1
|
Bhattarai PY, Kim G, Lim SC, Choi HS. METTL3-STAT5B interaction facilitates the co-transcriptional m 6A modification of mRNA to promote breast tumorigenesis. Cancer Lett 2024; 603:217215. [PMID: 39218290 DOI: 10.1016/j.canlet.2024.217215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Enhanced expression of methyltransferase-like 3 (METTL3) promotes the m6A modification of specific mRNAs, contributing to breast tumorigenesis. While the mRNA substrates targeted by METTL3 are well characterized, the factors dictating the selection of these specific mRNA remain elusive. This study aimed to examine the regulatory role of the transcription factor STAT5B in METTL3-induced m6A modification. METTL3 specifically interacts with STAT5B in response to mitogenic stimulation by epidermal growth factor (EGF). Chromatin immunoprecipitation and CRISPR/Cas9 mutagenesis showed that STAT5B recruits METTL3 to gene promoters like CCND1, where METTL3 interacts with RPB1, dependent on CDK9-mediated RPB1 (Ser2) phosphorylation during transcription elongation. Inhibition and depletion of either STAT5B or CDK9 prevented the EGF-induced m6A modification of CCND1. The translation efficiency of CCND1 was increased following m6A modification, thereby increasing cell proliferation. STAT5B facilitated METTL3-induced tumor formation by increasing CCND1 expression in an orthotopic mouse model. In clinical context, a positive correlation was observed between p-STAT5B and METTL3 expression in high-grade breast tumors. This study elucidates a novel mechanism that underlies the specificity of m6A modification in breast cancer cells, thereby underscoring its potential therapeutic value.
Collapse
Affiliation(s)
- Poshan Yugal Bhattarai
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Garam Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, School of Medicine, Chosun University, Gwangju, 61452, Republic of Korea
| | - Hong Seok Choi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
2
|
van den Akker GGH, Chabronova A, Housmans BAC, van der Vloet L, Surtel DAM, Cremers A, Marchand V, Motorin Y, Caron MMJ, Peffers MJ, Welting TJM. TGF-β2 Induces Ribosome Activity, Alters Ribosome Composition and Inhibits IRES-Mediated Translation in Chondrocytes. Int J Mol Sci 2024; 25:5031. [PMID: 38732249 PMCID: PMC11084827 DOI: 10.3390/ijms25095031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-β2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-β2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-β2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-β2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-β2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-β2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Alzbeta Chabronova
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Bas A. C. Housmans
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Laura van der Vloet
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Don A. M. Surtel
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Andy Cremers
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Virginie Marchand
- UAR2008 IBSLor CNRS-INSERM, Université de Lorraine, BioPole, F54000 Nancy, France; (V.M.); (Y.M.)
| | - Yuri Motorin
- UAR2008 IBSLor CNRS-INSERM, Université de Lorraine, BioPole, F54000 Nancy, France; (V.M.); (Y.M.)
- UMR7365 IMoPA, CNRS, Université de Lorraine, BioPole, F54000 Nancy, France
| | - Marjolein M. J. Caron
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Tim J. M. Welting
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
3
|
Bernal YA, Blanco A, Sagredo EA, Oróstica K, Alfaro I, Marcelain K, Armisén R. A Comprehensive Analysis of the Effect of A>I(G) RNA-Editing Sites on Genotoxic Drug Response and Progression in Breast Cancer. Biomedicines 2024; 12:728. [PMID: 38672084 PMCID: PMC11048297 DOI: 10.3390/biomedicines12040728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Dysregulated A>I(G) RNA editing, which is mainly catalyzed by ADAR1 and is a type of post-transcriptional modification, has been linked to cancer. A low response to therapy in breast cancer (BC) is a significant contributor to mortality. However, it remains unclear if there is an association between A>I(G) RNA-edited sites and sensitivity to genotoxic drugs. To address this issue, we employed a stringent bioinformatics approach to identify differentially RNA-edited sites (DESs) associated with low or high sensitivity (FDR 0.1, log2 fold change 2.5) according to the IC50 of PARP inhibitors, anthracyclines, and alkylating agents using WGS/RNA-seq data in BC cell lines. We then validated these findings in patients with basal subtype BC. These DESs are mainly located in non-coding regions, but a lesser proportion in coding regions showed predicted deleterious consequences. Notably, some of these DESs are previously reported as oncogenic variants, and in genes related to DNA damage repair, drug metabolism, gene regulation, the cell cycle, and immune response. In patients with BC, we uncovered DESs predominantly in immune response genes, and a subset with a significant association (log-rank test p < 0.05) between RNA editing level in LSR, SMPDL3B, HTRA4, and LL22NC03-80A10.6 genes, and progression-free survival. Our findings provide a landscape of RNA-edited sites that may be involved in drug response mechanisms, highlighting the value of A>I(G) RNA editing in clinical outcomes for BC.
Collapse
Affiliation(s)
- Yanara A. Bernal
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| | - Alejandro Blanco
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| | - Eduardo A. Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91 Stockholm, Sweden;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Science for Life Laboratory, SE-171 65 Solna, Sweden
| | - Karen Oróstica
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Talca 3460000, Chile;
| | - Ivan Alfaro
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| | - Katherine Marcelain
- Departamento de Oncología Básico Clínica, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Centro de Prevención y Control de Cáncer (CECAN), Universidad de Chile, Santiago 8380453, Chile
| | - Ricardo Armisén
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7610658, Chile; (Y.A.B.); (A.B.); (I.A.)
| |
Collapse
|
4
|
Huang C, Zhang K, Guo Y, Shen C, Liu X, Huang H, Dou X, Yu B. The crucial roles of m 6A RNA modifications in cutaneous cancers: Implications in pathogenesis, metastasis, drug resistance, and targeted therapies. Genes Dis 2023; 10:2320-2330. [PMID: 37554186 PMCID: PMC10404882 DOI: 10.1016/j.gendis.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification on RNA. It is a dynamical and reversible process, which is regulated by m6A methyltransferase and m6A demethylase. The m6A modified RNA can be specifically recognized by the m6A reader, leading to RNA splicing, maturation, degradation or translation. The abnormality of m6A RNA modification is closely related to a variety of biological processes, especially the occurrence and development of tumors. Recent studies have shown that m6A RNA modification is involved in the pathogenesis of skin cancers. However, the precise molecular mechanisms of m6A-mediated cutaneous tumorigenesis have not been fully elucidated. Therefore, this review will summarize the biological characteristics of m6A modification, its regulatory role and mechanism in skin cancers, and the recent research progress of m6A-related molecular drugs, aiming to provide new ideas for clinical diagnosis and targeted therapy of cutaneous cancers.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Kaoyuan Zhang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yang Guo
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Changbing Shen
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xiaoming Liu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Haiyan Huang
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xia Dou
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Bo Yu
- Department of Dermatology, Skin Research Institute of Peking University Shenzhen Hospital, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| |
Collapse
|
5
|
Kumari S, Kumar S, Muthuswamy S. RNA N6-methyladenosine modification in regulating cancer stem cells and tumor immune microenvironment and its implication for cancer therapy. J Cancer Res Clin Oncol 2023; 149:1621-1633. [PMID: 35796777 DOI: 10.1007/s00432-022-04158-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Therapy resistance is a well-known phenomenon in cancer treatment. It can be intrinsic or acquired, accountable for frequent tumor relapse and death worldwide. The interplay between cancer cells and their neighboring environment can activate complex signaling mechanisms influencing epigenetic changes and maintain cancer cell survival leading to the malignant phenotype. Cancer stem cells (CSCs) are tumor-initiating cells (TICs) and constitute the primary source of drug resistance and tumor recurrence. Studies have shown that cancer cells exhibit dysregulated RNA N6-methyladenosine (m6A) "writers," "erasers," and "readers" levels after acquiring drug resistance. The present review provides novel insight into the role of m6A modifiers involved in CSC generation, cancer cell proliferation, and therapy resistance. m6A RNA modifications in the cross-talk between CSC and the tumor immune microenvironment (TIME) have also been highlighted. Further, we have discussed the therapeutic potential of targeting m6A machinery for cancer diagnosis and the development of new therapies for cancer treatment.
Collapse
Affiliation(s)
- Subhadra Kumari
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | |
Collapse
|
6
|
Keszthelyi TM, Tory K. The importance of pseudouridylation: human disorders related to the fifth nucleoside. Biol Futur 2023:10.1007/s42977-023-00158-3. [PMID: 37000312 DOI: 10.1007/s42977-023-00158-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Pseudouridylation is one of the most abundant RNA modifications in eukaryotes, making pseudouridine known as the "fifth nucleoside." This highly conserved alteration affects all non-coding and coding RNA types. Its role and importance have been increasingly widely researched, especially considering that its absence or damage leads to serious hereditary diseases. Here, we summarize the human genetic disorders described to date that are related to the participants of the pseudouridylation process.
Collapse
Affiliation(s)
| | - Kálmán Tory
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
7
|
Achour C, Bhattarai DP, Groza P, Román ÁC, Aguilo F. METTL3 regulates breast cancer-associated alternative splicing switches. Oncogene 2023; 42:911-925. [PMID: 36725888 PMCID: PMC10020087 DOI: 10.1038/s41388-023-02602-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Alternative splicing (AS) enables differential inclusion of exons from a given transcript, thereby contributing to the transcriptome and proteome diversity. Aberrant AS patterns play major roles in the development of different pathologies, including breast cancer. N6-methyladenosine (m6A), the most abundant internal modification of eukaryotic mRNA, influences tumor progression and metastasis of breast cancer, and it has been recently linked to AS regulation. Here, we identify a specific AS signature associated with breast tumorigenesis in vitro. We characterize for the first time the role of METTL3 in modulating breast cancer-associated AS programs, expanding the role of the m6A-methyltransferase in tumorigenesis. Specifically, we find that both m6A deposition in splice site boundaries and in splicing and transcription factor transcripts, such as MYC, direct AS switches of specific breast cancer-associated transcripts. Finally, we show that five of the AS events validated in vitro are associated with a poor overall survival rate for patients with breast cancer, suggesting the use of these AS events as a novel potential prognostic biomarker.
Collapse
Affiliation(s)
- Cyrinne Achour
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Devi Prasad Bhattarai
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden
| | - Ángel-Carlos Román
- Department of Molecular Biology and Genetics, University of Extremadura, 06071, Badajoz, Spain.
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
8
|
Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023; 70:JME-22-0110. [PMID: 36367225 PMCID: PMC9790079 DOI: 10.1530/jme-22-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Epitranscriptomic modification of RNA regulates human development, health, and disease. The true diversity of the transcriptome in breast cancer including chemical modification of transcribed RNA (epitranscriptomics) is not well understood due to limitations of technology and bioinformatic analysis. N-6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of mRNA and regulates splicing, stability, translation, and intracellular localization of transcripts depending on m6A association with reader RNA-binding proteins. m6A methylation is catalyzed by the METTL3 complex and removed by specific m6A demethylase ALKBH5, with the role of FTO as an 'eraser' uncertain. In this review, we provide an overview of epitranscriptomics related to mRNA and focus on m6A in mRNA and its detection. We summarize current knowledge on altered levels of writers, readers, and erasers of m6A and their roles in breast cancer and their association with prognosis. We summarize studies identifying m6A peaks and sites in genes in breast cancer cells.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
9
|
Webster SF, Ghalei H. Maturation of small nucleolar RNAs: from production to function. RNA Biol 2023; 20:715-736. [PMID: 37796118 PMCID: PMC10557570 DOI: 10.1080/15476286.2023.2254540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Small Nucleolar RNAs (snoRNAs) are an abundant group of non-coding RNAs with well-defined roles in ribosomal RNA processing, folding and chemical modification. Besides their classic roles in ribosome biogenesis, snoRNAs are also implicated in several other cellular activities including regulation of splicing, transcription, RNA editing, cellular trafficking, and miRNA-like functions. Mature snoRNAs must undergo a series of processing steps tightly regulated by transiently associating factors and coordinated with other cellular processes including transcription and splicing. In addition to their mature forms, snoRNAs can contribute to gene expression regulation through their derivatives and degradation products. Here, we review the current knowledge on mechanisms of snoRNA maturation, including the different pathways of processing, and the regulatory mechanisms that control snoRNA levels and complex assembly. We also discuss the significance of studying snoRNA maturation, highlight the gaps in the current knowledge and suggest directions for future research in this area.
Collapse
Affiliation(s)
- Sarah F. Webster
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Homa Ghalei
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Jayathirtha M, Neagu AN, Whitham D, Alwine S, Darie CC. Investigation of the effects of downregulation of jumping translocation breakpoint (JTB) protein expression in MCF7 cells for potential use as a biomarker in breast cancer. Am J Cancer Res 2022; 12:4373-4398. [PMID: 36225631 PMCID: PMC9548009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
MCF7 is a commonly used luminal type A non-invasive/poor-invasive human breast cancer cell line that does not usually migrate or invade compared with MDA-MB-231 highly metastatic cells, which emphasize an invasive and migratory behavior. Under special conditions, MCF7 cells might acquire invasive features. The aberration in expression and biological functions of the jumping translocation breackpoint (JTB) protein is associated with malignant transformation of cells, based on mitochondrial dysfunction, inhibition of tumor suppressive function of TGF-β, and involvement in cancer cell cycle. To investigate new putative functions of JTB by cellular proteomics, we analyzed the biological processes and pathways that are associated with the JTB protein downregulation. The results demonstrated that MCF7 cell line developed a more "aggressive" phenotype and behavior. Most of the proteins that were overexpressed in this experiment promoted the actin cytoskeleton reorganization that is involved in growth and metastatic dissemination of cancer cells. Some of these proteins are involved in the epithelial-mesenchymal transition (EMT) process (ACTBL2, TUBA4A, MYH14, CSPG5, PKM, UGDH, HSP90AA2, and MIF), in correlation with the energy metabolism reprogramming (PKM, UGDH), stress-response (HSP10, HSP70A1A, HSP90AA2), and immune and inflammatory response (MIF and ERp57-TAPBP). Almost all upregulated proteins in JTB downregulated condition promote viability, motility, proliferation, invasion, survival into a hostile microenvironment, metabolic reprogramming, and escaping of tumor cells from host immune control, leading to a more invasive phenotype for MCF7 cell line. Due to their downregulated condition, four proteins, such as CREBZF, KMT2B, SELENOS and CACNA1I are also involved in maintenance of the invasive phenotype of cancer cells, promoting cell proliferation, migration, invasion and tumorigenesis. Other downregulated proteins, such as MAZ, PLEKHG2, ENO1, TPI2, TOR2A, and CNNM1, may promote suppression of cancer cell growth, invasion, EMT, tumorigenic abilities, interacting with glucose and lipid metabolism, disrupting nuclear envelope stability, or suppressing apoptosis and developing anti-angiogenetic activities. Therefore, the main biological processes and pathways that may increase the tumorigenic potential of the MCF7 cells in JTB downregulated condition are related to the actin cytoskeleton organization, EMT, mitotic cell cycle, glycolysis and fatty acid metabolism, inflammatory response and macrophage activation, chemotaxis and migration, cellular response to stress condition (oxidative stress and hypoxia), transcription control, histone modification and ion transport.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of IasiCarol I bvd. No. 22, Iasi 700505, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Shelby Alwine
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson UniversityPotsdam, NY 13699-5810, USA
| |
Collapse
|
11
|
Cottilli P, Itoh Y, Nobe Y, Petrov AS, Lisón P, Taoka M, Amunts A. Cryo-EM structure and rRNA modification sites of a plant ribosome. PLANT COMMUNICATIONS 2022; 3:100342. [PMID: 35643637 PMCID: PMC9483110 DOI: 10.1016/j.xplc.2022.100342] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 05/25/2022] [Indexed: 05/25/2023]
Abstract
Protein synthesis in crop plants contributes to the balance of food and fuel on our planet, which influences human metabolic activity and lifespan. Protein synthesis can be regulated with respect to changing environmental cues via the deposition of chemical modifications into rRNA. Here, we present the structure of a plant ribosome from tomato and a quantitative mass spectrometry analysis of its rRNAs. The study reveals fine features of the ribosomal proteins and 71 plant-specific rRNA modifications, and it re-annotates 30 rRNA residues in the available sequence. At the protein level, isoAsp is found in position 137 of uS11, and a zinc finger previously believed to be universal is missing from eL34, suggesting a lower effect of zinc deficiency on protein synthesis in plants. At the rRNA level, the plant ribosome differs markedly from its human counterpart with respect to the spatial distribution of modifications. Thus, it represents an additional layer of gene expression regulation, highlighting the molecular signature of a plant ribosome. The results provide a reference model of a plant ribosome for structural studies and an accurate marker for molecular ecology.
Collapse
Affiliation(s)
- Patrick Cottilli
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165 Solna, Sweden
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165 Solna, Sweden
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València (UPV) - Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia 46022, Spain
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165 Solna, Sweden.
| |
Collapse
|
12
|
Pushkarev SV, Vinnik VA, Shapovalova IV, Švedas VK, Nilov DK. Modeling the Structure of Human tRNA-Guanine Transglycosylase in Complex with 7-Methylguanine and Revealing the Factors that Determine the Enzyme Interaction with Inhibitors. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:443-449. [PMID: 35790378 DOI: 10.1134/s0006297922050054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
tRNA-guanine transglycosylase, an enzyme catalyzing replacement of guanine with queuine in human tRNA and participating in the translation mechanism, is involved in the development of cancer. However, information on the small-molecule inhibitors that can suppress activity of this enzyme is very limited. Molecular dynamics simulations were used to determine the amino acid residues that provide efficient binding of inhibitors in the active site of tRNA-guanine transglycosylase. It was demonstrated using 7-methylguanine molecule as a probe that the ability of the inhibitor to adopt a charged state in the environment of hydrogen bond acceptors Asp105 and Asp159 plays a key role in complex formation. Formation of the hydrogen bonds and hydrophobic contacts with Gln202, Gly229, Phe109, and Met259 residues are also important. It has been predicted that introduction of the substituents would have a different effect on the ability to inhibit tRNA-guanine transglycosylase, as well as the DNA repair protein poly(ADP-ribose) polymerase 1, which can contribute to the development of more efficient and selective compounds.
Collapse
Affiliation(s)
- Sergey V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Valeriia A Vinnik
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina V Shapovalova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vytas K Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Dmitry K Nilov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Affiliation(s)
- Danzhou Yang
- Purdue University, College of Pharmacy, Medicinal Chemistry and Molecular Pharmacology, 575 W Stadium Ave., West Lafayette, IN 47907, USA,Purdue University Center for Cancer Research, 201 S University St, West Lafayette, IN 47906, USA,Purdue University, Department of Chemistry, West Lafayette, IN, USA,Purdue Institute for Drug Discovery, West Lafayette, IN, USA
| | - Jonathan Dickerhoff
- Purdue University, College of Pharmacy, Medicinal Chemistry and Molecular Pharmacology, 575 W Stadium Ave., West Lafayette, IN 47907, USA
| | - William S Dynan
- Emory University School of Medicine, Department of Radiation Oncology, Department of Biochemistry, and Winship Cancer Institute, 1510 Clifton Rd NE, Atlanta GA 30322, USA
| |
Collapse
|
14
|
Boccaletto P, Stefaniak F, Ray A, Cappannini A, Mukherjee S, Purta E, Kurkowska M, Shirvanizadeh N, Destefanis E, Groza P, Avşar G, Romitelli A, Pir P, Dassi E, Conticello SG, Aguilo F, Bujnicki JM. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res 2021; 50:D231-D235. [PMID: 34893873 PMCID: PMC8728126 DOI: 10.1093/nar/gkab1083] [Citation(s) in RCA: 399] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
The MODOMICS database has been, since 2006, a manually curated and centralized resource, storing and distributing comprehensive information about modified ribonucleosides. Originally, it only contained data on the chemical structures of modified ribonucleosides, their biosynthetic pathways, the location of modified residues in RNA sequences, and RNA-modifying enzymes. Over the years, prompted by the accumulation of new knowledge and new types of data, it has been updated with new information and functionalities. In this new release, we have created a catalog of RNA modifications linked to human diseases, e.g., due to mutations in genes encoding modification enzymes. MODOMICS has been linked extensively to RCSB Protein Data Bank, and sequences of experimentally determined RNA structures with modified residues have been added. This expansion was accompanied by including nucleotide 5′-monophosphate residues. We redesigned the web interface and upgraded the database backend. In addition, a search engine for chemically similar modified residues has been included that can be queried by SMILES codes or by drawing chemical molecules. Finally, previously available datasets of modified residues, biosynthetic pathways, and RNA-modifying enzymes have been updated. Overall, we provide users with a new, enhanced, and restyled tool for research on RNA modification. MODOMICS is available at https://iimcb.genesilico.pl/modomics/.
Collapse
Affiliation(s)
- Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Filip Stefaniak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Angana Ray
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Andrea Cappannini
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Elżbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Małgorzata Kurkowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Niloofar Shirvanizadeh
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Eliana Destefanis
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Paula Groza
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85 Umeå, Sweden
| | - Gülben Avşar
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Antonia Romitelli
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy.,Department of Medical Biotechnologies, Università di Siena
| | - Pınar Pir
- Department of Bioengineering, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Erik Dassi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, ISPRO-Institute for Cancer Research, Prevention and Clinical Network, 50139 Firenze, Italy.,Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, SE-901 85 Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, SE-901 85 Umeå, Sweden
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| |
Collapse
|