1
|
Ward S, Childs A, Staley C, Waugh C, Watts JA, Kotowska AM, Bhosale R, Borkar AN. Integrating cryo-OrbiSIMS with computational modelling and metadynamics simulations enhances RNA structure prediction at atomic resolution. Nat Commun 2024; 15:4367. [PMID: 38777820 PMCID: PMC11111741 DOI: 10.1038/s41467-024-48694-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
The 3D architecture of RNAs governs their molecular interactions, chemical reactions, and biological functions. However, a large number of RNAs and their protein complexes remain poorly understood due to the limitations of conventional structural biology techniques in deciphering their complex structures and dynamic interactions. To address this limitation, we have benchmarked an integrated approach that combines cryogenic OrbiSIMS, a state-of-the-art solid-state mass spectrometry technique, with computational methods for modelling RNA structures at atomic resolution with enhanced precision. Furthermore, using 7SK RNP as a test case, we have successfully determined the full 3D structure of a native RNA in its apo, native and disease-remodelled states, which offers insights into the structural interactions and plasticity of the 7SK complex within these states. Overall, our study establishes cryo-OrbiSIMS as a valuable tool in the field of RNA structural biology as it enables the study of challenging, native RNA systems.
Collapse
Affiliation(s)
- Shannon Ward
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Alex Childs
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Ceri Staley
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Christopher Waugh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, LE12 5RD, UK
- RHy-X Limited, London, WC2A 2JR, UK
| | - Julie A Watts
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anna M Kotowska
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rahul Bhosale
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Aditi N Borkar
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, LE12 5RD, UK.
- Wolfson Centre for Global Virus Research, University of Nottingham, Nottingham, LE12 5RD, UK.
- RHy-X Limited, London, WC2A 2JR, UK.
| |
Collapse
|
2
|
Krochtová K, Janovec L, Bogárová V, Halečková A, Kožurková M. Interaction of 3,9-disubstituted acridine with single stranded poly(rA), double stranded poly(rAU) and triple stranded poly(rUAU): molecular docking - A spectroscopic tandem study. Chem Biol Interact 2024; 394:110965. [PMID: 38552767 DOI: 10.1016/j.cbi.2024.110965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024]
Abstract
RNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.7-6.2 × 104 mol dm-3. The fluorescence and circular dichroism titration assays revealed considerable changes. The most significant results in terms of interpreting the nature of the interactions were the melting temperatures of the RNA samples in complexes with the 1. In the case of poly(rA), denaturation resulted in a self-structure formation; increased stabilization was observed for poly(rAU), while the melting points of the ligand-poly(rUAU) complex showed significant destabilization as a result of the interaction. The principles of molecular mechanics were applied to propose the non-bonded interactions within the binding complex, pentariboadenylic acid and acridine ligand as the study model. Initial molecular docking provided the input structure for advanced simulation techniques. Molecular dynamics simulation and cluster analysis reveal π - π stacking and the hydrogen bonds formation as the main forces that can stabilize the binding complex. Subsequent MM-GBSA calculations showed negative binding enthalpy accompanied the complex formation and proposed the most preferred conformation of the interaction complex.
Collapse
Affiliation(s)
- Kristína Krochtová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Ladislav Janovec
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Viktória Bogárová
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Annamária Halečková
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Šrobárova 2, 041 54, Košice, Slovak Republic.
| |
Collapse
|
3
|
Sun S, Gao L. Contrastive pre-training and 3D convolution neural network for RNA and small molecule binding affinity prediction. Bioinformatics 2024; 40:btae155. [PMID: 38507691 PMCID: PMC11007238 DOI: 10.1093/bioinformatics/btae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
MOTIVATION The diverse structures and functions inherent in RNAs present a wealth of potential drug targets. Some small molecules are anticipated to serve as leading compounds, providing guidance for the development of novel RNA-targeted therapeutics. Consequently, the determination of RNA-small molecule binding affinity is a critical undertaking in the landscape of RNA-targeted drug discovery and development. Nevertheless, to date, only one computational method for RNA-small molecule binding affinity prediction has been proposed. The prediction of RNA-small molecule binding affinity remains a significant challenge. The development of a computational model is deemed essential to effectively extract relevant features and predict RNA-small molecule binding affinity accurately. RESULTS In this study, we introduced RLaffinity, a novel deep learning model designed for the prediction of RNA-small molecule binding affinity based on 3D structures. RLaffinity integrated information from RNA pockets and small molecules, utilizing a 3D convolutional neural network (3D-CNN) coupled with a contrastive learning-based self-supervised pre-training model. To the best of our knowledge, RLaffinity was the first deep learning based method for the prediction of RNA-small molecule binding affinity. Our experimental results exhibited RLaffinity's superior performance compared to baseline methods, revealed by all metrics. The efficacy of RLaffinity underscores the capability of 3D-CNN to accurately extract both global pocket information and local neighbor nucleotide information within RNAs. Notably, the integration of a self-supervised pre-training model significantly enhanced predictive performance. Ultimately, RLaffinity was also proved as a potential tool for RNA-targeted drugs virtual screening. AVAILABILITY AND IMPLEMENTATION https://github.com/SaisaiSun/RLaffinity.
Collapse
Affiliation(s)
- Saisai Sun
- School of Computer Science and Technology, Xidian University, No.266 Xinglong Section of Xi Feng Road, Xi’an, Shaanxi, 710126, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, No.266 Xinglong Section of Xi Feng Road, Xi’an, Shaanxi, 710126, China
| |
Collapse
|
4
|
Schrott S, Osman C. Two mitochondrial HMG-box proteins, Cim1 and Abf2, antagonistically regulate mtDNA copy number in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:11813-11835. [PMID: 37850632 PMCID: PMC10681731 DOI: 10.1093/nar/gkad849] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023] Open
Abstract
The mitochondrial genome, mtDNA, is present in multiple copies in cells and encodes essential subunits of oxidative phosphorylation complexes. mtDNA levels have to change in response to metabolic demands and copy number alterations are implicated in various diseases. The mitochondrial HMG-box proteins Abf2 in yeast and TFAM in mammals are critical for mtDNA maintenance and packaging and have been linked to mtDNA copy number control. Here, we discover the previously unrecognized mitochondrial HMG-box protein Cim1 (copy number influence on mtDNA) in Saccharomyces cerevisiae, which exhibits metabolic state dependent mtDNA association. Surprisingly, in contrast to Abf2's supportive role in mtDNA maintenance, Cim1 negatively regulates mtDNA copy number. Cells lacking Cim1 display increased mtDNA levels and enhanced mitochondrial function, while Cim1 overexpression results in mtDNA loss. Intriguingly, Cim1 deletion alleviates mtDNA maintenance defects associated with loss of Abf2, while defects caused by Cim1 overexpression are mitigated by simultaneous overexpression of Abf2. Moreover, we find that the conserved LON protease Pim1 is essential to maintain low Cim1 levels, thereby preventing its accumulation and concomitant repressive effects on mtDNA. We propose a model in which the protein ratio of antagonistically acting Cim1 and Abf2 determines mtDNA copy number.
Collapse
Affiliation(s)
- Simon Schrott
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, Planegg-Martinsried 82152, Germany
| |
Collapse
|
5
|
Mukherjee S, Dasgupta S, Panja SS, Adhikari U. Structural insight to human Retinoid X receptor alpha-Thyroid hormone receptor beta heterodimer by molecular modelling and MD-simulation studies: role of conserved water molecules. J Biomol Struct Dyn 2023; 41:9828-9839. [PMID: 36411737 DOI: 10.1080/07391102.2022.2147097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
The Retinoid X receptor alpha-Thyroid hormone receptor beta (RXRα-THRβ) heterodimer plays an important role in physiological function of humans specially in the growth and development. Extensive MD-simulation studies on the aquated complexes of modelled RXRα-THRβ heterodimer with DNA-duplex have indicated the role of some conserved/semiconserved water molecules in the complexation process in presence or absence of Triiodothyronine (T3) and 9-cis retinoic acid (9CR) in the respective Ligand Binding Domain (LBD) domain. Among the seventeen conserved/semi-conserved water molecules, the W1-W4 water centers have been observed to mediate the interaction between the residues of A-chain (DBD of RXR) to consensus sequence (C-chain) of DNA. The W5-W8 water centers involve in recognition of the residues of B-chain (DBD of THR) to C-chain of DNA. The W9-W13 centers have connected the different residues of B-chain (THR) to D-chain of DNA through H-bonds, whereas W14-W17 water molecules were involved in the interaction of A-chain's (RXR) residues to D-chain of DNA. In our previous study with homodimeric THRβ from Rattus norvegicus we have identified fifteen conserved water molecules at the DNA-DBD interface. Moreover, the conformational flexibility of Met313 (in the LBD of THR) from open to close form in presence or absence of T3 molecule in the holo and Apo-protein may provide a plausible rational on the possible role of that residue to acts as gate which could restrict the solvent molecules to enter into the hydrophobic T3-binding pocket of LBD during the absence of ligand molecule and thus could help the stabilization of that domain in THRβ structure.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumita Mukherjee
- Department of Chemistry, National Institute of Technology-Durgapur, West Bengal, India
| | - Subrata Dasgupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sujit Sankar Panja
- Department of Chemistry, National Institute of Technology-Durgapur, West Bengal, India
| | - Utpal Adhikari
- Department of Chemistry, National Institute of Technology-Durgapur, West Bengal, India
| |
Collapse
|
6
|
Ogbonna E, Paul A, Farahat AA, Terrell JR, Mineva E, Ogbonna V, Boykin DW, Wilson WD. X-ray Structure Characterization of the Selective Recognition of AT Base Pair Sequences. ACS BIO & MED CHEM AU 2023; 3:335-348. [PMID: 37599788 PMCID: PMC10436263 DOI: 10.1021/acsbiomedchemau.3c00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 08/22/2023]
Abstract
The rational design of small molecules that target specific DNA sequences is a promising strategy to modulate gene expression. This report focuses on a diamidinobenzimidazole compound, whose selective binding to the minor groove of AT DNA sequences holds broad significance in the molecular recognition of AT-rich human promoter sequences. The objective of this study is to provide a more detailed and systematized understanding, at an atomic level, of the molecular recognition mechanism of different AT-specific sequences by a rationally designed minor groove binder. The specialized method of X-ray crystallography was utilized to investigate how the sequence-dependent recognition properties in general, A-tract, and alternating AT sequences affect the binding of diamidinobenzimidazole in the DNA minor groove. While general and A-tract AT sequences give a narrower minor groove, the alternating AT sequences intrinsically have a wider minor groove which typically constricts upon binding. A strong and direct hydrogen bond between the N-H of the benzimidazole and an H-bond acceptor atom in the minor groove is essential for DNA recognition in all sequences described. In addition, the diamidine compound specifically utilizes an interfacial water molecule for its DNA binding. DNA complexes of AATT and AAAAAA recognition sites show that the diamidine compound can bind in two possible orientations with a preference for water-assisted hydrogen bonding at either cationic end. The complex structures of AAATTT, ATAT, ATATAT, and AAAA are bound in a singular orientation. Analysis of the helical parameters shows a minor groove expansion of about 1 Å across all the nonalternating DNA complexes. The results from this systematic approach will convey a greater understanding of the specific recognition of a diverse array of AT-rich sequences by small molecules and more insight into the design of small molecules with enhanced specificity to AT and mixed DNA sequences.
Collapse
Affiliation(s)
- Edwin
N. Ogbonna
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Ananya Paul
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Abdelbasset A. Farahat
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Master
of Pharmaceutical Sciences Program, California
North State University, 9700 W Taron Dr., Elk Grove, California 95757, United States
| | - J. Ross Terrell
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Ekaterina Mineva
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - Victor Ogbonna
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - David W Boykin
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| | - W. David Wilson
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303-3083, United States
| |
Collapse
|
7
|
Alemany-Chavarria M, Rodríguez-Guerra J, Maréchal JD. TALAIA: a 3D visual dictionary for protein structures. Bioinformatics 2023; 39:btad476. [PMID: 37549048 PMCID: PMC10423020 DOI: 10.1093/bioinformatics/btad476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/30/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
MOTIVATION Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on physicochemical aspects but be insufficiently detailed regarding shapes (e.g. entity beans-like models in coarse grain approaches) or simple properties of amino acids (e.g. representation of superficial electrostatic properties). In this work, we present TALAIA a visual dictionary that aims to provide another layer of structural representations.TALAIA offers a visual grammar that combines simple representations of amino acids while retaining their general geometry and physicochemical properties. It uses unique objects, with differentiated shapes and colors to represent amino acids. It makes easier to spot crucial molecular information, including patches of amino acids or key interactions between side chains. Most conventions used in TALAIA are standard in chemistry and biochemistry, so experimentalists and modelers can rapidly grasp the meaning of any TALAIA depiction. RESULTS We propose TALAIA as a tool that renders protein structures and encodes structure and physicochemical aspects as a simple visual grammar. The approach is fast, highly informative, and intuitive, allowing the identification of possible interactions, hydrophobic patches, and other characteristic structural features at first glance. The first implementation of TALAIA can be found at https://github.com/insilichem/talaia.
Collapse
Affiliation(s)
- Mercè Alemany-Chavarria
- Insilichem, Department of chemistry, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Jaime Rodríguez-Guerra
- Insilichem, Department of chemistry, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | - Jean-Didier Maréchal
- Insilichem, Department of chemistry, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
8
|
Krochtová K, Halečková A, Janovec L, Blizniaková M, Kušnírová K, Kožurková M. Novel 3,9-Disubstituted Acridines with Strong Inhibition Activity against Topoisomerase I: Synthesis, Biological Evaluation and Molecular Docking Study. Molecules 2023; 28:1308. [PMID: 36770975 PMCID: PMC9921529 DOI: 10.3390/molecules28031308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
A series of novel 3,9-disubstituted acridines were synthesized and their biological potential was investigated. The synthetic plan consists of eight reaction steps, which produce the final products, derivatives 17a-17j, in a moderate yield. The principles of cheminformatics and computational chemistry were applied in order to study the relationship between the physicochemical properties of the 3,9-disubstituted acridines and their biological activity at a cellular and molecular level. The selected 3,9-disubstituted acridine derivatives were studied in the presence of DNA using spectroscopic (UV-Vis, circular dichroism, and thermal denaturation) and electrophoretic (nuclease activity, relaxation and unwinding assays for topoisomerase I and decatenation assay for topoisomerase IIα) methods. Binding constants (2.81-9.03 × 104 M-1) were calculated for the derivatives from the results of the absorption titration spectra. The derivatives were found to have caused the inhibition of both topoisomerase I and topoisomerase IIα. Molecular docking simulations suggested a different way in which the acridines 17a-17j can interact with topoisomerase I versus topoisomerase IIα. A strong correlation between the lipophilicity of the derivatives and their ability to stabilize the intercalation complex was identified for all of the studied agents. Acridines 17a-17j were also subjected to in vitro screening conducted by the Developmental Therapeutic Program of the National Cancer Institute (NCI) against a panel of 60 cancer cell lines. The strongest biological activity was displayed by aniline acridine 17a (MCF7-GI50 18.6 nM) and N,N-dimethylaniline acridine 17b (SR-GI50 38.0 nM). The relationship between the cytostatic activity of the most active substances (derivatives 17a, 17b, and 17e-17h) and their values of KB, LogP, ΔS°, and δ was also investigated. Due to the fact that a significant correlation was only found in the case of charge density, δ, it is possible to assume that the cytostatic effect might be dependent upon the structural specificity of the acridine derivatives.
Collapse
Affiliation(s)
- Kristína Krochtová
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia
| | - Annamária Halečková
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia
| | - Ladislav Janovec
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia
| | - Michaela Blizniaková
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia
| | - Katarína Kušnírová
- Department of Organic Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia
| | - Mária Kožurková
- Department of Biochemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia
| |
Collapse
|
9
|
Zhao B, Tang Y, Chen W, Wan H, Yang J, Chen X. A novel homozygous mutation in LSS gene possibly causes hypotrichosis simplex in two siblings of a Tibetan family from the western Sichuan province of China. Front Physiol 2023; 13:992190. [PMID: 36685177 PMCID: PMC9859656 DOI: 10.3389/fphys.2022.992190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
Aim: Hypotrichosis simplex (MIM 146520) is a rare form of monogenic hereditary alopecia. Several genes have been identified as being associated with the disease, including LPAR6, LIPH, and DSG4. LSS encoding lanosterol synthase (LSS) has been shown to cause hypotrichosis simplex, but the related mechanisms have not been elucidated to date. This study aims to find mutations in LSS from a Chinese family, among which a 21-year-old male patient and his 9-year-old sister were affected by hypotrichosis simplex. Methods: Dermoscopy and histological analysis were used to examine patients' scalps, while exome sequencing was used to find the mutations in LSS. Results: The hair loss was only detected on the scalp of the proband and his sister, while other ectodermal structures were normal with no systemic abnormalities. Further, the exome sequencing identified a new homozygous mutation NM_002340.6 (LSS_v001):c.812T>C (p.(Ile271Thr)) in the LSS gene of the proband, which was also found in his sister. In addition, a heterozygous mutation of LSS was found in their asymptomatic parents. Finally, the possible protein structure of the mutational LSS was predicted. Conclusion: The hypotrichosis simplex reported here could be an autosomal recessive disease in this family. The mutation on LSS might reduce the enzyme activity of LSS, thus leading to the disease.
Collapse
Affiliation(s)
- Bei Zhao
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yisi Tang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjing Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huiying Wan
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiyun Yang
- Medical Genetics Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Xuejun Chen
- Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China,School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Xuejun Chen,
| |
Collapse
|
10
|
Bryk-Wiązania AH, Cysewski D, Ocłoń E, Undas A. Mass-spectrometric identification of oxidative modifications in plasma-purified plasminogen: Association with hypofibrinolysis in patients with acute pulmonary embolism. Biochem Biophys Res Commun 2022; 621:53-58. [PMID: 35810591 DOI: 10.1016/j.bbrc.2022.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES Mechanisms behind disturbed fibrinolysis in pulmonary embolism (PE) are poorly understood. We hypothesized that oxidative stress-induced changes in plasminogen contribute to impaired fibrinolysis in patients with acute PE. METHODS Oxidative and other modifications were investigated using mass-spectrometry in plasminogen purified from pooled plasma of 5 acute PE patients on admission and after 3 months of anticoagulant treatment, along with plasma clot lysis time, a measure of global efficiency of fibrinolysis, and a stable oxidative stress marker, plasma 8-isoprostane. RESULTS Twenty sites of oxidation, 3 sites of carbonylation and 4 sites of S-nitrosylation were identified in plasminogen. The intensity of peptides oxidized at cysteine residues with respect to unmodified peptides decreased after 3 months of anticoagulation (p = 0.018). This was not observed for oxidized methionine residues (p = 0.9). Oxidized tryptophan (n = 4) and proline (n = 2), as well as carbonylation at 3 threonine residues were selectively identified in acute PE episode, not after 3 months. This was accompanied by 12.8% decrease in clot lysis time (p = 0.043). Deamidation occurred at the arginine, previously identified to undergo the cleavage by plasminogen activator. Methylated were two lysine-binding sites important for an interaction of plasminogen with fibrin. Other identified modifications involved: glycation, acetylation, phosphorylation, homocysteinylation, carbamylation and dichlorination (88 modifications at 162 sites). CONCLUSIONS Data suggest that oxidative stress-induced changes in plasminogen molecules may contribute to less effective global fibrinolysis in patients with acute PE. The comprehensive library of posttranslational modifications in plasminogen molecules was provided, including modifications of sites reported to be involved in important biological functions.
Collapse
Affiliation(s)
- Agata Hanna Bryk-Wiązania
- Department of Endocrinology, Jagiellonian University Medical College, Krakow, Poland; University Hospital, Krakow, Poland.
| | - Dominik Cysewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Ewa Ocłoń
- Centre for Experimental and Innovative Medicine, Laboratory of Recombinant Proteins Production, University of Agriculture in Krakow, Krakow, Poland
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland; John Paul II Hospital, Krakow, Poland
| |
Collapse
|
11
|
Liu Z, Yang Y, Li D, Lv X, Chen X, Dai Q. Prediction of the RNA Tertiary Structure Based on a Random Sampling Strategy and Parallel Mechanism. Front Genet 2022; 12:813604. [PMID: 35069706 PMCID: PMC8769045 DOI: 10.3389/fgene.2021.813604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Macromolecule structure prediction remains a fundamental challenge of bioinformatics. Over the past several decades, the Rosetta framework has provided solutions to diverse challenges in computational biology. However, it is challenging to model RNA tertiary structures effectively when the de novo modeling of RNA involves solving a well-defined small puzzle. Methods: In this study, we introduce a stepwise Monte Carlo parallelization (SMCP) algorithm for RNA tertiary structure prediction. Millions of conformations were randomly searched using the Monte Carlo algorithm and stepwise ansatz hypothesis, and SMCP uses a parallel mechanism for efficient sampling. Moreover, to achieve better prediction accuracy and completeness, we judged and processed the modeling results. Results: A benchmark of nine single-stranded RNA loops drawn from riboswitches establishes the general ability of the algorithm to model RNA with high accuracy and integrity, including six motifs that cannot be solved by knowledge mining-based modeling algorithms. Experimental results show that the modeling accuracy of the SMCP algorithm is up to 0.14 Å, and the modeling integrity on this benchmark is extremely high. Conclusion: SMCP is an ab initio modeling algorithm that substantially outperforms previous algorithms in the Rosetta framework, especially in improving the accuracy and completeness of the model. It is expected that the work will provide new research ideas for macromolecular structure prediction in the future. In addition, this work will provide theoretical basis for the development of the biomedical field.
Collapse
Affiliation(s)
- Zhendong Liu
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Yurong Yang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Dongyan Li
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Xinrong Lv
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Xi Chen
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Mukherjee S, Dasgupta S, Adhikari U, Panja SS. Molecular modeling and molecular dynamics simulation studies on thyroid hormone receptor from Rattus norvegicus: role of conserved water molecules. J Mol Model 2021; 27:126. [PMID: 33834296 DOI: 10.1007/s00894-021-04740-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Thyroid hormone receptor (THR) belongs to the nuclear receptor (NR) superfamily that is activated by binding of appropriate ligand molecules (thyroid hormones). These receptors directly bind to specific DNA sequences for gene expression, which is essential for metabolism, homeostasis, and the development of organisms, making it an important drug target. Extensive MD-simulation studies of triiodothyronine (T3) docked modeled rnTHRβ1 structures have indicated the presence of twelve conserved water molecules at the DNA-DBD (DNA binding domain) interface. The W1-W5 water centers have been involved in the recognition between the A-chain of DBD to C-chain of DNA, W6 and W7 mediated the interaction between A-chain of DBD and D-chain of DNA, W8 and W9 recognized the B-chain of DBD and C-chain of DNA, and W9-W12 centers conjugated the residues of B-chain of DBD to D-chain of DNA through hydrogen bonds. The conformation flexibility of Phe272 and Met313 residues in the absence of T3 at the LBD (ligand-binding domain) region have been observed and reported.
Collapse
Affiliation(s)
- Soumita Mukherjee
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India
| | - Subrata Dasgupta
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India
| | - Utpal Adhikari
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India
| | - Sujit Sankar Panja
- Department of Chemistry, National Institute of Technology-Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
13
|
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 2021; 30:70-82. [PMID: 32881101 PMCID: PMC7737788 DOI: 10.1002/pro.3943] [Citation(s) in RCA: 4279] [Impact Index Per Article: 1426.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
UCSF ChimeraX is the next-generation interactive visualization program from the Resource for Biocomputing, Visualization, and Informatics (RBVI), following UCSF Chimera. ChimeraX brings (a) significant performance and graphics enhancements; (b) new implementations of Chimera's most highly used tools, many with further improvements; (c) several entirely new analysis features; (d) support for new areas such as virtual reality, light-sheet microscopy, and medical imaging data; (e) major ease-of-use advances, including toolbars with icons to perform actions with a single click, basic "undo" capabilities, and more logical and consistent commands; and (f) an app store for researchers to contribute new tools. ChimeraX includes full user documentation and is free for noncommercial use, with downloads available for Windows, Linux, and macOS from https://www.rbvi.ucsf.edu/chimerax.
Collapse
Affiliation(s)
- Eric F. Pettersen
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas D. Goddard
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Conrad C. Huang
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Elaine C. Meng
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gregory S. Couch
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Tristan I. Croll
- Cambridge Institute for Medical Research, Department of HaematologyUniversity of CambridgeCambridgeUK
| | - John H. Morris
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas E. Ferrin
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
14
|
Lu XJ. DSSR-enabled innovative schematics of 3D nucleic acid structures with PyMOL. Nucleic Acids Res 2020; 48:e74. [PMID: 32442277 PMCID: PMC7367123 DOI: 10.1093/nar/gkaa426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/26/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Sophisticated analysis and simplified visualization are crucial for understanding complicated structures of biomacromolecules. DSSR (Dissecting the Spatial Structure of RNA) is an integrated computational tool that has streamlined the analysis and annotation of 3D nucleic acid structures. The program creates schematic block representations in diverse styles that can be seamlessly integrated into PyMOL and complement its other popular visualization options. In addition to portraying individual base blocks, DSSR can draw Watson-Crick pairs as long blocks and highlight the minor-groove edges. Notably, DSSR can dramatically simplify the depiction of G-quadruplexes by automatically detecting G-tetrads and treating them as large square blocks. The DSSR-enabled innovative schematics with PyMOL are aesthetically pleasing and highly informative: the base identity, pairing geometry, stacking interactions, double-helical stems, and G-quadruplexes are immediately obvious. These features can be accessed via four interfaces: the command-line interface, the DSSR plugin for PyMOL, the web application, and the web application programming interface. The supplemental PDF serves as a practical guide, with complete and reproducible examples. Thus, even beginners or occasional users can get started quickly, especially via the web application at http://skmatic.x3dna.org.
Collapse
Affiliation(s)
- Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
15
|
Hassan MM, Hussain MA, Kambal S, Elshikh AA, Gendeel OR, Ahmed SA, Altayeb RA, Muhajir AM, Mohamed SB. NeoCoV Is Closer to MERS-CoV than SARS-CoV. Infect Dis (Lond) 2020; 13:1178633720930711. [PMID: 32595278 PMCID: PMC7298434 DOI: 10.1177/1178633720930711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/07/2020] [Indexed: 01/12/2023] Open
Abstract
Recently, Coronavirus has been given considerable attention from the biomedical
community based on the emergence and isolation of a deadly coronavirus infecting
human. To understand the behavior of the newly emerging MERS-CoV requires
knowledge at different levels (epidemiologic, antigenic, and pathogenic), and
this knowledge can be generated from the most related viruses. In this study, we
aimed to compare between 3 species of Coronavirus, namely Middle East
Respiratory Syndrome (MERS-CoV), Severe Acute Respiratory Syndrome (SARS-CoV),
and NeoCoV regarding whole genomes and 6 similar proteins (E, M, N, S, ORF1a,
and ORF1ab) using different bioinformatics tools to provide a better
understanding of the relationship between the 3 viruses at the nucleotide and
amino acids levels. All sequences have been retrieved from National Center for
Biotechnology Information (NCBI). Regards to target genomes’ phylogenetic
analysis showed that MERS and SARS-CoVs were closer to each other compared with
NeoCoV, and the last has the longest relative time. We found that all
phylogenetic methods in addition to all parameters (physical and chemical
properties of amino acids such as the number of amino acid, molecular weight,
atomic composition, theoretical pI, and structural formula) indicated that
NeoCoV proteins were the most related to MERS-CoV one. All phylogenetic trees
(by both maximum-likelihood and neighbor-joining methods) indicated that NeoCoV
proteins have less evolutionary changes except for ORF1a by just
maximum-likelihood method. Our results indicated high similarity between viral
structural proteins which are responsible for viral infectivity; therefore, we
expect that NeoCoV sooner may appear in human-related infection.
Collapse
Affiliation(s)
- Mohamed M Hassan
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University, Khartoum, Sudan
| | - Mohamed A Hussain
- Department of Pharmaceutical Microbiology, International University of Africa, Khartoum, Sudan
| | - Sumaya Kambal
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University, Khartoum, Sudan
| | - Ahmed A Elshikh
- Department of Microbiology, Faculty of Pure and Applied Sciences, International University of Africa, Khartoum, Sudan
| | - Osama R Gendeel
- Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Sudan
| | - Siddig A Ahmed
- Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Sudan
| | - Rami A Altayeb
- Faculty of Science and Technology, Omdurman Islamic University, Omdurman, Sudan
| | | | - Sofia B Mohamed
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University, Khartoum, Sudan
| |
Collapse
|
16
|
Vongsutilers V, Shinohara Y, Kawai G. Epigenetic TET-Catalyzed Oxidative Products of 5-Methylcytosine Impede Z-DNA Formation of CG Decamers. ACS OMEGA 2020; 5:8056-8064. [PMID: 32309715 PMCID: PMC7161056 DOI: 10.1021/acsomega.0c00120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 05/12/2023]
Abstract
Methylation of cytosine has been known to play a significant role in epigenetic regulation. 5-Methylcytosine was among the first base modification that was discovered for the capability to facilitate B/Z-DNA transition as observed in CG repeated tracks. A study on gene repression by Z-DNA prone sequence as in ADAM-12 has ignited our research interest for the Z-DNA role in epigenetics. Ten eleven translocation family proteins are responsible to catalyze 5-methylcytosine to produce oxidative products including 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine, which each may have unique function rather than the sole purpose of 5-methylcytosine clearance. Although the Z-DNA-promoting effect of 5-methylcytosine was well established, the effect of its oxidative products on Z-DNA remain unknown. In this study, the Z-DNA-promoting effect of 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine on the CG decamer model were investigated along with known Z-DNA stabilizers, 5-methylcytosine and 8-oxoguanine. Experimental results from circular dichroism (CD) and NMR indicates that all oxidative products of 5-methylcytosine hinder B/Z-DNA transition as high salt concentration suitable to stabilize and convert unmodified CG decamer to Z-DNA conformation is insufficient to facilitate the B/Z-DNA transition of CG decamer containing 5-hydroxymethylcytosine, 5-formylcytosine, or 5-carboxycytosine. Molecular dynamic simulation and free energy calculation by MM-PBSA are in agreement with the experimental finding that 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine destabilize Z-DNA conformation of CG decamer, in contrast to its precursor. Investigation of Z-DNA switch-on/switch-off regulated by 5-methylcytosine and its oxidative products is a further step to elucidate the potential of epigenetic regulated via Z-DNA.
Collapse
Affiliation(s)
- Vorasit Vongsutilers
- Department
of Food and Pharmaceutical Chemistry, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Yoko Shinohara
- Department
of Life and Environmental Sciences, Chiba
Institute of Technology, Chiba 275-0016, Japan
| | - Gota Kawai
- Department
of Life and Environmental Sciences, Chiba
Institute of Technology, Chiba 275-0016, Japan
| |
Collapse
|
17
|
Zinskie JA, Roig M, Janetopoulos C, Myers KA, Bruist MF. Live-cell imaging of small nucleolar RNA tagged with the broccoli aptamer in yeast. FEMS Yeast Res 2019; 18:5078348. [PMID: 30137288 DOI: 10.1093/femsyr/foy093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 08/20/2018] [Indexed: 11/14/2022] Open
Abstract
The development of the RNA 'vegetable' aptamers, Spinach and Broccoli, has simplified RNA imaging, especially in live cells. These RNA aptamers interact with a fluorophore (DFHBI or DFHBI-1T) to produce a green fluorescence signal. Although used in mammalian and Escherichia coli cells, the use of these aptamers in yeast has been limited. Here we describe how the Saccharomyces cerevisiae snoRNA, snR30, was tagged with the Spinach or the Broccoli aptamers and observed in live cells. The ability to observe aptamer fluorescence in polyacrylamide gels stained with a fluorophore or with a microplate reader can ease preliminary screening of the aptamers in different RNA scaffolds. In snR30 a tandem repeat of the Broccoli aptamer produced the best signal in vitro. Multiple factors in cell preparation were vital for obtaining a good fluorescence signal. These factors included the clearance of the native unmodified snR30, the amount and length of dye incubation and the rinsing of cells. In cells, the aptamers did not interfere with the structure or essential function of snR30, as the tagged RNA localized to the nucleolus and directed processing of ribosomal RNA in yeast. High-resolution images of the tagged snoRNA were obtained with live cells immobilized by a microcompressor.
Collapse
Affiliation(s)
- Jessica A Zinskie
- University of the Sciences, Department of Chemistry & Biochemistry, 600 S. 43rd St., Philadelphia, PA 19104.,Rowan University, School of Osteopathic Medicine, Department of Cell Biology and Neuroscience, 2 Medical Center Dr., Stratford, NJ 08084
| | - Meghan Roig
- University of the Sciences, Department of Chemistry & Biochemistry, 600 S. 43rd St., Philadelphia, PA 19104.,Florida International University, Department of Biochemistry and Biochemistry, 11200 SW 8th St., Miami, FL 33199
| | | | - Kenneth A Myers
- University of the Sciences, Department of Biological Sciences, Philadelphia, PA 19104
| | - Michael F Bruist
- University of the Sciences, Department of Chemistry & Biochemistry, 600 S. 43rd St., Philadelphia, PA 19104
| |
Collapse
|
18
|
Janovec L, Janočková J, Matejová M, Konkoľová E, Paulíková H, Lichancová D, Júnošová L, Hamuľaková S, Imrich J, Kožurková M. Proliferation inhibition of novel diphenylamine derivatives. Bioorg Chem 2019; 83:487-499. [DOI: 10.1016/j.bioorg.2018.10.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022]
|
19
|
Type-II tRNAs and Evolution of Translation Systems and the Genetic Code. Int J Mol Sci 2018; 19:ijms19103275. [PMID: 30360357 PMCID: PMC6214036 DOI: 10.3390/ijms19103275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022] Open
Abstract
Because tRNA is the core biological intellectual property that was necessary to evolve translation systems, tRNAomes, ribosomes, aminoacyl-tRNA synthetases, and the genetic code, the evolution of tRNA is the core story in evolution of life on earth. We have previously described the evolution of type-I tRNAs. Here, we use the same model to describe the evolution of type-II tRNAs, with expanded V loops. The models are strongly supported by inspection of typical tRNA diagrams, measuring lengths of V loop expansions, and analyzing the homology of V loop sequences to tRNA acceptor stems. Models for tRNA evolution provide a pathway for the inanimate-to-animate transition and for the evolution of translation systems, the genetic code, and cellular life.
Collapse
|
20
|
Lindow N, Baum D, Leborgne M, Hege HC. Interactive Visualization of RNA and DNA Structures. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 25:967-976. [PMID: 30334794 DOI: 10.1109/tvcg.2018.2864507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The analysis and visualization of nucleic acids (RNA and DNA) is playing an increasingly important role due to their fundamental importance for all forms of life and the growing number of known 3D structures of such molecules. The great complexity of these structures, in particular, those of RNA, demands interactive visualization to get deeper insights into the relationship between the 2D secondary structure motifs and their 3D tertiary structures. Over the last decades, a lot of research in molecular visualization has focused on the visual exploration of protein structures while nucleic acids have only been marginally addressed. In contrast to proteins, which are composed of amino acids, the ingredients of nucleic acids are nucleotides. They form structuring patterns that differ from those of proteins and, hence, also require different visualization and exploration techniques. In order to support interactive exploration of nucleic acids, the computation of secondary structure motifs as well as their visualization in 2D and 3D must be fast. Therefore, in this paper, we focus on the performance of both the computation and visualization of nucleic acid structure. We present a ray casting-based visualization of RNA and DNA secondary and tertiary structures, which enables for the first time real-time visualization of even large molecular dynamics trajectories. Furthermore, we provide a detailed description of all important aspects to visualize nucleic acid secondary and tertiary structures. With this, we close an important gap in molecular visualization.
Collapse
|
21
|
Solís-Calero C, Augusto TM, Carvalho HF. Human-specific features of the G-quadruplex in the androgen receptor gene promoter: A comparative structural and dynamics study. J Steroid Biochem Mol Biol 2018; 182:95-105. [PMID: 29709633 DOI: 10.1016/j.jsbmb.2018.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The androgen receptor (AR) promoter contains guanine-rich regions that are able to fold into polymorphic G-quadruplex (GQ) structures, and whose deletion decreases AR gene transcription. Our attention was focused on this region because of the frequent termination of sequencing reactions during promoter methylation studies. UV and circular dichroism (CD) spectroscopy of synthetic oligonucleotides encompassing these guanine-rich regions suggested a parallel quadruplex topology with three guanine quartets and three side loops in the three cases. Melting curves revealed a lower thermostability of the human GQ compared to the rat/mouse QG structures, which is attributed to the presence of a longer central loop in the former. One molecular model is proposed for the highly similar sequences in the rat/mouse. Due to the polymorphism resulting from possible arrangements of the guanine tracts, two models were derived for the human GQ. Molecular dynamics (MD) simulations determined that both models for the human GQ had higher flexibility and lower stability than the rodent GQ models. These properties result from the presence of a longer central loop in the human GQ models, which contains 11 and 13 nucleotides, in comparison to the 2-nucleotide long loop in the rat/mouse GQ. Overall, the unveiled structural and dynamics features provide sufficient detail for the intelligent design of drugs targeting the human AR promoter.
Collapse
Affiliation(s)
- Christian Solís-Calero
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Taize M Augusto
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
22
|
Harika NK, Wilson WD. Bound Compound, Interfacial Water, and Phenyl Ring Rotation Dynamics of a Compound in the DNA Minor Groove. Biochemistry 2018; 57:5050-5057. [PMID: 30048590 DOI: 10.1021/acs.biochem.8b00647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DB2277, a heterocyclic diamidine, is a successful design for mixed base pair (bp) DNA sequence recognition. The compound has a central aza-benzimidazole group that forms two H-bonds with a GC bp that has flanking AT bps. The nuclear magnetic resonance structure of the DB2277-DNA complex with an AAGATA recognition site sequence was determined, and here we report extended molecular dynamics (MD) simulations of the structure. DB2277 has two terminal phenyl-amidine groups, one of which is directly linked to the DB2277 heterocyclic core and the other through a flexible -OCH2- group. The flexibly linked phenyl is too far from the minor groove floor to make direct H-bonds but is linked to an AT bp through water-mediated H-bonds. The flexibly linked phenyl-amidine with water-mediated H-bonds to the bases at the floor of the minor groove suggested that it might rotate in time spans accessible in MD. To test this idea, we conducted multimicrosecond MD simulations to determine if these phenyl rotations could be observed for a bound compound. In a 3 μs simulation, highly dynamic torsional motions were observed for the -OCH2-linked phenyl but not for the other phenyl. The dynamics periodically reached a level to allow 180° rotation of the phenyl while it was still bound in the minor groove. This is the first observation of rotation of a phenyl bound to DNA, and the results provide mechanistic details about how a rotation can occur as well as how mixed bp recognition can occur for monomer compounds bound to the minor groove.
Collapse
Affiliation(s)
- Narinder K Harika
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30303-3083 , United States
| | - W David Wilson
- Department of Chemistry , Georgia State University , Atlanta , Georgia 30303-3083 , United States
| |
Collapse
|
23
|
Imber M, Loi VV, Reznikov S, Fritsch VN, Pietrzyk-Brzezinska AJ, Prehn J, Hamilton C, Wahl MC, Bronowska AK, Antelmann H. The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus. Redox Biol 2018; 15:557-568. [PMID: 29433022 PMCID: PMC5975064 DOI: 10.1016/j.redox.2018.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/28/2023] Open
Abstract
Staphylococcus aureus produces bacillithiol (BSH) as major low molecular weight (LMW) thiol which functions in thiol-protection and redox-regulation by protein S-bacillithiolation under hypochlorite stress. The aldehyde dehydrogenase AldA was identified as S-bacillithiolated at its active site Cys279 under NaOCl stress in S. aureus. Here, we have studied the expression, function, redox regulation and structural changes of AldA of S. aureus. Transcription of aldA was previously shown to be regulated by the alternative sigma factor SigmaB. Northern blot analysis revealed SigmaB-independent induction of aldA transcription under formaldehyde, methylglyoxal, diamide and NaOCl stress. Deletion of aldA resulted in a NaOCl-sensitive phenotype in survival assays, suggesting an important role of AldA in the NaOCl stress defense. Purified AldA showed broad substrate specificity for oxidation of several aldehydes, including formaldehyde, methylglyoxal, acetaldehyde and glycol aldehyde. Thus, AldA could be involved in detoxification of aldehyde substrates that are elevated under NaOCl stress. Kinetic activity assays revealed that AldA is irreversibly inhibited under H2O2 treatment in vitro due to overoxidation of Cys279 in the absence of BSH. Pre-treatment of AldA with BSH prior to H2O2 exposure resulted in reversible AldA inactivation due to S-bacillithiolation as revealed by activity assays and BSH-specific Western blot analysis. Using molecular docking and molecular dynamic simulation, we further show that BSH occupies two different positions in the AldA active site depending on the AldA activation state. In conclusion, we show here that AldA is an important target for S-bacillithiolation in S. aureus that is up-regulated under NaOCl stress and functions in protection under hypochlorite stress.
Collapse
Affiliation(s)
- Marcel Imber
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Sylvia Reznikov
- School of Chemistry, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Agnieszka J Pietrzyk-Brzezinska
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-924, Poland
| | - Janek Prehn
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Chris Hamilton
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Markus C Wahl
- Freie Universität Berlin, Laboratory of Structural Biochemistry, D-14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, D-12489 Berlin, Germany
| | - Agnieszka K Bronowska
- School of Chemistry, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
24
|
Cannon BL, Patten LK, Kellis DL, Davis PH, Lee J, Graugnard E, Yurke B, Knowlton WB. Large Davydov Splitting and Strong Fluorescence Suppression: An Investigation of Exciton Delocalization in DNA-Templated Holliday Junction Dye Aggregates. J Phys Chem A 2018; 122:2086-2095. [PMID: 29420037 DOI: 10.1021/acs.jpca.7b12668] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exciton delocalization in dye aggregate systems is a phenomenon that is revealed by spectral features, such as Davydov splitting, J- and H-aggregate behavior, and fluorescence suppression. Using DNA as an architectural template to assemble dye aggregates enables specific control of the aggregate size and dye type, proximal and precise positioning of the dyes within the aggregates, and a method for constructing large, modular two- and three-dimensional arrays. Here, we report on dye aggregates, organized via an immobile Holliday junction DNA template, that exhibit large Davydov splitting of the absorbance spectrum (125 nm, 397.5 meV), J- and H-aggregate behavior, and near-complete suppression of the fluorescence emission (∼97.6% suppression). Because of the unique optical properties of the aggregates, we have demonstrated that our dye aggregate system is a viable candidate as a sensitive absorbance and fluorescence optical reporter. DNA-templated aggregates exhibiting exciton delocalization may find application in optical detection and imaging, light-harvesting, photovoltaics, optical information processing, and quantum computing.
Collapse
Affiliation(s)
- Brittany L Cannon
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Donald L Kellis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| |
Collapse
|
25
|
Carroll B, Otten EG, Manni D, Stefanatos R, Menzies FM, Smith GR, Jurk D, Kenneth N, Wilkinson S, Passos JF, Attems J, Veal EA, Teyssou E, Seilhean D, Millecamps S, Eskelinen EL, Bronowska AK, Rubinsztein DC, Sanz A, Korolchuk VI. Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nat Commun 2018; 9:256. [PMID: 29343728 PMCID: PMC5772351 DOI: 10.1038/s41467-017-02746-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Cellular homoeostatic pathways such as macroautophagy (hereinafter autophagy) are regulated by basic mechanisms that are conserved throughout the eukaryotic kingdom. However, it remains poorly understood how these mechanisms further evolved in higher organisms. Here we describe a modification in the autophagy pathway in vertebrates, which promotes its activity in response to oxidative stress. We have identified two oxidation-sensitive cysteine residues in a prototypic autophagy receptor SQSTM1/p62, which allow activation of pro-survival autophagy in stress conditions. The Drosophila p62 homologue, Ref(2)P, lacks these oxidation-sensitive cysteine residues and their introduction into the protein increases protein turnover and stress resistance of flies, whereas perturbation of p62 oxidation in humans may result in age-related pathology. We propose that the redox-sensitivity of p62 may have evolved in vertebrates as a mechanism that allows activation of autophagy in response to oxidative stress to maintain cellular homoeostasis and increase cell survival. The cellular mechanisms underlying autophagy are conserved; however it is unclear how they evolved in higher organisms. Here the authors identify two oxidation-sensitive cysteine residues in the autophagy receptor SQSTM1/p62 in vertebrates which allow activation of pro-survival autophagy in stress conditions.
Collapse
Affiliation(s)
- Bernadette Carroll
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Elsje G Otten
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Diego Manni
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Fiona M Menzies
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Graham R Smith
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.,Bioinformatics Support Unit (BSU); Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Diana Jurk
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Niall Kenneth
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Simon Wilkinson
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Joao F Passos
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Johannes Attems
- Institute of Neuroscience (IoN); Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Elisa Teyssou
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM U1127, CNRS UMR7225, Sorbonne Universités, Université Pierre et Marie Curie, University of Paris 06, UPMC-P6 UMRS1127, Hôpital Pitié-Salpêtrière, Paris, France
| | - Danielle Seilhean
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM U1127, CNRS UMR7225, Sorbonne Universités, Université Pierre et Marie Curie, University of Paris 06, UPMC-P6 UMRS1127, Hôpital Pitié-Salpêtrière, Paris, France.,Département de Neuropathologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphanie Millecamps
- Institut du Cerveau et de la Moelle épinière (ICM), INSERM U1127, CNRS UMR7225, Sorbonne Universités, Université Pierre et Marie Curie, University of Paris 06, UPMC-P6 UMRS1127, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | - David C Rubinsztein
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,UK Dementia Research Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences (ICaMB), Newcastle University Institute for Ageing (NUIA), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK.
| |
Collapse
|
26
|
Miao H, De Llano E, Sorger J, Ahmadi Y, Kekic T, Isenberg T, Groller ME, Barisic I, Viola I. Multiscale Visualization and Scale-Adaptive Modification of DNA Nanostructures. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:1014-1024. [PMID: 28866510 DOI: 10.1109/tvcg.2017.2743981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an approach to represent DNA nanostructures in varying forms of semantic abstraction, describe ways to smoothly transition between them, and thus create a continuous multiscale visualization and interaction space for applications in DNA nanotechnology. This new way of observing, interacting with, and creating DNA nanostructures enables domain experts to approach their work in any of the semantic abstraction levels, supporting both low-level manipulations and high-level visualization and modifications. Our approach allows them to deal with the increasingly complex DNA objects that they are designing, to improve their features, and to add novel functions in a way that no existing single-scale approach offers today. For this purpose we collaborated with DNA nanotechnology experts to design a set of ten semantic scales. These scales take the DNA's chemical and structural behavior into account and depict it from atoms to the targeted architecture with increasing levels of abstraction. To create coherence between the discrete scales, we seamlessly transition between them in a well-defined manner. We use special encodings to allow experts to estimate the nanoscale object's stability. We also add scale-adaptive interactions that facilitate the intuitive modification of complex structures at multiple scales. We demonstrate the applicability of our approach on an experimental use case. Moreover, feedback from our collaborating domain experts confirmed an increased time efficiency and certainty for analysis and modification tasks on complex DNA structures. Our method thus offers exciting new opportunities with promising applications in medicine and biotechnology.
Collapse
|
27
|
Cheung YW, Dirkzwager RM, Wong WC, Cardoso J, D'Arc Neves Costa J, Tanner JA. Aptamer-mediated Plasmodium-specific diagnosis of malaria. Biochimie 2017; 145:131-136. [PMID: 29080831 DOI: 10.1016/j.biochi.2017.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
There is a critical need for better malaria rapid diagnostic tests to discriminate Plasmodium falciparum and Plasmodium vivax infection given the recent observation of HRP2 deletions in P. falciparum parasites. We previously identified a DNA aptamer, 2008s, that targets P. falciparum lactate dehydrogenase (PfLDH) and developed a sensitive aptamer-tethered enzyme capture (APTEC) assay. Here, we characterise two different LDH-binding DNA aptamers in their species-specific activities, then integrate within biochemical diagnostic assays and test in clinical samples. An enzyme-linked oligonucleotide assay demonstrated that aptamer pL1 bound with high affinity to both PfLDH and P. vivax lactate dehydrogenase (PvLDH), whereas aptamer 2008s was specific to PfLDH. An aptamer-tethered enzyme capture (APTEC) assay confirmed the specificity of 2008s in binding and capturing the enzyme activity of PfLDH which could be observed colorimetrically. In malaria patient samples, the 2008s APTEC assay was specific for P. falciparum blood samples and could discriminate against P. vivax blood samples. An aptamer for specific detection of falciparum malaria holds promise as a new strategy for species-specific malaria diagnosis rather than the conventional HRP2 immuno-assay.
Collapse
Affiliation(s)
- Yee-Wai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Roderick M Dirkzwager
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wai-Chung Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Joana D'Arc Neves Costa
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Laboratory of Epidemiology, Porto Velho, Rondônia, Brazil
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
28
|
Cannon BL, Kellis DL, Patten LK, Davis PH, Lee J, Graugnard E, Yurke B, Knowlton WB. Coherent Exciton Delocalization in a Two-State DNA-Templated Dye Aggregate System. J Phys Chem A 2017; 121:6905-6916. [PMID: 28813152 DOI: 10.1021/acs.jpca.7b04344] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coherent exciton delocalization in dye aggregate systems gives rise to a variety of intriguing optical phenomena, including J- and H-aggregate behavior and Davydov splitting. Systems that exhibit coherent exciton delocalization at room temperature are of interest for the development of artificial light-harvesting devices, colorimetric detection schemes, and quantum computers. Here, we report on a simple dye system templated by DNA that exhibits tunable optical properties. At low salt and DNA concentrations, a DNA duplex with two internally functionalized Cy5 dyes (i.e., dimer) persists and displays predominantly J-aggregate behavior. Increasing the salt and/or DNA concentrations was found to promote coupling between two of the DNA duplexes via branch migration, thus forming a four-armed junction (i.e., tetramer) with H-aggregate behavior. This H-tetramer aggregate exhibits a surprisingly large Davydov splitting in its absorbance spectrum that produces a visible color change of the solution from cyan to violet and gives clear evidence of coherent exciton delocalization.
Collapse
Affiliation(s)
- Brittany L Cannon
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Donald L Kellis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Elton Graugnard
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, ‡Department of Chemistry & Biochemistry, and §Department of Electrical & Computer Engineering, Boise State University , Boise, Idaho 83725, United States
| |
Collapse
|
29
|
Understanding B-DNA to A-DNA transition in the right-handed DNA helix: Perspective from a local to global transition. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:63-73. [DOI: 10.1016/j.pbiomolbio.2017.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 04/16/2017] [Accepted: 05/23/2017] [Indexed: 01/19/2023]
|
30
|
Kashida H, Asanuma H. Development of Pseudo Base-Pairs on d-Threoninol which Exhibit Various Functions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hiromu Kashida
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012
| | - Hiroyuki Asanuma
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| |
Collapse
|
31
|
Spring-Connell AM, Evich MG, Debelak H, Seela F, Germann MW. Using NMR and molecular dynamics to link structure and dynamics effects of the universal base 8-aza, 7-deaza, N8 linked adenosine analog. Nucleic Acids Res 2016; 44:8576-8587. [PMID: 27566150 PMCID: PMC5062995 DOI: 10.1093/nar/gkw736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/10/2016] [Indexed: 12/30/2022] Open
Abstract
A truly universal nucleobase enables a host of novel applications such as simplified templates for PCR primers, randomized sequencing and DNA based devices. A universal base must pair indiscriminately to each of the canonical bases with little or preferably no destabilization of the overall duplex. In reality, many candidates either destabilize the duplex or do not base pair indiscriminatingly. The novel base 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin- 4-amine) N8-(2'deoxyribonucleoside), a deoxyadenosine analog (UB), pairs with each of the natural DNA bases with little sequence preference. We have utilized NMR complemented with molecular dynamic calculations to characterize the structure and dynamics of a UB incorporated into a DNA duplex. The UB participates in base stacking with little to no perturbation of the local structure yet forms an unusual base pair that samples multiple conformations. These local dynamics result in the complete disappearance of a single UB proton resonance under native conditions. Accommodation of the UB is additionally stabilized via heightened backbone conformational sampling. NMR combined with various computational techniques has allowed for a comprehensive characterization of both structural and dynamic effects of the UB in a DNA duplex and underlines that the UB as a strong candidate for universal base applications.
Collapse
Affiliation(s)
| | - Marina G Evich
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Harald Debelak
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| | - Frank Seela
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
32
|
Bioinformatics Approach for Prediction of Functional Coding/Noncoding Simple Polymorphisms (SNPs/Indels) in Human BRAF Gene. Adv Bioinformatics 2016; 2016:2632917. [PMID: 27478437 PMCID: PMC4958420 DOI: 10.1155/2016/2632917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022] Open
Abstract
This study was carried out for Homo sapiens single variation (SNPs/Indels) in BRAF gene through coding/non-coding regions. Variants data was obtained from database of SNP even last update of November, 2015. Many bioinformatics tools were used to identify functional SNPs and indels in proteins functions, structures and expressions. Results shown, for coding polymorphisms, 111 SNPs predicted as highly damaging and six other were less. For UTRs, showed five SNPs and one indel were altered in micro RNAs binding sites (3' UTR), furthermore nil SNP or indel have functional altered in transcription factor binding sites (5' UTR). In addition for 5'/3' splice sites, analysis showed that one SNP within 5' splice site and one Indel in 3' splice site showed potential alteration of splicing. In conclude these previous functional identified SNPs and indels could lead to gene alteration, which may be directly or indirectly contribute to the occurrence of many diseases.
Collapse
|
33
|
Mooers BHM. Fusion RNAs in crystallographic studies of double-stranded RNA from trypanosome RNA editing. Methods Mol Biol 2015; 1240:191-216. [PMID: 25352146 DOI: 10.1007/978-1-4939-1896-6_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Head-to-head fusions of two identical double-stranded fragments of RNA can be designed to self-assemble from a single RNA species and form a double-stranded helix with a twofold rotation axis relating the two strands. These symmetrical RNA molecules are more likely to crystallize without end-on-end statistical packing disorder because the two halves of the molecule are identical. This approach can be used to study many fragments of double-stranded RNA or many isolated helical domains from large single-stranded RNAs that may not yet be amenable to high-resolution studies by crystallography or NMR. We used fusion RNAs to study one (the U-helix) of three functional domains formed when guide RNA binds to its cognate pre-edited mRNA from the trypanosome RNA editing system. The U-helix forms when the 3' oligo(U) tail of the guide RNA (gRNA) binds to the purine-rich, pre-edited mRNA upstream from the current RNA editing site. Fusion RNAs 16-and 32-base pairs in length formed crystals that gave diffraction to 1.37 and 1.05 Å respectively. We provide the composition of a fusion RNA crystallization screen and describe the X-ray data collection, structure determination, and refinement of the crystal structures of fusion RNAs.
Collapse
Affiliation(s)
- Blaine H M Mooers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10th St., Stanton L. Young Biomedical Research Center Rm. 466, Oklahoma City, OK, 73104-5419, USA,
| |
Collapse
|
34
|
Abassi Joozdani F, Yari F, Abassi Joozdani P, Nafisi S. Interaction of sulforaphane with DNA and RNA. PLoS One 2015; 10:e0127541. [PMID: 26030290 PMCID: PMC4452540 DOI: 10.1371/journal.pone.0127541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/16/2015] [Indexed: 01/19/2023] Open
Abstract
Sulforaphane (SFN) is an isothiocyanate found in cruciferous vegetables with anti-inflammatory, anti-oxidant and anti-cancer activities. However, the antioxidant and anticancer mechanism of sulforaphane is not well understood. In the present research, we reported binding modes, binding constants and stability of SFN-DNA and -RNA complexes by Fourier transform infrared (FTIR) and UV-Visible spectroscopic methods. Spectroscopic evidence showed DNA intercalation with some degree of groove binding. SFN binds minor and major grooves of DNA and backbone phosphate (PO2), while RNA binding is through G, U, A bases with some degree of SFN-phosphate (PO2) interaction. Overall binding constants were estimated to be K(SFN-DNA)=3.01 (± 0.035)×10(4) M(-1) and K(SFN-RNA)= 6.63 (±0.042)×10(3) M(-1). At high SFN concentration (SFN/RNA = 1/1), DNA conformation changed from B to A occurred, while RNA remained in A-family structure.
Collapse
Affiliation(s)
| | - Faramarz Yari
- Department of Biology, IAU, Science and Research Branch, Tehran, Iran
| | | | - Shohreh Nafisi
- Department of Chemistry, IAU, Central Tehran Branch, Tehran, Iran
- Department of Dermatology, University of California, San Francisco, California, United States of America
| |
Collapse
|
35
|
de Buhr N, Stehr M, Neumann A, Naim HY, Valentin-Weigand P, von Köckritz-Blickwede M, Baums CG. Identification of a novel DNase of Streptococcus suis (EndAsuis) important for neutrophil extracellular trap degradation during exponential growth. MICROBIOLOGY-SGM 2015; 161:838-50. [PMID: 25667008 DOI: 10.1099/mic.0.000040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/27/2015] [Indexed: 12/25/2022]
Abstract
The porcine and human pathogen Streptococcus suis induces and degrades neutrophil extracellular traps (NETs) in vitro. In this study, we investigated the working hypothesis that NET degradation is mediated not only by the known secreted S. suis nuclease A (SsnA) but also by a so-far undescribed putative endonuclease A of S. suis (designated EndAsuis) homologous to the pneumococcal endonuclease A (EndA). Comparative analysis was conducted to identify differences in localization, expression and function of EndAsuis and SsnA. In contrast to ssnA, endAsuis RNA expression was not substantially different during exponential and stationary growth. Modelling of the 3D structure confirmed a putative DRGH-motif-containing ββα-metal finger catalytic core in EndAsuis. Accordingly, nuclease activity of recombinant EndAsuis with a point-mutated H165 was rescued through imidazol treatment. In accordance with a putative membrane anchor, nuclease activity caused by endAsuis was not detectable in the supernatant. Importantly, endAsuis determined nuclease activity of S. suis prominently during exponential growth. This activity depended on the presence of Mg(2+) but, in contrast to SsnA activity, not on Ca(2+). A pH of 5.4 did not inhibit endAsuis-encoded nuclease activity during exponential growth. NET degradation of S. suis harvested during exponential growth was significantly attenuated in the endAsuis mutant. In contrast to SsnA, mutagenesis of endAsuis did not result in a significantly higher susceptibility against the antimicrobial effect mediated by NETs. As degradation of bacterial DNA caused by S. suis depended on ssnA and endAsuis, further functions of both factors in the host-pathogen interaction might be envisioned.
Collapse
Affiliation(s)
- Nicole de Buhr
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Matthias Stehr
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany LIONEX Diagnostics and Therapeutics GmbH, Braunschweig, Germany
| | - Ariane Neumann
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Hassan Y Naim
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Department of Physiological Chemistry, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Christoph G Baums
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany Institute for Bacteriology and Mycology, Centre for Infectious Diseases, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
36
|
Oteri F, Baaden M, Lojou E, Sacquin-Mora S. Multiscale Simulations Give Insight into the Hydrogen In and Out Pathways of [NiFe]-Hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans. J Phys Chem B 2014; 118:13800-11. [DOI: 10.1021/jp5089965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesco Oteri
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Baaden
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Elisabeth Lojou
- Bioénergétique
et Ingénierie des Protéines, Institut de Microbiologie
de la Méditerranée, CNRS, Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex, France
| | - Sophie Sacquin-Mora
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
37
|
Gulati M, Jain N, Davis JH, Williamson JR, Britton RA. Functional interaction between ribosomal protein L6 and RbgA during ribosome assembly. PLoS Genet 2014; 10:e1004694. [PMID: 25330043 PMCID: PMC4199504 DOI: 10.1371/journal.pgen.1004694] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 08/21/2014] [Indexed: 01/06/2023] Open
Abstract
RbgA is an essential GTPase that participates in the assembly of the large ribosomal subunit in Bacillus subtilis and its homologs are implicated in mitochondrial and eukaryotic large subunit assembly. How RbgA functions in this process is still poorly understood. To gain insight into the function of RbgA we isolated suppressor mutations that partially restored the growth of an RbgA mutation (RbgA-F6A) that caused a severe growth defect. Analysis of these suppressors identified mutations in rplF, encoding ribosomal protein L6. The suppressor strains all accumulated a novel ribosome intermediate that migrates at 44S in sucrose gradients. All of the mutations cluster in a region of L6 that is in close contact with helix 97 of the 23S rRNA. In vitro maturation assays indicate that the L6 substitutions allow the defective RbgA-F6A protein to function more effectively in ribosome maturation. Our results suggest that RbgA functions to properly position L6 on the ribosome, prior to the incorporation of L16 and other late assembly proteins. Ribosomes are complex macromolecular machines that carry out the essential function of protein synthesis in the cell. The assembly of ribosomal subunits is a multistep process that involves the accurate and timely assembly of 3 rRNA molecules and>50 ribosomal-proteins. In recent years many ribosome assembly factors have been identified in bacterial and eukaryotic cells; however, their precise functions in ribosome biogenesis are poorly understood. We have previously shown that the GTPase RbgA, a protein conserved from bacteria to humans, is essential for ribosome assembly in Bacillus subtilis. Here, we show that growth defect caused by a mutation in RbgA is partially suppressed by mutations in ribosomal protein L6. The suppressor strains accumulate novel ribosomal intermediates that appear to suppress the RbgA defect by weakening the interaction of L6 for the ribosome and facilitating RbgA dependent assembly. Our work provides evidence for a functional interaction between ribosome assembly factor RbgA and ribosomal protein L6 during assembly, a function that is likely important for mitochondrial, chloroplast, and eukaryotic ribosome assembly as well.
Collapse
Affiliation(s)
- Megha Gulati
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Nikhil Jain
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Joseph H. Davis
- Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Robert A. Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: .
| |
Collapse
|
38
|
Singh M, Sur S, Rastogi GK, Jayaram B, Tandon V. Bi and tri-substituted phenyl rings containing bisbenzimidazoles bind differentially with DNA duplexes: a biophysical and molecular simulation study. MOLECULAR BIOSYSTEMS 2014; 9:2541-53. [PMID: 23921527 DOI: 10.1039/c3mb70169g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recently synthesis of programmable DNA ligands which can regulate transcription factors have increased the interest of researchers on the functional ability of DNA interacting compounds. A series of DNA interacting compounds are being designed which can differentiate between GC and AT rich DNA. In this study, we have studied the specificity of a few novel bisbenzimidazoles having different bi/tri-substituted phenyl rings, with DNA duplexes using spectroscopic methods. This study entails an integrative approach where we combine biophysical methods and molecular dynamics simulation studies to establish suitable scaffolds to target A/T DNA. We have designed a few analogues of Hoechst 33342 viz.; dimethoxy (DMA), trimethoxy (TMA), dichloro (DCA) and difluoro (DFA) functionalities and performed molecular docking of newly designed analogues with biologically relevant AT and GC rich DNA sequences. The docking studies, along with molecular dynamics (MD) simulations of d(ATATATATATATATAT)2, d(GA4T4C)2, d(GT4A4C)2 and GC rich sequence: d(GCGCGCGCGCGCGCGC)2 complexed with DMA, TMA and DFA, showed that these molecules have higher binding affinity towards AT rich DNA. None of these compounds exhibited an affinity to GC rich DNA rather we observed that these compounds destabilize GC rich DNA. The binding was characterized by strong stabilization of the polynucleotides against thermal strand separation in thermal melting experiments. New insights into the molecules binding to DNA have emerged from these studies. All the DNA binding ligands stabilized d(GA4T4C)2 and d(GT4A4C)2 more out of the five oligomers used for the study, suggesting that these ligands bind 'A4T4' and 'T4A4' strongly as compared to 'ATAT' base pairs.
Collapse
Affiliation(s)
- Manish Singh
- Dr. B. R. Ambedkar Center for Biomedical Research, Delhi, India
| | | | | | | | | |
Collapse
|
39
|
Nafisi S, Manouchehri F, Bonsaii M. Study on the interaction of glycyrrhizin and glycyrrhetinic acid with RNA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 111:27-34. [PMID: 22513095 DOI: 10.1016/j.jphotobiol.2012.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/05/2012] [Accepted: 03/13/2012] [Indexed: 11/17/2022]
Abstract
Glycyrrhizin is a well known pharmacologically bioactive natural glycoside. Glycyrrhizin (GL) has been widely used as a therapeutic agent for chronic active liver diseases. Glycyrrhetinic acid is an aglycone and an active metabolite of glycyrrhizin. This study is the first attempt to locate the binding sites of glycyrrhizin and glycyrrhetinic acid to RNA. The effect of the ligand complexation on RNA aggregation was investigated in aqueous solution at physiological conditions, using constant RNA concentration (6.25 mM) and various ligand/polynucleotide (phosphate) ratios of 1/280, 1/240, 1/120, 1/80, 1/40, 1/20, 1/10, 1/5, 1/2 and 1/1. Fourier transform infrared (FTIR) and UV-Visible spectroscopic methods as well as molecular modeling were used to determine the ligand binding modes, the binding constants, and the stability of ligands-RNA complexes in aqueous solution. Spectroscopic evidence showed that glycyrrhizin and glycyrrhetinic acid bind RNA via G-C and A-U base pairs as well as the backbone phosphate group with overall binding constants of K(GL-RNA)=3.03×10(3)M(-1), K(GA-RNA)=2.71×10(3)M(-1). The affinity of ligands-RNA binding is in the order of glycyrrhizin>glycyrrhetinic acid. RNA remains in the A-family structure, while biopolymer aggregation occurred at high triterpenoid concentrations.
Collapse
Affiliation(s)
- Shohreh Nafisi
- Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran, Iran.
| | | | | |
Collapse
|
40
|
Harish A, Caetano-Anollés G. Ribosomal history reveals origins of modern protein synthesis. PLoS One 2012; 7:e32776. [PMID: 22427882 PMCID: PMC3299690 DOI: 10.1371/journal.pone.0032776] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 01/30/2012] [Indexed: 02/06/2023] Open
Abstract
The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world.
Collapse
Affiliation(s)
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana-Champaign, Illinois, United States of America
| |
Collapse
|
41
|
Astragalin from Cassia alata induces DNA adducts in vitro and repairable DNA damage in the yeast Saccharomyces cerevisiae. Int J Mol Sci 2012; 13:2846-2862. [PMID: 22489129 PMCID: PMC3317691 DOI: 10.3390/ijms13032846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/22/2012] [Accepted: 02/22/2012] [Indexed: 11/22/2022] Open
Abstract
Reverse phase-solid phase extraction from Cassia alata leaves (CaRP) was used to obtain a refined extract. Higher than wild-type sensitivity to CaRP was exhibited by 16 haploid Saccharomyces cerevisiae mutants with defects in DNA repair and membrane transport. CaRP had a strong DPPH free radical scavenging activity with an IC50 value of 2.27 μg mL−1 and showed no pro-oxidant activity in yeast. CaRP compounds were separated by HPLC and the three major components were shown to bind to DNA in vitro. The major HPLC peak was identified as kampferol-3-O-β-d-glucoside (astragalin), which showed high affinity to DNA as seen by HPLC-UV measurement after using centrifugal ultrafiltration of astragalin-DNA mixtures. Astragalin-DNA interaction was further studied by spectroscopic methods and its interaction with DNA was evaluated using solid-state FTIR. These and computational (in silico) docking studies revealed that astragalin-DNA binding occurs through interaction with G-C base pairs, possibly by intercalation stabilized by H-bond formation.
Collapse
|
42
|
Kashida H, Asanuma H. Preparation of supramolecular chromophoric assemblies using a DNA duplex. Phys Chem Chem Phys 2012; 14:7196-204. [DOI: 10.1039/c2cp40520b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Nafisi S, Bonsaii M, Manouchehri F, Abdi K. Interaction of glycyrrhizin and glycyrrhetinic acid with DNA. DNA Cell Biol 2011; 31:114-21. [PMID: 22074129 DOI: 10.1089/dna.2011.1287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycyrrhizin (GL), a molecule of glycyrrhetinic acid (GA), is an aqueous extract from licorice root. These compounds are well known for their anti-inflammatory, hepatocarcinogenesis, antiviral, and interferon-inducing activities. This study is the first attempt to investigate the binding of GL and GA with DNA. The effect of ligand complexation on DNA aggregation and condensation was investigated in aqueous solution at physiological conditions, using constant DNA concentration (6.25 mM) and various ligands/polynucleotide (phosphate) ratios of 1/240, 1/120, 1/80, 1/40, 1/20, 1/10, 1/5, 1/2, and 1/1. Fourier transform infrared and ultraviolet (UV)-visible spectroscopic methods were used to determine the ligand binding modes, the binding constants, and the stability of ligand-DNA complexes in aqueous solution. Spectroscopic evidence showed that GL and GA bind DNA via major and minor grooves as well as the backbone phosphate group with overall binding constants of K(GL-DNA)=5.7×10(3) M(-1), K(GA-DNA)=5.1×10(3) M(-1). The affinity of ligand-DNA binding is in the order of GL>GA. DNA remained in the B-family structure, whereas biopolymer aggregation occurred at high triterpenoid concentrations.
Collapse
Affiliation(s)
- Shohreh Nafisi
- Department of Chemistry, Islamic Azad University-Central Tehran Branch, Tehran, Iran.
| | | | | | | |
Collapse
|
44
|
Nafisi S, Bonsaii M, Alexis V, Glick J. Binding of 2-Acetylaminofluorene to DNA. DNA Cell Biol 2011; 30:955-62. [DOI: 10.1089/dna.2011.1229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shohreh Nafisi
- Department of Chemistry, Central Tehran Branch (IAUCTB), Islamic Azad University, Tehran, Iran
| | - Mahyar Bonsaii
- Department of Chemistry, Central Tehran Branch (IAUCTB), Islamic Azad University, Tehran, Iran
| | - Valerie Alexis
- Chemistry and Chemical Biology Department, Northeastern University, Boston, Massachusetts
| | - James Glick
- Chemistry and Chemical Biology Department, Northeastern University, Boston, Massachusetts
| |
Collapse
|
45
|
Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF, Goddard TD, Meng EC, Sali A, Ferrin TE. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol 2011; 179:269-78. [PMID: 21963794 DOI: 10.1016/j.jsb.2011.09.006] [Citation(s) in RCA: 453] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/16/2011] [Accepted: 09/18/2011] [Indexed: 02/02/2023]
Abstract
Structural modeling of macromolecular complexes greatly benefits from interactive visualization capabilities. Here we present the integration of several modeling tools into UCSF Chimera. These include comparative modeling by MODELLER, simultaneous fitting of multiple components into electron microscopy density maps by IMP MultiFit, computing of small-angle X-ray scattering profiles and fitting of the corresponding experimental profile by IMP FoXS, and assessment of amino acid sidechain conformations based on rotamer probabilities and local interactions by Chimera.
Collapse
Affiliation(s)
- Zheng Yang
- Resource for Biocomputing, Visualization, and Informatics, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tsai PC, Fan Y, Kim J, Yang L, Almo SC, Gao YQ, Raushel FM. Structural determinants for the stereoselective hydrolysis of chiral substrates by phosphotriesterase. Biochemistry 2010; 49:7988-97. [PMID: 20695627 DOI: 10.1021/bi101058z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wild-type phosphotriesterase (PTE) preferentially hydrolyzes the R(P) enantiomers of the nerve agents sarin (GB) and cyclosarin (GF) and their chromophoric analogues. The active site of PTE can be subdivided into three binding pockets that have been denoted as the small, large, and leaving group pockets based on high-resolution crystal structures. The sizes and shapes of these pockets dictate the substrate specificity and stereoselectivity for catalysis. Mutants of PTE that exhibit substantial changes in substrate specificity and the ability to differentiate between chiral substrates have been prepared. For example, the G60A mutant is stereoselective for the hydrolysis of the R(P) enantiomer of the chromophoric analogues of sarin and cyclosarin, whereas the H254G/H257W/L303T (GWT) mutant reverses the stereoselectivity for the enantiomers of these two compounds. Molecular dynamics simulations and high-resolution X-ray structures identified the correlations between structural changes in the active site and the experimentally determined kinetic parameters for substrate hydrolysis. New high-resolution structures were determined for the H257Y/L303T (YT), I106G/F132G/H257Y (GGY), and H254Q/H257F (QF) mutants of PTE. Molecular dynamics calculations were conducted using the S(P) and R(P) enantiomers of the analogues for sarin and cyclosarin for the wild-type PTE and the G60A, YT, GGY, QF, and GWT mutants. The experimental stereoselectivity correlated nicely with the difference in the computed angle of attack for the nucleophilic hydroxide relative to the phenolic leaving group of the substrate.
Collapse
Affiliation(s)
- Ping-Chuan Tsai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Lewis CL, Lin Y, Yang C, Manocchi AK, Yuet KP, Doyle PS, Yi H. Microfluidic fabrication of hydrogel microparticles containing functionalized viral nanotemplates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:13436-41. [PMID: 20695589 PMCID: PMC2922968 DOI: 10.1021/la102446n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We demonstrate rapid microfluidic fabrication of hybrid microparticles composed of functionalized viral nanotemplates directly embedded in polymeric hydrogels. Specifically, genetically modified tobacco mosaic virus (TMV) templates were covalently labeled with fluorescent markers or metalized with palladium (Pd) nanoparticles (Pd-TMV) and then suspended in a poly(ethylene glycol)-based solution. Upon formation in a flow-focusing device, droplets were photopolymerized with UV light to form microparticles. Fluorescence and confocal microscopy images of microparticles containing fluorescently labeled TMV show uniform distribution of TMV nanotemplates throughout the microparticles. Catalytic activity, via the dichromate reduction reaction, is also demonstrated with microparticles containing Pd-TMV complexes. Additionally, Janus microparticles were fabricated containing viruses embedded in one side and magnetic nanoparticles in the other, which enabled simple separation from bulk solution. These results represent a facile route to directly harness the advantages of viral nanotemplates into a readily usable and stable 3D assembled format.
Collapse
Affiliation(s)
- Christina L. Lewis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155
| | - Yan Lin
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155
| | - Cuixian Yang
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155
| | - Amy K. Manocchi
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155
| | - Kai P. Yuet
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA 02155
| |
Collapse
|
48
|
Chung J, Ulyanov NB, Guilbert C, Mujeeb A, James TL. Binding characteristics of small molecules that mimic nucleocapsid protein-induced maturation of stem-loop 1 of HIV-1 RNA. Biochemistry 2010; 49:6341-51. [PMID: 20565056 PMCID: PMC2921804 DOI: 10.1021/bi100660r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As a retrovirus, the human immunodeficiency virus (HIV-1) packages two copies of the RNA genome as a dimer in the infectious virion. Dimerization is initiated at the dimer initiation site (DIS) which encompasses stem-loop 1 (SL1) in the 5'-UTR of the genome. Study of genomic dimerization has been facilitated by the discovery that short RNA fragments containing SL1 can dimerize spontaneously without any protein factors. On the basis of the palindromic nature of SL1, a kissing loop model has been proposed. First, a metastable kissing dimer is formed via standard Watson-Crick base pairs and then converted into a more stable extended dimer by the viral nucleocapsid protein (NCp7). This dimer maturation in vitro is believed to mimic initial steps in the RNA maturation in vivo, which is correlated with viral infectivity. We previously discovered a small molecule activator, Lys-Ala-7-amido-4-methylcoumarin (KA-AMC), which facilitates dimer maturation in vitro, and determined aspects of its structure-activity relationship. In this report, we present measurements of the binding affinity of the activators and characterization of their interactions with the SL1 RNA. Guanidinium groups and increasing positive charge on the side chain enhance affinity and activity, but features in the aromatic ring at least partially decouple affinity from activity. Although KA-AMC can bind to multiple structural motifs, the NMR study showed KA-AMC preferentially binds to unique structural motifs, such as the palindromic loop and the G-rich internal loop in the SL1 RNA. NCp7 binds to SL1 only 1 order of magnitude more tightly than the best small molecule ligand tested. This study provides guidelines for the design of superior small molecules that bind to the SL1 RNA that have the potential of being developed as an antiviral by interfering with SL1-NCp7 interaction at the packaging and/or maturation stages.
Collapse
Affiliation(s)
| | - Nikolai B. Ulyanov
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16 Street, San Francisco, California 94158-2517
| | - Christophe Guilbert
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16 Street, San Francisco, California 94158-2517
| | | | - Thomas L. James
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16 Street, San Francisco, California 94158-2517
| |
Collapse
|
49
|
Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. J Virol 2010; 84:9210-6. [PMID: 20610719 DOI: 10.1128/jvi.01164-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
MK-2048 represents a prototype second-generation integrase strand transfer inhibitor (INSTI) developed with the goal of retaining activity against viruses containing mutations associated with resistance to first-generation INSTIs, raltegravir (RAL) and elvitegravir (EVG). Here, we report the identification of mutations (G118R and E138K) which confer resistance to MK-2048 and not to RAL or EVG. These mutations were selected in vitro and confirmed by site-specific mutagenesis. G118R, which appeared first in cell culture, conferred low levels of resistance to MK-2048. G118R also reduced viral replication capacity to approximately 1% that of the isogenic wild-type (wt) virus. The subsequent selection of E138K partially restored replication capacity to approximately 13% of wt levels and increased resistance to MK-2048 to approximately 8-fold. Viruses containing G118R and E138K remained largely susceptible to both RAL and EVG, suggesting a unique interaction between this second-generation INSTI and the enzyme may be defined by these residues as a potential basis for the increased intrinsic affinity and longer "off" rate of MK-2048. In silico structural analysis suggests that the introduction of a positively charged arginine at position 118, near the catalytic amino acid 116, might decrease Mg(2+) binding, compromising enzyme function and thus leading to the significant reduction in both integration and viral replication capacity observed with these mutations.
Collapse
|
50
|
Ulyanov NB, James TL. RNA structural motifs that entail hydrogen bonds involving sugar-phosphate backbone atoms of RNA. NEW J CHEM 2010; 34:910-917. [PMID: 20689681 DOI: 10.1039/b9nj00754g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The growing number of high-resolution crystal structures of large RNA molecules provides much information for understanding the principles of structural organization of these complex molecules. Several in-depth analyses of nucleobase-centered RNA structural motifs and backbone conformations have been published based on this information, including a systematic classification of base pairs by Leontis and Westhof. However, hydrogen bonds involving sugar-phosphate backbone atoms of RNA have not been analyzed systematically until recently, although such hydrogen bonds appear to be common both in local and tertiary interactions. Here we review some backbone structural motifs discussed in the literature and analyze a set of eight high-resolution multi-domain RNA structures. The analyzed RNAs are highly structured: among 5372 nucleotides in this set, 89% are involved in at least one "long-range" RNA-RNA hydrogen bond, i.e., hydrogen bonds between atoms in the same residue or sequential residues are ignored. These long-range hydrogen bonds frequently use backbone atoms as hydrogen bond acceptors, i.e., OP1, OP2, O2', O3', O4', or O5', or as a donor (2'OH). A surprisingly large number of such hydrogen bonds are found, considering that neither single-stranded nor double-stranded regions will contain such hydrogen bonds unless additional interactions with other residues exist. Among 8327 long-range hydrogen bonds found in this set of structures, 2811, or about one-third, are hydrogen bonds entailing RNA backbone atoms; they involve 39% of all nucleotides in the structures. The majority of them (2111) are hydrogen bonds entailing ribose hydroxyl groups, which can be used either as a donor or an acceptor; they constitute 25% of all hydrogen bonds and involve 31% of all nucleotides. The phosphate oxygens OP1 or OP2 are used as hydrogen bond acceptors in 12% of all nucleotides, and the ribose ring oxygen O4' and phosphodiester oxygens O3' and O5' are used in 4%, 4%, and 1% of all nucleotides, respectively. Distributions of geometric parameters and some examples of such hydrogen bonds are presented in this report. A novel motif involving backbone hydrogen bonds, the ribose-phosphate zipper, is also identified.
Collapse
Affiliation(s)
- Nikolai B Ulyanov
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158-2517, USA
| | | |
Collapse
|