1
|
Matzko RO, Konur S. BioNexusSentinel: a visual tool for bioregulatory network and cytohistological RNA-seq genetic expression profiling within the context of multicellular simulation research using ChatGPT-augmented software engineering. BIOINFORMATICS ADVANCES 2024; 4:vbae046. [PMID: 38571784 PMCID: PMC10990683 DOI: 10.1093/bioadv/vbae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Summary Motivated by the need to parameterize ongoing multicellular simulation research, this paper documents the culmination of a ChatGPT augmented software engineering cycle resulting in an integrated visual platform for efficient cytohistological RNA-seq and bioregulatory network exploration. As contrasted to other systems and synthetic biology tools, BioNexusSentinel was developed de novo to uniquely combine these features. Reactome served as the primary source of remotely accessible biological models, accessible using BioNexusSentinel's novel search engine and REST API requests. The innovative, feature-rich gene expression profiler component was developed to enhance the exploratory experience for the researcher, culminating in the cytohistological RNA-seq explorer based on Human Protein Atlas data. A novel cytohistological classifier would be integrated via pre-processed analysis of the RNA-seq data via R statistical language, providing for useful analytical functionality and good performance for the end-user. Implications of the work span prospects for model orthogonality evaluations, gap identification in network modelling, prototyped automatic kinetics parameterization, and downstream simulation and cellular biological state analysis. This unique computational biology software engineering collaboration with generative natural language processing artificial intelligence was shown to enhance worker productivity, with evident benefits in terms of accelerating coding and machine-human intelligence transfer. Availability and implementation BioNexusSentinel project releases, with corresponding data and installation instructions, are available at https://github.com/RichardMatzko/BioNexusSentinel.
Collapse
Affiliation(s)
- Richard Oliver Matzko
- School of Computer Science, AI and Electronics, University of Bradford, Bradford BD7 1HR, United Kingdom
| | - Savas Konur
- School of Computer Science, AI and Electronics, University of Bradford, Bradford BD7 1HR, United Kingdom
| |
Collapse
|
2
|
Karatzas E, Baltoumas FA, Aplakidou E, Kontou PI, Stathopoulos P, Stefanis L, Bagos PG, Pavlopoulos GA. Flame (v2.0): advanced integration and interpretation of functional enrichment results from multiple sources. Bioinformatics 2023; 39:btad490. [PMID: 37540207 PMCID: PMC10423032 DOI: 10.1093/bioinformatics/btad490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023] Open
Abstract
Functional enrichment is the process of identifying implicated functional terms from a given input list of genes or proteins. In this article, we present Flame (v2.0), a web tool which offers a combinatorial approach through merging and visualizing results from widely used functional enrichment applications while also allowing various flexible input options. In this version, Flame utilizes the aGOtool, g: Profiler, WebGestalt, and Enrichr pipelines and presents their outputs separately or in combination following a visual analytics approach. For intuitive representations and easier interpretation, it uses interactive plots such as parameterizable networks, heatmaps, barcharts, and scatter plots. Users can also: (i) handle multiple protein/gene lists and analyse union and intersection sets simultaneously through interactive UpSet plots, (ii) automatically extract genes and proteins from free text through text-mining and Named Entity Recognition (NER) techniques, (iii) upload single nucleotide polymorphisms (SNPs) and extract their relative genes, or (iv) analyse multiple lists of differentially expressed proteins/genes after selecting them interactively from a parameterizable volcano plot. Compared to the previous version of 197 supported organisms, Flame (v2.0) currently allows enrichment for 14 436 organisms. AVAILABILITY AND IMPLEMENTATION Web Application: http://flame.pavlopouloslab.info. Code: https://github.com/PavlopoulosLab/Flame. Docker: https://hub.docker.com/r/pavlopouloslab/flame.
Collapse
Affiliation(s)
- Evangelos Karatzas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari (Athens), 16672, Greece
| | - Fotis A Baltoumas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari (Athens), 16672, Greece
| | - Eleni Aplakidou
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari (Athens), 16672, Greece
| | - Panagiota I Kontou
- Department of Mathematics, University of Thessaly, Lamia, 35100, Greece
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, 35131, Greece
| | - Panos Stathopoulos
- 1st Department of Neurology, Eginition Hospital, Athens, 11528, Greece
- School of Medicine, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Athens, 11528, Greece
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, 35131, Greece
| | - Georgios A Pavlopoulos
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari (Athens), 16672, Greece
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
- Hellenic Army Academy, Vari, 16673, Greece
| |
Collapse
|
3
|
Kokoli M, Karatzas E, Baltoumas FA, Schneider R, Pafilis E, Paragkamian S, Doncheva NT, Jensen L, Pavlopoulos G. Arena3D web: interactive 3D visualization of multilayered networks supporting multiple directional information channels, clustering analysis and application integration. NAR Genom Bioinform 2023; 5:lqad053. [PMID: 37260509 PMCID: PMC10227371 DOI: 10.1093/nargab/lqad053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
Arena3Dweb is an interactive web tool that visualizes multi-layered networks in 3D space. In this update, Arena3Dweb supports directed networks as well as up to nine different types of connections between pairs of nodes with the use of Bézier curves. It comes with different color schemes (light/gray/dark mode), custom channel coloring, four node clustering algorithms which one can run on-the-fly, visualization in VR mode and predefined layer layouts (zig-zag, star and cube). This update also includes enhanced navigation controls (mouse orbit controls, layer dragging and layer/node selection), while its newly developed API allows integration with external applications as well as saving and loading of sessions in JSON format. Finally, a dedicated Cytoscape app has been developed, through which users can automatically send their 2D networks from Cytoscape to Arena3Dweb for 3D multi-layer visualization. Arena3Dweb is accessible at http://arena3d.pavlopouloslab.info or http://arena3d.org.
Collapse
Affiliation(s)
| | | | - Fotis A Baltoumas
- Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, Vari16672, Greece
| | - Reinhard Schneider
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| | - Evangelos Pafilis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, Heraklion 71003, Greece
| | - Savvas Paragkamian
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, Heraklion 71003, Greece
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013 Heraklion, Crete, Greece
| | - Nadezhda T Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen N DK-2200, Denmark
| | | |
Collapse
|
4
|
Prediction and Ranking of Biomarkers Using multiple UniReD. Int J Mol Sci 2022; 23:ijms231911112. [PMID: 36232413 PMCID: PMC9569535 DOI: 10.3390/ijms231911112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Protein–protein interactions (PPIs) are of key importance for understanding how cells and organisms function. Thus, in recent decades, many approaches have been developed for the identification and discovery of such interactions. These approaches addressed the problem of PPI identification either by an experimental point of view or by a computational one. Here, we present an updated version of UniReD, a computational prediction tool which takes advantage of biomedical literature aiming to extract documented, already published protein associations and predict undocumented ones. The usefulness of this computational tool has been previously evaluated by experimentally validating predicted interactions and by benchmarking it against public databases of experimentally validated PPIs. In its updated form, UniReD allows the user to provide a list of proteins of known implication in, e.g., a particular disease, as well as another list of proteins that are potentially associated with the proteins of the first list. UniReD then automatically analyzes both lists and ranks the proteins of the second list by their association with the proteins of the first list, thus serving as a potential biomarker discovery/validation tool.
Collapse
|
5
|
Darling: A Web Application for Detecting Disease-Related Biomedical Entity Associations with Literature Mining. Biomolecules 2022; 12:biom12040520. [PMID: 35454109 PMCID: PMC9028073 DOI: 10.3390/biom12040520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
Finding, exploring and filtering frequent sentence-based associations between a disease and a biomedical entity, co-mentioned in disease-related PubMed literature, is a challenge, as the volume of publications increases. Darling is a web application, which utilizes Name Entity Recognition to identify human-related biomedical terms in PubMed articles, mentioned in OMIM, DisGeNET and Human Phenotype Ontology (HPO) disease records, and generates an interactive biomedical entity association network. Nodes in this network represent genes, proteins, chemicals, functions, tissues, diseases, environments and phenotypes. Users can search by identifiers, terms/entities or free text and explore the relevant abstracts in an annotated format.
Collapse
|
6
|
Zafeiropoulos H, Paragkamian S, Ninidakis S, Pavlopoulos GA, Jensen LJ, Pafilis E. PREGO: A Literature and Data-Mining Resource to Associate Microorganisms, Biological Processes, and Environment Types. Microorganisms 2022; 10:microorganisms10020293. [PMID: 35208748 PMCID: PMC8879827 DOI: 10.3390/microorganisms10020293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
To elucidate ecosystem functioning, it is fundamental to recognize what processes occur in which environments (where) and which microorganisms carry them out (who). Here, we present PREGO, a one-stop-shop knowledge base providing such associations. PREGO combines text mining and data integration techniques to mine such what-where-who associations from data and metadata scattered in the scientific literature and in public omics repositories. Microorganisms, biological processes, and environment types are identified and mapped to ontology terms from established community resources. Analyses of comentions in text and co-occurrences in metagenomics data/metadata are performed to extract associations and a level of confidence is assigned to each of them thanks to a scoring scheme. The PREGO knowledge base contains associations for 364,508 microbial taxa, 1090 environmental types, 15,091 biological processes, and 7971 molecular functions with a total of almost 58 million associations. These associations are available through a web portal, an Application Programming Interface (API), and bulk download. By exploring environments and/or processes associated with each other or with microbes, PREGO aims to assist researchers in design and interpretation of experiments and their results. To demonstrate PREGO’s capabilities, a thorough presentation of its web interface is given along with a meta-analysis of experimental results from a lagoon-sediment study of sulfur-cycle related microbes.
Collapse
Affiliation(s)
- Haris Zafeiropoulos
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013 Heraklion, Crete, Greece; (H.Z.); (S.P.)
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
| | - Savvas Paragkamian
- Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013 Heraklion, Crete, Greece; (H.Z.); (S.P.)
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
| | - Stelios Ninidakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Evangelos Pafilis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Former U.S. Base of Gournes, P.O. Box 2214, 71003 Heraklion, Crete, Greece;
- Correspondence: or ; Tel.: +30-2810-337748
| |
Collapse
|
7
|
Conceição SIR, Couto FM. Text Mining for Building Biomedical Networks Using Cancer as a Case Study. Biomolecules 2021; 11:biom11101430. [PMID: 34680062 PMCID: PMC8533101 DOI: 10.3390/biom11101430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
In the assembly of biological networks it is important to provide reliable interactions in an effort to have the most possible accurate representation of real-life systems. Commonly, the data used to build a network comes from diverse high-throughput essays, however most of the interaction data is available through scientific literature. This has become a challenge with the notable increase in scientific literature being published, as it is hard for human curators to track all recent discoveries without using efficient tools to help them identify these interactions in an automatic way. This can be surpassed by using text mining approaches which are capable of extracting knowledge from scientific documents. One of the most important tasks in text mining for biological network building is relation extraction, which identifies relations between the entities of interest. Many interaction databases already use text mining systems, and the development of these tools will lead to more reliable networks, as well as the possibility to personalize the networks by selecting the desired relations. This review will focus on different approaches of automatic information extraction from biomedical text that can be used to enhance existing networks or create new ones, such as deep learning state-of-the-art approaches, focusing on cancer disease as a case-study.
Collapse
|