1
|
Guo Y, Qiu Y, Xue T, Yan P, Zhao W, Wang M, Liu C, Zhang N. Association between admission baseline blood potassium levels and all-cause mortality in patients with acute kidney injury combined with sepsis: A retrospective cohort study. PLoS One 2024; 19:e0309764. [PMID: 39565797 PMCID: PMC11578480 DOI: 10.1371/journal.pone.0309764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/17/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION Imbalances in blood potassium (K) homeostasis is a significant contributor to the emergence of severe complications, especially among critically ill patients. Hypokalemia and hyperkalemia are both associated with an increased risk of adverse events. However, it is not known about the impact of blood K levels on risk of intensive care units (ICU) mortality for Acute kidney injury (AKI) combined with sepsis patients. This study aimed to explore the relationship between admission blood K levels and ICU 30-day mortality in patients with AKI combined with sepsis. METHODS We selected patients diagnosed with AKI and sepsis on their first ICU admission from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. The first blood K levels within 24 hours of admission were categorized into three groups according to tertiles (T1 < 3.9 mmol/L, 3.9 ≤ T2 < 4.5 mmol/L, and T3 ≥ 4.5 mmol/L), with T2 serving as the reference. We examined the association between blood K levels and ICU 30-day mortality using accelerated failure time (AFT) models and survival analysis. RESULTS A total of 8,242 ICU patients with AKI combined with sepsis were included. In multivariate AFT models, each 1 mmol/L increase in blood K levels was associated with a 13% increase in the risk of ICU 30-day mortality (p < 0.001, 95% confidence interval (CI): 1.06-1.20). Extended multivariable AFT models showed that, compared to the middle category, patients with high blood K levels (≥ 4.5 mmol/L) were associated with all-cause mortality (p = 0.002, adjusted hazard ratio (HR) = 1.22, 95% CI: 1.08-1.38), whereas those with low blood K levels (< 3.9 mmol/L) showed no significant difference (p = 0.385, adjusted HR = 1.06, 95% CI: 0.93-1.21). Kaplan-Meier curves indicated that patients with high blood K levels had higher mortality, and those with middle blood potassium levels (3.9 ≤ K < 4.5 mmol/L) had the lowest mortality. CONCLUSION The admission baseline blood K levels were significantly associated with ICU 30-day mortality in intensive care patients suffering from AKI in conjunction with sepsis. Therefore, immediate and careful correction of blood potassium imbalances may prove to be a crucial approach in improving outcomes for these patients.
Collapse
Affiliation(s)
- Yifan Guo
- Department of Endocrinology and Nephropathy, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Qiu
- Department of Endocrinology, Miyun Hospital District, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Taiqi Xue
- Department of Endocrinology and Nephropathy, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Pu Yan
- Department of Endocrinology and Nephropathy, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjing Zhao
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Mengdi Wang
- Department of Nephrology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cheng Liu
- Department of Human Anatomy, Program for Cancer and Cell Biology, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ning Zhang
- Department of Endocrinology and Nephropathy, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
He RB, Li W, Yao R, Xu MY, Dong W, Chen Y, Ni WJ, Xie SS, Sun ZH, Li C, Liu D, Li SJ, Ji ML, Ru YX, Zhao T, Zhu Q, Wen JG, Li J, Jin J, Yao RS, Meng XM. Aurantiamide mitigates acute kidney injury by suppressing renal necroptosis and inflammation via GRPR-dependent mechanism. Int Immunopharmacol 2024; 139:112745. [PMID: 39059099 DOI: 10.1016/j.intimp.2024.112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
Acute kidney injury (AKI) manifests as a clinical syndrome characterised by the rapid accumulation of metabolic wastes, such as blood creatinine and urea nitrogen, leading to a sudden decline in renal function. Currently, there is a lack of specific therapeutic drugs for AKI. Previously, we identified gastrin-releasing peptide receptor (GRPR) as a pathogenic factor in AKI. In this study, we investigated the therapeutic potential of a novel Chinese medicine monomer, aurantiamide (AA), which exhibits structural similarities to our previously reported GRPR antagonist, RH-1402. We compared the therapeutic efficacy of AA with RH-1402 both in vitro and in vivo using various AKI models. Our results demonstrated that, in vitro, AA attenuated injury, necroptosis, and inflammatory responses in human renal tubular epithelial cells subjected to repeated hypoxia/reoxygenation and lipopolysaccharide stimulation. In vivo, AA ameliorated renal tubular injury and inflammation in mouse models of ischemia/reperfusion and cecum ligation puncture-induced AKI, surpassing the efficacy of RH-1402. Furthermore, molecular docking and cellular thermal shift assay confirmed GRPR as a direct target of AA, which was further validated in primary cells. Notably, in GRPR-silenced HK-2 cells and GRPR systemic knockout mice, AA failed to mitigate renal inflammation and injury, underscoring the importance of GRPR in AA's mechanism of action. In conclusion, our study has demonstrated that AA serve as a novel antagonist of GRPR and a promising clinical candidate for AKI treatment.
Collapse
Affiliation(s)
- Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Yao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei 230022, China
| | - Meng-Ying Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Dong
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei-Jian Ni
- Department of Pharmacy, Centre for Leading Medicine and Advanced Technologies of IHM, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui, 230001, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zheng-Hao Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Dong Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuang-Jian Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Xin Ru
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Tian Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Zhu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China.
| | - Ri-Sheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
3
|
Segev G, Cortellini S, Foster JD, Francey T, Langston C, Londoño L, Schweighauser A, Jepson RE. International Renal Interest Society best practice consensus guidelines for the diagnosis and management of acute kidney injury in cats and dogs. Vet J 2024; 305:106068. [PMID: 38325516 DOI: 10.1016/j.tvjl.2024.106068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/10/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
Acute kidney injury (AKI) is defined as an injury to the renal parenchyma, with or without a decrease in kidney function, as reflected by accumulation of uremic toxins or altered urine production (i.e., increased or decreased). AKI might result from any of several factors, including ischemia, inflammation, nephrotoxins, and infectious diseases. AKI can be community- or hospital-acquired. The latter was not previously considered a common cause for AKI in animals; however, recent evidence suggests that the prevalence of hospital-acquired AKI is increasing in veterinary medicine. This is likely due to a combination of increased recognition and awareness of AKI, as well as increased treatment intensity (e.g., ventilation and prolonged hospitalization) in some veterinary patients and increased management of geriatric veterinary patients with multiple comorbidities. Advancements in the management of AKI, including the increased availability of renal replacement therapies, have been made; however, the overall mortality of animals with AKI remains high. Despite the high prevalence of AKI and the high mortality rate, the body of evidence regarding the diagnosis and the management of AKI in veterinary medicine is very limited. Consequently, the International Renal Interest Society (IRIS) constructed a working group to provide guidelines for animals with AKI. Recommendations are based on the available literature and the clinical experience of the members of the working group and reflect consensus of opinion. Fifty statements were generated and were voted on in all aspects of AKI and explanatory text can be found either before or after each statement.
Collapse
Affiliation(s)
- Gilad Segev
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Israel.
| | - Stefano Cortellini
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| | - Jonathan D Foster
- Department of Nephrology and Urology, Friendship Hospital for Animals, Washington DC, USA
| | - Thierry Francey
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Catherine Langston
- Veterinary Clinical Science, The Ohio State University, Columbus, OH, USA
| | - Leonel Londoño
- Department of Critical Care, Capital Veterinary Specialists, Jacksonville, FL, USA
| | - Ariane Schweighauser
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty University of Bern, Bern, Switzerland
| | - Rosanne E Jepson
- Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, UK
| |
Collapse
|
5
|
Sharabi A, Abutbul E, Grossbard E, Martsiano Y, Berman A, Kassif-Lerner R, Hakim H, Liber P, Zoubi A, Barkai G, Segal G. Six-Lead Electrocardiography Enables Identification of Rhythm and Conduction Anomalies of Patients in the Telemedicine-Based, Hospital-at-Home Setting: A Prospective Validation Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:8464. [PMID: 37896557 PMCID: PMC10611340 DOI: 10.3390/s23208464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND The hospital-at-home (HAH) model is a viable alternative for conventional in-hospital stays worldwide. Serum electrolyte abnormalities are common in acute patients, especially in those with many comorbidities. Pathologic changes in cardiac electrophysiology pose a potential risk during HAH stays. Periodical electrocardiogram (ECG) tracing is therefore advised, but few studies have evaluated the accuracy and efficiency of compact, self-activated ECG devices in HAH settings. This study aimed to evaluate the reliability of such a device in comparison with a standard 12-lead ECG. METHODS We prospectively recruited consecutive patients admitted to the Sheba Beyond Virtual Hospital, in the HAH department, during a 3-month duration. Each patient underwent a 12-lead ECG recording using the legacy device and a consecutive recording by a compact six-lead device. Baseline patient characteristics during hospitalization were collected. The level of agreement between devices was measured by Cohen's kappa coefficient for inter-rater reliability (Ϗ). RESULTS Fifty patients were included in the study (median age 80 years, IQR 14). In total, 26 (52%) had electrolyte disturbances. Abnormal D-dimer values were observed in 33 (66%) patients, and 12 (24%) patients had elevated troponin values. We found a level of 94.5% raw agreement between devices with regards to nine of the options included in the automatic read-out of the legacy device. The calculated Ϗ was 0.72, classified as a substantial consensus. The rate of raw consensus regarding the ECG intervals' measurement (PR, RR, and QT) was 78.5%, and the calculated Ϗ was 0.42, corresponding to a moderate level of agreement. CONCLUSION This is the first report to our knowledge regarding the feasibility of using a compact, six-lead ECG device in the setting of an HAH to be safe and bearing satisfying agreement level with a legacy, 12-lead ECG device, enabling quick, accessible arrythmia detection in this setting. Our findings bear a promise to the future development of telemedicine-based hospital-at-home methodology.
Collapse
Affiliation(s)
- Adam Sharabi
- Beyond Virtual Hospital, Sheba Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
- Faculty of Medicine, University of Nicosia, 2408 Nicosia, Cyprus
| | - Eli Abutbul
- Beyond Virtual Hospital, Sheba Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
- Faculty of Medicine, University of Nicosia, 2408 Nicosia, Cyprus
| | - Eitan Grossbard
- Beyond Virtual Hospital, Sheba Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
- Faculty of Medicine, University of Nicosia, 2408 Nicosia, Cyprus
| | - Yonatan Martsiano
- Beyond Virtual Hospital, Sheba Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
- Faculty of Medicine, University of Nicosia, 2408 Nicosia, Cyprus
| | - Aya Berman
- Dan Petah-Tikvah District at Clalit Health Services, Petah Tikva 4922297, Israel
| | - Reut Kassif-Lerner
- Department of Pediatric Intensive Care, The Edmond and Lily Safra Children’s Hospital Sheba Medical Center, Affiliated to the Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
| | - Hila Hakim
- Beyond Virtual Hospital, Sheba Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
| | - Pninit Liber
- Beyond Virtual Hospital, Sheba Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
| | - Anram Zoubi
- Beyond Virtual Hospital, Sheba Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
| | - Galia Barkai
- Beyond Virtual Hospital, Sheba Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
| | - Gad Segal
- Beyond Virtual Hospital, Sheba Medical Center, Faculty of Medicine, Tel-Aviv University, Tel Aviv 5265601, Israel
| |
Collapse
|