1
|
He C, Chen Y, Zhang X, Feng H, Rao Y, Ji T, Wang W. Down-regulation of ESRP2 inhibits breast cancer cell proliferation via inhibiting cyclinD1. Sci Rep 2024; 14:28475. [PMID: 39557898 PMCID: PMC11574003 DOI: 10.1038/s41598-024-77980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Epithelial splicing regulatory protein 2 (ESRP2),an important alternative splicing protein of mRNA, is reported to have a dual role in tumors, which can promote or inhibit the occurrence and development of tumors. However, the function and mechanism of ESRP2 in breast cancer (BC) remain unclear. The distribution of ESRP2 expression in breast cancer and the correlation between ESRP2 expression and the overall survival rate were detected by The Cancer Genome Atlas (TCGA) database. Gene Ontology(GO)analysis, containing biological process, cellular components, and molecular function, was utilized to evaluate the potential mechanism of ESRP2 in breast cancer. The ESRP2 expression in breast cancer cell lines was detected by real-time quantitative PCR analysis (RT-qPCR) and western blotting. Cell clone was performed to examine the proliferation of ESRP2 knockdown in MCF-7 cells. The cell cycle was measured by flow cytometry assays. The role of ESRP2 knockdown in synergistic effect with chemotherapeutic agents was also determined by MTT assay. Bioinformatics analysis demonstrated that the ESRP2 gene was elevated in breast cancer cells and its overexpression was strongly correlated with shorter overall survival. GO analysis revealed that ESRP2 expression was related to cell proliferation. ESRP2 mRNA and protein expression were elevated in breast cancer cell lines, compared to the normal human breast cell line MCF-10 A. Dwon-regulation of ESRP2 inhibited cell proliferation and promoted the sensitivity of chemotherapy drug, Cisplatin(DDP) and Paclitaxel (TAXOL), in MCF-7 cells.Additionally, ESRP2 knockdown obstructed the cell cycle at the G1 phase and caused a decrease in cyclinD1 protein expression. These findings reveal that ESRP2 is highly expressed in breast cancer and is correlated with poor prognosis in breast cancer patients. ESRP2 knockdown can inhibit MCF-7 cell proliferation by arresting the cell cycle at the G1 phase and promoting the sensitivity of chemotherapy drugs (DDP and TAXOL)in MCF-7 cells. ESRP2 may be required for the regulation of breast cancer progression, as well as a critical target for the clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Caiping He
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuting Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pharmacy, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Ximin Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou Civil Aviation College, Guangzhou, Guangdong, China
| | - Huancun Feng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pharmacy, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yuzhen Rao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Tangyang Ji
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenya Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China.
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Lobato-Fernandez C, Gimeno M, San Martín A, Anorbe A, Rubio A, Ferrer-Bonsoms JA. A Systematic Identification of RNA-Binding Proteins (RBPs) Driving Aberrant Splicing in Cancer. Biomedicines 2024; 12:2592. [PMID: 39595158 PMCID: PMC11591948 DOI: 10.3390/biomedicines12112592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alternative Splicing (AS) is a post-transcriptional process that allows a single RNA to produce different mRNA variants and, in some cases, multiple proteins. Various processes, many yet to be discovered, regulate AS. This study focuses on regulation by RNA-binding proteins (RBPs), which are not only crucial for splicing regulation but also linked to cancer prognosis and are emerging as therapeutic targets for cancer treatment. CLIP-seq experiments help identify where RBPs bind on nascent transcripts, potentially revealing changes in splicing status that suggest causal relationships. Selecting specific RBPs for CLIP-seq experiments is often driven by a priori hypotheses. RESULTS We developed an algorithm to detect RBPs likely related to splicing changes between conditions by integrating several CLIP-seq databases and a differential splicing detection algorithm. This work refines a previous study by improving splicing event prediction, testing different enrichment statistics, and performing additional validation experiments. The new method provides more accurate predictions and is included in the Bioconductor package EventPointer 3.14. We tested the algorithm in four experiments involving knockdowns of seven different RBPs. The algorithm accurately assessed the statistical significance of these RBPs using only splicing alterations. Additionally, we applied the algorithm to study sixteen cancer types from The Cancer Genome Atlas (TCGA) and three from TARGET. We identified relationships between RBPs and various cancer types, including alterations in CREBBP and MBNL2 in adenocarcinomas of the lung, liver, prostate, rectum, stomach, and colon. Some of these findings are validated in the literature, while others are novel. CONCLUSIONS The developed algorithm enhances the ability to predict and understand RBP-related splicing changes, offering more accurate predictions and novel insights into cancer-related splicing alterations. This work highlights the potential of RBPs as therapeutic targets and contributes to the broader understanding of their roles in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | - Angel Rubio
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, 20009 San Sebastián, Spain; (C.L.-F.)
| | - Juan A. Ferrer-Bonsoms
- Departamento de Ingeniería Biomédica y Ciencias, TECNUN, Universidad de Navarra, 20009 San Sebastián, Spain; (C.L.-F.)
| |
Collapse
|
3
|
Yu Q, Wu T, Xu W, Wei J, Zhao A, Wang M, Li M, Chi G. PTBP1 as a potential regulator of disease. Mol Cell Biochem 2024; 479:2875-2894. [PMID: 38129625 DOI: 10.1007/s11010-023-04905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which plays a key role in alternative splicing of precursor mRNA and RNA metabolism. PTBP1 is universally expressed in various tissues and binds to multiple downstream transcripts to interfere with physiological and pathological processes such as the tumor growth, body metabolism, cardiovascular homeostasis, and central nervous system damage, showing great prospects in many fields. The function of PTBP1 involves the regulation and interaction of various upstream molecules, including circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These regulatory systems are inseparable from the development and treatment of diseases. Here, we review the latest knowledge regarding the structure and molecular functions of PTBP1 and summarize its functions and mechanisms of PTBP1 in various diseases, including controversial studies. Furthermore, we recommend future studies on PTBP1 and discuss the prospects of targeting PTBP1 in new clinical therapeutic approaches.
Collapse
Affiliation(s)
- Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Tongtong Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
4
|
Jun Y, Suh YS, Park S, Lee J, Kim JI, Lee S, Lee WP, Anczuków O, Yang HK, Lee C. Comprehensive Analysis of Alternative Splicing in Gastric Cancer Identifies Epithelial-Mesenchymal Transition Subtypes Associated with Survival. Cancer Res 2022; 82:543-555. [PMID: 34903603 PMCID: PMC9359730 DOI: 10.1158/0008-5472.can-21-2117] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Alternatively spliced RNA isoforms are a hallmark of tumors, but their nature, prevalence, and clinical implications in gastric cancer have not been comprehensively characterized. We systematically profiled the splicing landscape of 83 gastric tumors and matched normal mucosa, identifying and experimentally validating eight splicing events that can classify all gastric cancers into three subtypes: epithelial-splicing (EpiS), mesenchymal-splicing (MesS), and hybrid-splicing. These subtypes were associated with distinct molecular signatures and epithelial-mesenchymal transition markers. Subtype-specific splicing events were enriched in motifs for splicing factors RBM24 and ESRP1, which were upregulated in MesS and EpiS tumors, respectively. A simple classifier based only on RNA levels of RBM24 and ESRP1, which can be readily implemented in the clinic, was sufficient to distinguish gastric cancer subtypes and predict patient survival in multiple independent patient cohorts. Overall, this study provides insights into alternative splicing in gastric cancer and the potential clinical utility of splicing-based patient classification. SIGNIFICANCE This study presents a comprehensive analysis of alternative splicing in the context of patient classification, molecular mechanisms, and prognosis in gastric cancer.
Collapse
Affiliation(s)
- Yukyung Jun
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, Korea
| | - Yun-Suhk Suh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - SungHee Park
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Jieun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Sanghyuk Lee
- Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,Department of Life Science, Ewha Womans University, Seoul, Korea
| | - Wan-Ping Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,School of Cyber Science and Engineering, Xi'an Jiaotong University, Xi'an, China.,Corresponding Authors: Charles Lee, The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032. Phone: 860-837-2458; E-mail: ; Han-Kwang Yang, ; Olga Anczuków, ; and Wan-Ping Lee,
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Corresponding Authors: Charles Lee, The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032. Phone: 860-837-2458; E-mail: ; Han-Kwang Yang, ; Olga Anczuków, ; and Wan-Ping Lee,
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Seoul National University Hospital, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Corresponding Authors: Charles Lee, The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032. Phone: 860-837-2458; E-mail: ; Han-Kwang Yang, ; Olga Anczuków, ; and Wan-Ping Lee,
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, Korea.,Department of Life Science, Ewha Womans University, Seoul, Korea.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Corresponding Authors: Charles Lee, The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032. Phone: 860-837-2458; E-mail: ; Han-Kwang Yang, ; Olga Anczuków, ; and Wan-Ping Lee,
| |
Collapse
|
5
|
Ray D, Epstein DM. Tumorigenic de-differentiation: the alternative splicing way. Mol Cell Oncol 2020; 7:1809959. [PMID: 33235913 PMCID: PMC7671003 DOI: 10.1080/23723556.2020.1809959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanism of acquisition of tumorigenic properties by somatic cells at the onset of cancer and later during relapse is a question of paramount importance in cancer biology. We have recently discovered a Muscleblind like-1 (MBNL1)-driven alternative-splicing mediated mechanism of tumorigenic de-differentiation that is associated with poor prognosis, relapse and metastasis in common cancer types.
Collapse
Affiliation(s)
- Debleena Ray
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - David M Epstein
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Ray D, Yun YC, Idris M, Cheng S, Boot A, Iain TBH, Rozen SG, Tan P, Epstein DM. A tumor-associated splice-isoform of MAP2K7 drives dedifferentiation in MBNL1-low cancers via JNK activation. Proc Natl Acad Sci U S A 2020; 117:16391-16400. [PMID: 32601196 PMCID: PMC7368273 DOI: 10.1073/pnas.2002499117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Master splicing regulator MBNL1 shapes large transcriptomic changes that drive cellular differentiation during development. Here we demonstrate that MBNL1 is a suppressor of tumor dedifferentiation. We surveyed MBNL1 expression in matched tumor/normal pairs across The Cancer Genome Atlas and found that MBNL1 was down-regulated in several common cancers. Down-regulation of MBNL1 predicted poor overall survival in breast, lung, and stomach adenocarcinomas and increased relapse and distant metastasis in triple-negative breast cancer. Down-regulation of MBNL1 led to increased tumorigenic and stem/progenitor-like properties in vitro and in vivo. A discrete set of alternative splicing events (ASEs) are shared between MBNL1-low cancers and embryonic stem cells including a MAP2K7∆exon2 splice variant that leads to increased stem/progenitor-like properties via JNK activation. Accordingly, JNK inhibition is capable of reversing MAP2K7∆exon2-driven tumor dedifferentiation in MBNL1-low cancer cells. Our work elucidates an alternative-splicing mechanism that drives tumor dedifferentiation and identifies biomarkers that predict enhanced susceptibility to JNK inhibition.
Collapse
Affiliation(s)
- Debleena Ray
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore;
| | - Yu Chye Yun
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Muhammad Idris
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Shanshan Cheng
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Arnoud Boot
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Tan Bee Huat Iain
- Division of Medical Oncology, National Cancer Centre, 169610 Singapore, Singapore
| | - Steven G Rozen
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore
| | - David M Epstein
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 165897 Singapore, Singapore;
| |
Collapse
|