
- Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Department of Boiengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,A.N.Belozersky Institute of Physical Chemical Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Chemistry Department, Lomonosov Moscow State University, Gsp-1, Leninskie Gory, Moscow, 119991, Russian Federation.,Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic
| |
Collapse
|
31
|
Identification of RNA Oligonucleotides Binding to Several Proteins from Potential G-Quadruplex Forming Regions in Transcribed Pre-mRNA. Molecules 2015; 20:20832-40. [PMID: 26610452 PMCID: PMC6332122 DOI: 10.3390/molecules201119733] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes (G4s) are noncanonical DNA/RNA structures formed by guanine-rich sequences. Recently, G4s have been found not only in aptamers but also in the genomic DNA and transcribed RNA. In this study, we identified new RNA oligonucleotides working as aptamers by focusing on G4-forming RNAs located within the pre-mRNA. We showed that the G4 in the 5′ UTR and first intron of VEGFA bound to the protein encoded in VEGFA gene, VEGF165, with high affinity. Moreover, G4-forming RNAs located within the PDGFA and the PDGFB introns bound to PDGF-AA and PDGF-BB, respectively, indicating that G4 in the pre-mRNA could be an aptamer. It had been reported that the putative G4-forming RNA sequences are located in some parts of most genes, thus our strategy for aptamer identification could be applicable to other proteins. It has been reported that some G4-forming RNAs in 5′ UTRs are involved in translation control; however, G4-forming excised intronic RNA function has not been revealed previously. Therefore, these findings could not only contribute to the identification of RNA aptamers but also provide new insights into the biological functioning of G4-forming RNAs located within intronic RNA sequences.
Collapse
|
32
|
Fukaya T, Abe K, Savory N, Tsukakoshi K, Yoshida W, Ferri S, Sode K, Ikebukuro K. Improvement of the VEGF binding ability of DNA aptamers through in silico maturation and multimerization strategy. J Biotechnol 2015; 212:99-105. [PMID: 26302839 DOI: 10.1016/j.jbiotec.2015.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/25/2015] [Accepted: 08/17/2015] [Indexed: 11/28/2022]
Abstract
Aptamers are mainly selected by in vitro selection using random nucleic acid libraries. These aptamers have often shown insufficient affinity for biomedical applications. We improved DNA aptamer binding affinity for vascular endothelial growth factor (VEGF) through in silico maturation (ISM) and aptamer multimerization. ISM is one of a number of evolutionary approaches and aptamer multimerization is one of several semi-rational strategies to improve function. We first reselected VEGF-binding aptamers using a partially randomized DNA library and identified two aptamers with higher binding ability than that of a known aptamer. We conducted ISM using the re-selected aptamers to optimize the key loop sequences created by a three-way junction structure. After five ISM rounds, we identified aptamer 2G19 [dissociation constant (Kd), 52 nM] as a local optimum of the defined search space. We characterized the aptamer and found that a specific stem-loop structure was involved in aptamer VEGF recognition. To further improve its affinity for VEGF, we multimerized 2G19 or its stem-loop structure. The designed SL5-trivalent aptamer (Kd, 0.37 nM) with three binding motifs significantly increased binding affinity, representing a 500-fold improvement from systematic evolution of ligands by exponential enrichment-selected aptamers.
Collapse
Affiliation(s)
- Takahiro Fukaya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Koichi Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Wataru Yoshida
- School of Bioscience and Biotechnology, Tokyo University of Technology, Japan
| | - Stefano Ferri
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Japan.
| |
Collapse
|
33
|
Spiridonova VA, Barinova KV, Glinkina KA, Melnichuk AV, Gainutdynov AA, Safenkova IV, Dzantiev BB. A family of DNA aptamers with varied duplex region length that forms complexes with thrombin and prothrombin. FEBS Lett 2015; 589:2043-9. [PMID: 26143256 DOI: 10.1016/j.febslet.2015.06.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 06/06/2015] [Accepted: 06/22/2015] [Indexed: 01/25/2023]
Abstract
Structural properties determine binding affinities of DNA aptamers specific to thrombin. Our paper is the first to focus on a family of eight G-quadruplex-based aptamers with varied duplex region length (from two to eight base pairs). We have shown that the duplex, which is not the main binding domain, greatly influences the interaction with thrombin and prothrombin. Furthermore, the affinity of an aptamer to thrombin and prothrombin increases (respectively from 2.7×10⁻⁸ M to 5.6×10⁻¹⁰ M and from 1.8×10⁻⁵ M to 7.1×10⁻⁹ M) with an increase in the number of nucleotide pairs in the duplex region.
Collapse
Affiliation(s)
- V A Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - K V Barinova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - K A Glinkina
- Chemistry Department, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - A V Melnichuk
- Chemistry Department, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - A A Gainutdynov
- Chemistry Department, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - I V Safenkova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia
| | - B B Dzantiev
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia.
| |
Collapse
|
34
|
|
35
|
Huge BJ, Flaherty RJ, Dada OO, Dovichi NJ. Capillary electrophoresis coupled with automated fraction collection. Talanta 2014; 130:288-93. [PMID: 25159411 DOI: 10.1016/j.talanta.2014.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
A fraction collector based on a drop-on-demand ink-jet printer was developed to interface capillary zone electrophoresis with a 96 well microtiter plate. We first evaluated the performance of the collector by using capillary zone electrophoresis to analyze a 1mM solution of tetramethylrhodamine; a fluorescent microtiter plate reader was then used to detect the analyte and characterize fraction carryover between wells. Relative standard deviation in peak height was 20% and the relative standard deviation in migration time was 1%. The mean and standard deviation of the tetramethylrhodamine peak width was 5 ± 1 s and likely limited by the 4-s period between droplet deposition. We next injected a complex mixture of DNA fragments and used real-time PCR to quantify the product in a CE-SELEX experiment. The reconstructed electrophoretic peak was 27 s in duration. Finally, we repeated the experiment in the presence of a 30-µM thrombin solution under CE-SELEX conditions; fractions were collected and next-generation sequencing was used to characterize the DNA binders. Over 25,000 sequences were identified with close matches to known thrombin binding aptamers.
Collapse
Affiliation(s)
- Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan J Flaherty
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Oluwatosin O Dada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
36
|
Savory N, Takahashi Y, Tsukakoshi K, Hasegawa H, Takase M, Abe K, Yoshida W, Ferri S, Kumazawa S, Sode K, Ikebukuro K. Simultaneous improvement of specificity and affinity of aptamers against Streptococcus mutans by in silico maturation for biosensor development. Biotechnol Bioeng 2013; 111:454-61. [PMID: 24018905 DOI: 10.1002/bit.25111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/27/2013] [Accepted: 09/03/2013] [Indexed: 01/23/2023]
Abstract
In silico evolution with an in vitro system can facilitate the development of functional aptamers with high specificity and affinity. Although a general technique known as systematic evolution of ligand by exponential enrichment (SELEX) is an efficient method for aptamer selection, it sometimes fails to identify aptamers with sufficient binding properties. We have previously developed in silico maturation (ISM) to improve functions of aptamers based on genetic algorithms. ISM represents an intelligent exploitation of a random search within a defined sequence space to optimize aptamer sequences and improve their function of interest. Here we demonstrated a successful application of ISM of aptamers to simultaneously improve specificity and affinity for Streptococcus mutans with discovery of a core sequence, which was required to form a polymerized guanine quadruplex structure for target binding. We applied ISM to aptamers selected by whole-cell SELEX and identified an aptamer with up to 16-fold improvement in affinity compared to its parent aptamers, and specificity was increased to show 12-fold more binding to S. mutans than to Lactobacillus acidophilus. Furthermore, we demonstrated a specific flow-through detection of S. mutans at a concentration range of 1 × 10(5) -10(8) CFU/mL using the evolved aptamer immobilized on gold colloids.
Collapse
Affiliation(s)
- Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yoshida W, Saito T, Yokoyama T, Ferri S, Ikebukuro K. Aptamer selection based on G4-forming promoter region. PLoS One 2013; 8:e65497. [PMID: 23750264 PMCID: PMC3672139 DOI: 10.1371/journal.pone.0065497] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
We developed a method for aptamer identification without in vitro selection. We have previously obtained several aptamers, which may fold into the G-quadruplex (G4) structure, against target proteins; therefore, we hypothesized that the G4 structure would be an excellent scaffold for aptamers to recognize the target protein. Moreover, the G4-forming sequence contained in the promoter region of insulin can reportedly bind to insulin. We thus expected that G4 DNAs, which are contained in promoter regions, could act as DNA aptamers against their gene products. We designated this aptamer identification method as “G4 promoter-derived aptamer selection (G4PAS).” Using G4PAS, we identified vascular endothelial growth factor (VEGF)165, platelet-derived growth factor-AA (PDGF)-AA, and RB1 DNA aptamers. Surface plasmon resonance (SPR) analysis revealed that the dissociation constant (Kd) values of VEGF165, PDGF-AA, and RB1 DNA aptamers were 1.7 × 10−7 M, 6.3 × 10−9 M, and 4.4 × 10−7 M, respectively. G4PAS is a simple and rapid method of aptamer identification because it involves only binding analysis of G4 DNAs to the target protein. In the human genome, over 40% of promoters contain one or more potential G4 DNAs. G4PAS could therefore be applied to identify aptamers against target proteins that contain G4 DNAs on their promoters.
Collapse
Affiliation(s)
- Wataru Yoshida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Taiki Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Tomomi Yokoyama
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
| | - Stefano Ferri
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Koganei, Tokyo, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, Koganei, Tokyo, Japan
- Japan Science and Technology Agency, CREST, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Savory N, Lednor D, Tsukakoshi K, Abe K, Yoshida W, Ferri S, Jones BV, Ikebukuro K. In silico maturation of binding-specificity of DNA aptamers against Proteus mirabilis. Biotechnol Bioeng 2013; 110:2573-80. [PMID: 23568752 DOI: 10.1002/bit.24922] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/27/2013] [Accepted: 03/29/2013] [Indexed: 01/23/2023]
Abstract
Proteus mirabilis is a prominent cause of catheter-associated urinary tract infections (CAUTIs) among patients undergoing long-term bladder catheterization. There are currently no effective means of preventing P. mirabilis infections, and strategies for prophylaxis and rapid early diagnosis are urgently required. Aptamers offer significant potential for development of countermeasures against P. mirabilis CAUTI and are an ideal class of molecules for the development of diagnostics and therapeutics. Here we demonstrate the application of Cell-SELEX to identify DNA aptamers that show high affinity for P. mirabilis. While the aptamers identified displayed high affinity for P. mirabilis cells in dot blotting assays, they also bound to other uropathogenic bacteria. To improve aptamer specificity for P. mirabilis, an in silico maturation (ISM) approach was employed. Two cycles of ISM allowed the identification of an aptamer showing 36% higher specificity, evaluated as a ratio of binding signal for P. mirabilis to that for Escherichia coli (also a cause of CAUTI and the most common urinary tract pathogen). Aptamers that specifically recognize P. mirabilis would have diagnostic and therapeutic values and constitute useful tools for studying membrane-associated proteins in this organism.
Collapse
Affiliation(s)
- Nasa Savory
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yoshida W, Yamamoto H, Ikebukuro K. An Optical Biosensing System Based on Interference-Enhanced Reflection with Aptameric Enzyme Subunits of Thrombin. ANAL LETT 2013. [DOI: 10.1080/00032719.2012.718828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
40
|
Nonaka Y, Yoshida W, Abe K, Ferri S, Schulze H, Bachmann TT, Ikebukuro K. Affinity improvement of a VEGF aptamer by in silico maturation for a sensitive VEGF-detection system. Anal Chem 2012; 85:1132-7. [PMID: 23237717 DOI: 10.1021/ac303023d] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is an efficient method to identify aptamers; however, it sometimes fails to identify aptamers that bind to their target with high affinity. Thus, post-SELEX optimization of aptamers is required to improve aptamer binding affinity. We developed in silico maturation based on a genetic algorithm (1) as an efficient mutagenesis method to improve aptamer binding affinity. In silico maturation was performed to improve a VEGF-binding DNA aptamer (VEap121). The VEap121 aptamer is considered to fold into a G-quadruplex structure and this structure may be important for VEGF recognition. Using in silico maturation, VEap121 was mutated with the exception of the guanine tracts that are considered to form the G-quartet. As a result, four aptamers were obtained that showed higher affinity compared with VEap121. The dissociation constant (K(d)) of the most improved aptamer (3R02) was 300 pM. The affinity of 3R02 was 16-fold higher than that of VEap121. Moreover, a bivalent aptamer was constructed by connecting two identical 3R02s through a 10-mer thymine linker for further improvement of affinity. The bivalent aptamer (3R02 Bivalent) bound to VEGF with a K(d) value of 30 pM. Finally, by constructing a VEGF-detection system using a VEGF antibody as the capture molecule and monovalent 3R02 as the detection molecule, a more sensitive assay was developed compared with the system using VEap121. These results indicate that in silico maturation could be an efficient method to improve aptamer affinity for construction of sensitive detection systems.
Collapse
Affiliation(s)
- Yoshihiko Nonaka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Dolinnaya NG, Yuminova AV, Spiridonova VA, Arutyunyan AM, Kopylov AM. Coexistence of G-quadruplex and duplex domains within the secondary structure of 31-mer DNA thrombin-binding aptamer. J Biomol Struct Dyn 2012; 30:524-31. [PMID: 22734515 DOI: 10.1080/07391102.2012.687518] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A number of thrombin-binding DNA aptamers have been developed during recent years. So far the structure of just a single one, 15-mer thrombin-binding aptamer (15TBA), has been solved as G-quadruplex. Structures of others, showing variable anticoagulation activities, are still not known yet. In this paper, we applied the circular dichroism and UV spectroscopy to characterize the temperature unfolding and conformational features of 31-mer thrombin-binding aptamer (31TBA), whose sequence has a potential to form G-quadruplex and duplex domains. Both structural domains were monitored independently in 31TBA and in several control oligonucleotides unable to form either the duplex region or the G-quadruplex region. The major findings are as follows: (1) both duplex and G-quadruplex domains coexist in intramolecular structure of 31TBA, (2) the formation of duplex domain does not change the fold of G-quadruplex, which is very similar to that of 15TBA, and (3) the whole 31TBA structure disrupts if either of two domains is not formed: the absence of duplex structure in 31TBA abolishes G-quadruplex, and vice versa, the lack of G-quadruplex folding results in disallowing the duplex domain.
Collapse
Affiliation(s)
- N G Dolinnaya
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | | |
Collapse
|
42
|
Abstract
Characteristics of a new antithrombin DNA-aptamer RE31 were studied. This aptamer inhibited thrombin formation in human plasma catalyzed by exogenous (lengthening of thrombin time) and endogenous thrombin (lengthening of partial prothrombin time and activated partial thromboplastin time). In addition, the aptamer completely suppressed thrombin-induced aggregation of human platelets. On the other hand, RE31 did not reduce amidolytic activity of thrombin towards the short peptide substrate, in other words, did not modify the state of enzyme active center. By the capacity to inhibit clotting reactions, RE31 was superior to the previously described highly effective 31-component antithrombin aptamer 31TBA (thrombin binding aptamer, TBA). The effect of RE31 was species-specific: it inhibited human thrombin activity more effectively than activities of rat and rabbit thrombins.
Collapse
|
43
|
Yuminova AV, Spiridonova VA, Arutyunyan AM, Kopylov AM. Structural study of thrombin binding DNA aptamers by the circular dichroism. DOKL BIOCHEM BIOPHYS 2012; 442:36-8. [PMID: 22419092 DOI: 10.1134/s1607672912010115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Indexed: 11/22/2022]
Affiliation(s)
- A V Yuminova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119992, Russia
| | | | | | | |
Collapse
|
44
|
Winters-Hilt S, Horton-Chao E, Morales E. The NTD Nanoscope: potential applications and implementations. BMC Bioinformatics 2011; 12 Suppl 10:S21. [PMID: 22166072 PMCID: PMC3236844 DOI: 10.1186/1471-2105-12-s10-s21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Nanopore transduction detection (NTD) offers prospects for a number of highly sensitive and discriminative applications, including: (i) single nucleotide polymorphism (SNP) detection; (ii) targeted DNA re-sequencing; (iii) protein isoform assaying; and (iv) biosensing via antibody or aptamer coupled molecules. Nanopore event transduction involves single-molecule biophysics, engineered information flows, and nanopore cheminformatics. The NTD Nanoscope has seen limited use in the scientific community, however, due to lack of information about potential applications, and lack of availability for the device itself. Meta Logos Inc. is developing both pre-packaged device platforms and component-level (unassembled) kit platforms (the latter described here). In both cases a lipid bi-layer workstation is first established, then augmentations and operational protocols are provided to have a nanopore transduction detector. In this paper we provide an overview of the NTD Nanoscope applications and implementations. The NTD Nanoscope Kit, in particular, is a component-level reproduction of the standard NTD device used in previous research papers. RESULTS The NTD Nanoscope method is shown to functionalize a single nanopore with a channel current modulator that is designed to transduce events, such as binding to a specific target. To expedite set-up in new lab settings, the calibration and troubleshooting for the NTD Nanoscope kit components and signal processing software, the NTD Nanoscope Kit, is designed to include a set of test buffers and control molecules based on experiments described in previous NTD papers (the model systems briefly described in what follows). The description of the Server-interfacing for advanced signal processing support is also briefly mentioned. CONCLUSIONS SNP assaying, SNP discovery, DNA sequencing and RNA-seq methods are typically limited by the accuracy of the error rate of the enzymes involved, such as methods involving the polymerase chain reaction (PCR) enzyme. The NTD Nanoscope offers a means to obtain higher accuracy as it is a single-molecule method that does not inherently involve use of enzymes, using a functionalized nanopore instead.
Collapse
Affiliation(s)
- Stephen Winters-Hilt
- Dept of Computer Science, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA.
| | | | | |
Collapse
|
45
|
Zavyalova EG, Protopopova AD, Yaminsky IV, Kopylov AM. Kinetic characterization of inhibition of human thrombin with DNA aptamers by turbidimetric assay. Anal Biochem 2011; 421:234-9. [PMID: 22056408 DOI: 10.1016/j.ab.2011.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
Abstract
A sensitive turbidimetric method for detecting fibrin association was used to study the kinetics of fibrinogen hydrolysis with thrombin. The data were complemented by high-performance liquid chromatography (HPLC) measurements of the peptide products, fibrinopeptides released during hydrolysis. Atomic force microscopy (AFM) data showed that the fibril diameter is the main geometric parameter influencing the turbidity. The turbidimetric assay was validated using thrombin with the standard activity. To study thrombin inhibitors, a kinetic model that allows estimating the inhibition constants and the type of inhibition was proposed. The kinetic model was used to study the inhibitory activity of the two DNA aptamers 15-TBA (thrombin-binding aptamer) and 31-TBA, which bind to thrombin exosites. For the first time, 31-TBA was shown to possess the competitive inhibition type, whereas the shortened aptamer 15-TBA has the noncompetitive inhibition type.
Collapse
Affiliation(s)
- Elena G Zavyalova
- Department of Chemistry, M V Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | | | | | | |
Collapse
|
46
|
Taira K, Abe K, Ishibasi T, Sato K, Ikebukuro K. Control of aptamer function using radiofrequency magnetic field. J Nucleic Acids 2011; 2011:103872. [PMID: 21860781 PMCID: PMC3157031 DOI: 10.4061/2011/103872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022] Open
Abstract
Remote control of aptamer function has allowed us to control protein function in space and time. Here, we propose a novel control system for aptamer function by radiofrequency magnetic field- (RFMF-) induced local heating of a gold nanoparticle conjugated with an aptamer. In this study, we used a 31-mer thrombin-binding aptamer (TBA), which can inhibit thrombin activity, as a model aptamer. We evaluated the RFMF control of the inhibitory activity of a gold nanoparticle-conjugated TBA. To evaluate the effect of RFMF on enzymatic activity, we utilized a complementary DNA strand that maintains the broken structure during the activity assay. We observed a decrease in the inhibitory activity of TBA after RFMF irradiation. It indicates that RFMF is capable of controlling the TBA structure. Because RFMF allows noninvasive control of aptamer function, this strategy is expected to be novel way of controlling aptamer drug activity.
Collapse
Affiliation(s)
- Kenichi Taira
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | | | | | | | | |
Collapse
|
47
|
Tsukakoshi K, Ogasawara D, Takahashi E, Katayama R, Ikebukuro K. Non-label homogeneous protein detection based on laser interferometric photo-thermal displacement measurement using aptamers. Biotechnol J 2011; 6:101-6. [PMID: 21086453 DOI: 10.1002/biot.201000158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photo-thermal displacement measurement by laser interferometry involves the measurement of temperature change caused by illumination of the sample. To develop a system of detecting unlabeled homogeneous proteins based on laser interferometric measurement of photo-thermal displacement, we studied the interaction between aptamers and their target molecules by using thrombin and the thrombin aptamer as a model target and ligand, respectively. Because of the energy consumed by aptamer-thrombin interactions, the signals obtained from solutions containing aptamer-thrombin mixtures varied depending on the thrombin concentration. We propose that this method involving the use of aptamers and photo-thermal displacement measurement will provide a biomolecular detection system for rapid diagnosis.
Collapse
Affiliation(s)
- Kaori Tsukakoshi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | | | | | | | | |
Collapse
|
48
|
Abe K, Ogasawara D, Yoshida W, Sode K, Ikebukuro K. Aptameric sensors based on structural change for diagnosis. Faraday Discuss 2011; 149:93-105; discussion 137-57. [PMID: 21413176 DOI: 10.1039/c005359g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aptamers are nucleic acids that can bind to various molecules. Because they have some features that are lacking in antibodies, aptamers could serve as alternatives to antibodies. For the purpose of biosensing, we focused on aptamers that undergo structural changes on binding to their target molecules. We constructed an aptamer-based bound/free (B/F) separation system that uses a designed aptamer named the "capturable aptamer". The capturable aptamer changes its structure upon recognizing its target molecule thereby exposing a specific single-strand region. The oligonucleotide that is complementary to this exposed region, named the "capture DNA" is immobilized on a support. This design permits the exclusive capture by the capture DNA of the aptamer bound to its target, and subsequent removal of any unbound aptamer and contaminants by B/F separation. The removal of unbound contaminants or aptamers results in highly sensitive detection at similar levels to those achievable by sandwich-based immunoassay. We describe the construction of a thrombin-detection system by using a capturable aptamer, and we discuss the potential of capturable aptamers in clinical diagnostics.
Collapse
Affiliation(s)
- Koichi Abe
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
| | | | | | | | | |
Collapse
|
49
|
Reshetnikov RV, Golovin AV, Kopylov AM. Comparison of models of thrombin-binding 15-mer DNA aptamer by molecular dynamics simulation. BIOCHEMISTRY (MOSCOW) 2011; 75:1017-24. [PMID: 21073423 DOI: 10.1134/s0006297910080109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two models of 15-mer thrombin-binding DNA aptamer (15TGT) were comparatively analyzed by molecular dynamics simulation using the GROMACS software package. The two original models of 15TGT were obtained by NMR and X-ray analyses. The models significantly differ in the topology of loops and the direction of oligodeoxyribonucleotide chain. The evolution of the two structures in parm99 force fields and parmbsc0 optimized for nucleic acids was analyzed in our adaptation of GROMACS architecture. It is shown that the best system for description of the 15TGT structure is the model obtained by X-ray analysis in the parmbsc0 force field.
Collapse
Affiliation(s)
- R V Reshetnikov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | | | | |
Collapse
|
50
|
Zhang Y, Li B, Yan C, Fu L. One-pot fluorescence detection of multiple analytes in homogenous solution based on noncovalent assembly of single-walled carbon nanotubes and aptamers. Biosens Bioelectron 2011; 26:3505-10. [PMID: 21371876 DOI: 10.1016/j.bios.2011.01.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/18/2011] [Accepted: 01/31/2011] [Indexed: 12/29/2022]
Abstract
We have developed a new multicolor fluorescent sensing system to detect multiple analytes in one pot. This design is based on the noncovalent assembly of dye-labeled aptamer with single-walled carbon nanotubes (SWNTs) by π-stacking between the nucleotide bases and the SWNTs sidewalls. In the presence of the targets, the aptamer-target binding separates the assembly of dye-labeled aptamers and SWNTs, resulting in the restoration of fluorescence signal of the dye labeled with aptamers. As a proof of concept, we demonstrate that a two-color fluorescent system can simultaneously and selectively detect two targets (thrombin and adenosine triphosphate) in a single solution. Since the method is mix-and-detect manner, the present strategy is simple and cost-effective.
Collapse
Affiliation(s)
- Yuanfu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | | | | | | |
Collapse
|