1
|
Pei H, Ma S, Yan W, Liu Z, Wang Y, Yang Z, Li Q, Yao D, Jiang S, Luo C, Yu L. Functional and structural networks decoupling in generalized tonic-clonic seizures and its reorganization by drugs. Epilepsia Open 2023; 8:1038-1048. [PMID: 37394869 PMCID: PMC10472403 DOI: 10.1002/epi4.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVE To investigate potential functional and structural large-scale network disturbances in untreated patients with generalized tonic-clonic seizures (GTCS) and the effects of antiseizure drugs. METHODS In this study, 41 patients with GTCS, comprising 21 untreated patients and 20 patients who received antiseizure medications (ASMs), and 29 healthy controls were recruited to construct large-scale brain networks based on resting-state functional magnetic resonance imaging and diffusion tensor imaging. Structural and functional connectivity and network-level weighted correlation probability (NWCP) were further investigated to identify network features that corresponded to response to ASMs. RESULTS Untreated patients showed more extensive enhancement of functional and structural connections than controls. Specifically, we observed abnormally enhanced connections between the default mode network (DMN) and the frontal-parietal network. In addition, treated patients showed similar functional connection strength to that of the control group. However, all patients exhibited similar structural network alterations. Moreover, the NWCP value was lower for connections within the DMN and between the DMN and other networks in the untreated patients; receiving ASMs could reverse this pattern. SIGNIFICANCE Our study identified alterations in structural and functional connectivity in patients with GTCS. The influence of ASMs may be more noticeable within the functional network; moreover, abnormalities in both the functional and structural coupling state may be improved by ASM treatment. Therefore, the coupling state of structural and functional connectivity may be used as an indicator of the efficacy of ASMs.
Collapse
Affiliation(s)
- Haonan Pei
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Shuai Ma
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- Neurology DepartmentSichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Wei Yan
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Zetao Liu
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Yuehan Wang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Zhihuan Yang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Qifu Li
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Liang Yu
- Neurology DepartmentSichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
2
|
Moguilner S, Birba A, Fino D, Isoardi R, Huetagoyena C, Otoya R, Tirapu V, Cremaschi F, Sedeño L, Ibáñez A, García AM. Multimodal neurocognitive markers of frontal lobe epilepsy: Insights from ecological text processing. Neuroimage 2021; 235:117998. [PMID: 33789131 PMCID: PMC8272524 DOI: 10.1016/j.neuroimage.2021.117998] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/07/2023] Open
Abstract
The pressing call to detect sensitive cognitive markers of frontal lobe epilepsy (FLE) remains poorly addressed. Standard frameworks prove nosologically unspecific (as they reveal deficits that also emerge across other epilepsy subtypes), possess low ecological validity, and are rarely supported by multimodal neuroimaging assessments. To bridge these gaps, we examined naturalistic action and non-action text comprehension, combined with structural and functional connectivity measures, in 19 FLE patients, 19 healthy controls, and 20 posterior cortex epilepsy (PCE) patients. Our analyses integrated inferential statistics and data-driven machine-learning classifiers. FLE patients were selectively and specifically impaired in action comprehension, irrespective of their neuropsychological profile. These deficits selectively and specifically correlated with (a) reduced integrity of the anterior thalamic radiation, a subcortical structure underlying motoric and action-language processing as well as epileptic seizure spread in this subtype; and (b) hypoconnectivity between the primary motor cortex and the left-parietal/supramarginal regions, two putative substrates of action-language comprehension. Moreover, machine-learning classifiers based on the above neurocognitive measures yielded 75% accuracy rates in discriminating individual FLE patients from both controls and PCE patients. Briefly, action-text assessments, combined with structural and functional connectivity measures, seem to capture ecological cognitive deficits that are specific to FLE, opening new avenues for discriminatory characterizations among epilepsy types.
Collapse
Affiliation(s)
- Sebastian Moguilner
- Global Brain Health Institute, UCSF, California, US, & Trinity College Dublin, Dublin, Ireland; Nuclear Medicine School Foundation (FUESMEN), National Commission of Atomic Energy (CNEA), Mendoza, Argentina
| | - Agustina Birba
- University of San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Daniel Fino
- Nuclear Medicine School Foundation (FUESMEN), National Commission of Atomic Energy (CNEA), Mendoza, Argentina; Fundación Argentina para el Desarrollo en Salud, Mendoza, Argentina
| | - Roberto Isoardi
- Nuclear Medicine School Foundation (FUESMEN), National Commission of Atomic Energy (CNEA), Mendoza, Argentina
| | - Celeste Huetagoyena
- Neuromed, Clinical Neuroscience, Mendoza, Argentina; Universidad Católica Argentina
| | - Raúl Otoya
- Neuromed, Clinical Neuroscience, Mendoza, Argentina
| | - Viviana Tirapu
- Nuclear Medicine School Foundation (FUESMEN), National Commission of Atomic Energy (CNEA), Mendoza, Argentina; Neuromed, Clinical Neuroscience, Mendoza, Argentina
| | - Fabián Cremaschi
- Nuclear Medicine School Foundation (FUESMEN), National Commission of Atomic Energy (CNEA), Mendoza, Argentina; Neuroscience Department of the School of Medicine, National University of Cuyo, Mendoza, Argentina; Santa Isabel de Hungría Hospital, Mendoza, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Global Brain Health Institute, UCSF, California, US, & Trinity College Dublin, Dublin, Ireland; University of San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Adolfo M García
- Global Brain Health Institute, UCSF, California, US, & Trinity College Dublin, Dublin, Ireland; University of San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|