1
|
Cheung CK, Alexander S, Reich HN, Selvaskandan H, Zhang H, Barratt J. The pathogenesis of IgA nephropathy and implications for treatment. Nat Rev Nephrol 2025; 21:9-23. [PMID: 39232245 PMCID: PMC7616674 DOI: 10.1038/s41581-024-00885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
IgA nephropathy (IgAN) is a common form of primary glomerulonephritis and represents an important cause of chronic kidney disease globally, with observational studies indicating that most patients are at risk of developing kidney failure within their lifetime. Several research advances have provided insights into the underlying disease pathogenesis, framed by a multi-hit model whereby an increase in circulating IgA1 that lacks galactose from its hinge region - probably derived from the mucosal immune system - is followed by binding of specific IgG and IgA antibodies, generating immune complexes that deposit within the glomeruli, which triggers inflammation, complement activation and kidney damage. Although treatment options are currently limited, new therapies are rapidly emerging that target different pathways, cells and mediators involved in the disease pathogenesis, including B cell priming in the gut mucosa, the cytokines APRIL and BAFF, plasma cells, complement activation and endothelin pathway activation. As more treatments become available, there is a realistic possibility of transforming the long-term outlook for many individuals with IgAN.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | | | - Heather N Reich
- Department of Medicine, Division of Nephrology, University of Toronto, University Health Network, Toronto, ON, Canada
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, P. R. China
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
2
|
Cheung CK, Barratt J, Lafayette R, Liew A, Suzuki Y, Tesař V, Trimarchi H, Wong MG, Zhang H, Rizk DV. Targeting APRIL in the treatment of glomerular diseases. Kidney Int 2024; 106:806-818. [PMID: 39182759 DOI: 10.1016/j.kint.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
A proliferation-inducing ligand (APRIL) is a key member of the tumor necrosis factor superfamily of cytokines and plays a central role in B-cell survival, proliferation, and Ig class switching. Recently, there has been increasing interest in the role of APRIL and the related cytokine B-cell activating factor in several glomerular diseases, because of their importance in the above processes. The therapeutic inhibition of APRIL represents a potentially attractive immunomodulatory approach that may abrogate deleterious host immune responses in autoimmune diseases while leaving other important functions of humoral immunity intact, such as memory B-cell function and responses to vaccination, in contrast to B-cell-depleting strategies. In this review, we describe the physiological roles of APRIL in B-cell development and their relevance to glomerular diseases, and outline emerging clinical trial data studying APRIL inhibition, with a focus on IgA nephropathy where the clinical development of APRIL inhibitors is in its most advanced stage.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; John Walls Renal Unit, University Hospitals of Leicester National Health Service Trust, Leicester, UK
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; John Walls Renal Unit, University Hospitals of Leicester National Health Service Trust, Leicester, UK
| | - Richard Lafayette
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Adrian Liew
- The Kidney and Transplant Practice, Mount Elizabeth Novena Hospital, Singapore
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Vladimír Tesař
- Department of Nephrology, General University Hospital, Charles University, Prague, Czech Republic
| | - Hernán Trimarchi
- Nephrology Service and Kidney Transplant Unit, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Muh Geot Wong
- Department of Renal Medicine, Concord Repatriation General Hospital, Concord, Australia; Department of Medicine, University of Sydney, Camperdown, Australia
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People's Republic of China
| | - Dana V Rizk
- Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
3
|
Sharafaldin ENK, Sim MS, Lim SK, Alhussieni K, Huri HZ. Precision medicine in lupus nephritis. Clin Chim Acta 2024; 562:119894. [PMID: 39068963 DOI: 10.1016/j.cca.2024.119894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Lupus nephritis (LN) is a prominent manifestation of systemic lupus erythematosus (SLE), characterized by diverse clinical and histopathological features, imposing a substantial burden on patients. Although the exact cause of SLE remain undetermined, several genetic, epigenetics, hormonal, and other factors are implicated in LN pathogenesis. The management of LN rely on invasive renal biopsies, while the standard therapy of the proliferative form of LN remains empirical and relies on indiscriminate immunosuppressants (IS). These treatments exhibit unsatisfactory remission rates, trigger recurrent renal flares, and entail grave adverse effects (ADEs). The advent of precision medicine into LN entails a concentrated effort to pinpoint essential biomarkers, reshaping the landscape of LN management. The primary objective of this review is to synthesize and summarize existing research findings by elucidating the most prevalent immunological, genetic, and epigenetic alterations and deliberate on management strategies that can pave the way for precision medicine in tackling LN. Novel clinical biomarker such as serum anti-complement component 1q (anti-C1q), with urinary markers including neutrophil gelatinase-associated lipocalin (NGAL), monocyte chemoattractant protein-1 (MCP1) and tumour necrosis-like weak inducers of apoptosis (TWEAK) are strongly correlated with LN. These biomarkers have good sensitivity and specificity and perform better than conventional biomarkers in assessing LN activity. Similarly, more renal-specific genetic and epigenetic alteration have been correlated with LN susceptibility and severity. This includes variants of hyaluronan synthase 2 (HAS2), and platelet-derived growth factor receptor alpha (PDGFRA). In the future, integrating clinical, genetic, epigenetic, and targeted therapies holds promise for guiding precision medicine and improving LN outcomes.
Collapse
Affiliation(s)
| | - Maw Shin Sim
- Precision Medicine and Omics Centre (PrOmiC), Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Soo Kun Lim
- Renal Division, Department of Medicine, Faculty of Medicine, Universiti Malaya, 59100 Kuala Lumpur, Malaysia
| | - Kawthar Alhussieni
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Hasniza Zaman Huri
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Precision Medicine and Omics Centre (PrOmiC), Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
4
|
Selvaskandan H, Barratt J, Cheung CK. Novel Treatment Paradigms: Primary IgA Nephropathy. Kidney Int Rep 2024; 9:203-213. [PMID: 38344739 PMCID: PMC10851020 DOI: 10.1016/j.ekir.2023.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/30/2025] Open
Abstract
IgA nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Approximately 30% to 45% of patients progress to kidney failure (KF) within 20 to 25 years of diagnosis, and there has long been a lack of effective treatments. The therapeutic landscape in IgAN is rapidly evolving, driven in large part by the acceptance of the surrogate clinical trial end point of proteinuria reduction by regulatory authorities for the accelerated approval of new therapies. Two drugs, targeted release formulation (TRF)-budesonide (nefecon) and sparsentan, have recently been approved under this scheme. Advancing insights into the pathophysiology of IgAN, including the roles of the mucosal immune system, B-cells, the complement system, and the endothelin system have driven development of therapies that target these factors. This review outlines current, recently approved, and emerging therapies for IgAN.
Collapse
Affiliation(s)
- Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Chee Kay Cheung
- Mayer IgA Nephropathy Laboratories, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
5
|
Cheung CK, Barratt J, Liew A, Zhang H, Tesar V, Lafayette R. The role of BAFF and APRIL in IgA nephropathy: pathogenic mechanisms and targeted therapies. FRONTIERS IN NEPHROLOGY 2024; 3:1346769. [PMID: 38362118 PMCID: PMC10867227 DOI: 10.3389/fneph.2023.1346769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024]
Abstract
Immunoglobulin A nephropathy (IgAN), characterized by mesangial deposition of galactose-deficient-IgA1 (Gd-IgA1), is the most common biopsy-proven primary glomerulonephritis worldwide. Recently, an improved understanding of its underlying pathogenesis and the substantial risk of progression to kidney failure has emerged. The "four-hit hypothesis" of IgAN pathogenesis outlines a process that begins with elevated circulating levels of Gd-IgA1 that trigger autoantibody production. This results in the formation and deposition of immune complexes in the mesangium, leading to inflammation and kidney injury. Key mediators of the production of Gd-IgA1 and its corresponding autoantibodies are B-cell activating factor (BAFF), and A proliferation-inducing ligand (APRIL), each playing essential roles in the survival and maintenance of B cells and humoral immunity. Elevated serum levels of both BAFF and APRIL are observed in patients with IgAN and correlate with disease severity. This review explores the complex pathogenesis of IgAN, highlighting the pivotal roles of BAFF and APRIL in the interplay between mucosal hyper-responsiveness, B-cell activation, and the consequent overproduction of Gd-IgA1 and its autoantibodies that are key features in this disease. Finally, the potential therapeutic benefits of inhibiting BAFF and APRIL in IgAN, and a summary of recent clinical trial data, will be discussed.
Collapse
Affiliation(s)
- Chee Kay Cheung
- Division of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Jonathan Barratt
- Division of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Adrian Liew
- The Kidney & Transplant Practice, Mount Elizabeth Novena Hospital, Singapore
| | - Hong Zhang
- Renal Division in the Department of Medicine, Peking University First Hospital, Beijing, China
| | - Vladimir Tesar
- Department of Nephrology, First School of Medicine and General University Hospital, Charles University, Prague, Czechia
| | - Richard Lafayette
- Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Caravaca-Fontán F, Gutiérrez E, Sevillano ÁM, Praga M. Targeting complement in IgA nephropathy. Clin Kidney J 2023; 16:ii28-ii39. [PMID: 38053977 PMCID: PMC10695513 DOI: 10.1093/ckj/sfad198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 12/07/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Recent years have witnessed significant improvements in the understanding of the pathogenesis of IgAN and particularly, the pathogenic role of complement activation. The alternative complement pathway is the major complement cascade activator in IgAN, and glomerular C3 deposition has been shown to correlate with disease progression. In addition, several studies have provided insight into the pathogenic role of factor H-related proteins -1 and -5 in IgAN, as independent players in complement dysregulation. The lectin pathway has also been shown to be associated with the severity of IgAN. Glomerular deposition of C4d has been associated with increased histologic disease activity, faster decline in estimated glomerular filtration rate and higher risk of kidney failure. On the other hand, although overlooked in the Oxford classification, numerous studies have shown that the coexistence of thrombotic microangiopathy in IgAN is a significant indicator of a poorer prognosis. All the breakthroughs in the understanding of the contributing role of complement in IgAN have paved the way for the development of new complement-targeted therapies in this disease. Several ongoing trials are evaluating the efficacy of new agents against factor B (iptacopan, Ionis-FB-LRX), C3 (pegcetacoplan), factor D (vemircopan, pelecopan), C5 (ravulizumab, cemdisiran) and C5a receptor 1 (avacopan). In this study, we provide a comprehensive review of the role of complement in IgAN, including the emerging mechanisms of complement activation and the promising potential of complement inhibitors as a viable treatment option for IgAN.
Collapse
Affiliation(s)
- Fernando Caravaca-Fontán
- Department of Nephrology, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eduardo Gutiérrez
- Department of Nephrology, Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Ángel M Sevillano
- Department of Nephrology, Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Manuel Praga
- Department of Nephrology, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
7
|
Tang A, Zhao X, Tao T, Xie D, Xu B, Huang Y, Li M. Unleashing the power of complement activation: unraveling renal damage in human anti-glomerular basement membrane disease. Front Immunol 2023; 14:1229806. [PMID: 37781380 PMCID: PMC10540768 DOI: 10.3389/fimmu.2023.1229806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Anti-glomerular basement membrane (GBM) disease is a rare but life-threatening autoimmune disorder characterized by rapidly progressive glomerulonephritis with or without pulmonary hemorrhage. Renal biopsies of anti-GBM patients predominantly show linear deposition of IgG and complement component 3 (C3), indicating a close association between antigen-antibody reactions and subsequent complement activation in the pathogenesis of the disease. All three major pathways of complement activation, including the classical, lectin, and alternative pathways, are involved in human anti-GBM disease. Several complement factors, such as C3, C5b-9, and factor B, show a positive correlation with the severity of the renal injury and act as risk factors for renal outcomes. Furthermore, compared to patients with single positivity for anti-GBM antibodies, individuals who are double-seropositive for anti-neutrophil cytoplasmic antibody (ANCA) and anti-GBM antibodies exhibit a unique clinical phenotype that lies between ANCA-associated vasculitis (AAV) and anti-GBM disease. Complement activation may serve as a potential "bridge" for triggering both AAV and anti-GBM conditions. The aim of this article is to provide a comprehensive review of the latest clinical evidence regarding the role of complement activation in anti-GBM disease. Furthermore, potential therapeutic strategies targeting complement components and associated precautions are discussed, to establish a theoretical basis for complement-targeted therapies.
Collapse
Affiliation(s)
- Anqi Tang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Tao
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dengpiao Xie
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bojun Xu
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqun Huang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingquan Li
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Caillard P, Vigneau C, Halimi JM, Hazzan M, Thervet E, Heitz M, Juillard L, Audard V, Rabant M, Hertig A, Subra JF, Vuiblet V, Guerrot D, Tamain M, Essig M, Lobbedez T, Quemeneur T, Legendre M, Ganea A, Peraldi MN, Vrtovsnik F, Daroux M, Makdassi R, Choukroun G, Titeca-Beauport D. Prognostic value of complement serum C3 level and glomerular C3 deposits in anti-glomerular basement membrane disease. Front Immunol 2023; 14:1190394. [PMID: 37475859 PMCID: PMC10354545 DOI: 10.3389/fimmu.2023.1190394] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Background and objectives Activation of the complement system is involved in the pathogenesis of anti-glomerular basement membrane (anti-GBM) disease. Glomerular deposits of complement 3 (C3) are often detected on kidney biopsies. The primary objective of this study was to analyze the prognostic value of the serum C3 level and the presence of C3 glomerular deposits in patients with anti-GBM disease. Methods We conducted a retrospective cohort study of 150 single-positive patients with anti-GBM disease diagnosed between 1997 and 2017. Patients were categorized according to the serum C3 level (forming a low C3 (C3<1.23 g/L) and a high C3 (C3≥1.23 g/L) groups) and positivity for C3 glomerular staining (forming the C3+ and C3- groups). The main outcomes were kidney survival and patient survival. Results Of the 150 patients included, 89 (65%) were men. The median [interquartile range (IQR)] age was 45 [26-64]. At diagnosis, kidney involvement was characterized by a median [IQR] peak serum creatinine (SCr) level of 578 [298-977] µmol/L, and 106 (71%) patients required dialysis. Patients in the low C3 group (72 patients) had more severe kidney disease at presentation, as characterized by higher prevalences of oligoanuria, peak SCr ≥500 µmol/L (69%, vs. 53% in the high C3 group; p=0.03), nephrotic syndrome (42%, vs. 24%, respectively; p=0.02) and fibrous forms on the kidney biopsy (21%, vs. 8%, respectively; p=0.04). Similarly, we observed a negative association between the presence of C3 glomerular deposits (in 52 (41%) patients) and the prevalence of cellular forms (83%, vs. 58% in the C3- group; p=0.003) and acute tubulo-interstitial lesions (60%, vs. 36% in the C3- group; p=0.007). When considering patients not on dialysis at diagnosis, the kidney survival rate at 12 months was poorer in the C3+ group (50% [25-76], vs. 91% [78-100] in the C3- group; p=0.01), with a hazard ratio [95% confidence interval] of 5.71 [1.13-28.85] (p=0.04, after adjusting for SCr). Conclusion In patients with anti-GBM disease, a low serum C3 level and the presence of C3 glomerular deposits were associated with more severe disease and histological kidney involvement at diagnosis. In patients not on dialysis at diagnosis, the presence of C3 deposits was associated with worse kidney survival.
Collapse
Affiliation(s)
- Pauline Caillard
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV) laboratory, Centre de Recherche en Santé (CURS), Amiens, France
| | - Cécile Vigneau
- Rennes University Hospital, Inserm, Ecole des hautes études en santé publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Jean-Michel Halimi
- Department of Nephrology, Tours University Hospital and EA4245, University of Tours, Tours, France
| | - Marc Hazzan
- Nephrology Department, Lille University Hospital, University of Lille, UMR 995, Lille, France
| | - Eric Thervet
- Department of Nephrology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris and INSERM UMRS970, Boulogne-Billancourt, France
| | - Morgane Heitz
- Department of Nephrology and Dialysis, Annecy Genevois Hospital, Pringy, France
| | - Laurent Juillard
- Department of Nephrology, Edouard Herriot Hospital, Hospices Civils de Lyon, Carmen INSERM 1060 and Univ Lyon, Lyon, France
| | - Vincent Audard
- Department of Nephrology and Renal Transplantation, Reference Center-Idiopathic Nephrotic Syndrome, Henri-Mondor Hospital/Albert-Chenevier, Assistance Publique-Hôpitaux de Paris (AP-HP) Créteil, INSERMU955, Paris Est Créteil University, Créteil, France
| | - Marion Rabant
- Pathology Department, Necker University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP). Centre-Université de Paris, Paris, France
| | - Alexandre Hertig
- Department of Nephrology, Dialysis and Transplantation, Foch Hospital, Paris-Saclay University, Suresnes, France
| | - Jean-François Subra
- Department of Nephrology, Dialysis and Transplantation, University Hospital, Angers and Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), INSERM, Nantes University, Angers University, Angers, France
| | - Vincent Vuiblet
- Department of Nephrology and Renal Transplantation, Reims University Hospital, Reims, France
| | - Dominique Guerrot
- Department of Nephrology, Rouen University Hospital, Rouen and INSERM, U1096 Rouen, France
| | - Mathilde Tamain
- Department of Nephrology and Dialysis, Vichy Hospital, Vichy, France
| | - Marie Essig
- Department of Nephrology, Dialysis, and Renal Transplantation, Ambroise-Paré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris-Saclay University, Boulogne-Billancourt, France
| | - Thierry Lobbedez
- Department of Nephrology, Caen University Hospital, Caen, France and the French Registry of Peritoneal Dialysis, Langue Française, Pontoise, France
| | - Thomas Quemeneur
- Department of Nephrology and Internal Medicine, Valenciennes General Hospital, Valenciennes, France
| | - Mathieu Legendre
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospital, Dijon, France
| | | | - Marie-Noëlle Peraldi
- Department of Nephrology, Dialysis and Renal Transplantation, Necker University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Centre-Université de Paris, Paris, France
| | - François Vrtovsnik
- Nephrology Department, Bichat-Claude Bernard Hospital, APHP, Paris, France. Faculty of Medicine, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Maïté Daroux
- Department of Nephrology, Duchenne Hospital, Boulogne-Sur-Mer, France
| | - Raïfah Makdassi
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
| | - Gabriel Choukroun
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV) laboratory, Centre de Recherche en Santé (CURS), Amiens, France
| | - Dimitri Titeca-Beauport
- Department of Nephrology, Dialysis, and Transplantation, University of Picardie Jules Verne, Amiens University Hospital, Amiens, France
- Mécanismes Physiopathologiques et Conséquences des Calcifications Cardiovasculaires (MP3CV) laboratory, Centre de Recherche en Santé (CURS), Amiens, France
| |
Collapse
|
9
|
Gibson B, Connelly C, Moldakhmetova S, Sheerin NS. Complement activation and kidney transplantation; a complex relationship. Immunobiology 2023; 228:152396. [PMID: 37276614 DOI: 10.1016/j.imbio.2023.152396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023]
Abstract
Although kidney transplantation is the best treatment for end stage kidney disease, the benefits are limited by factors such as the short fall in donor numbers, the burden of immunosuppression and graft failure. Although there have been improvements in one-year outcomes, the annual rate of graft loss beyond the first year has not significantly improved, despite better therapies to control the alloimmune response. There is therefore a need to develop alternative strategies to limit kidney injury at all stages along the transplant pathway and so improve graft survival. Complement is primarily part of the innate immune system, but is also known to enhance the adaptive immune response. There is increasing evidence that complement activation occurs at many stages during transplantation and can have deleterious effects on graft outcome. Complement activation begins in the donor and occurs again on reperfusion following a period of ischemia. Complement can contribute to the development of the alloimmune response and may directly contribute to graft injury during acute and chronic allograft rejection. The complexity of the relationship between complement activation and allograft outcome is further increased by the capacity of the allograft to synthesise complement proteins, the contribution complement makes to interstitial fibrosis and complement's role in the development of recurrent disease. The better we understand the role played by complement in kidney transplant pathology the better placed we will be to intervene. This is particularly relevant with the rapid development of complement therapeutics which can now target different the different pathways of the complement system. Combining our basic understanding of complement biology with preclinical and observational data will allow the development and delivery of clinical trials which have best chance to identify any benefit of complement inhibition.
Collapse
Affiliation(s)
- B Gibson
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - C Connelly
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - S Moldakhmetova
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK
| | - N S Sheerin
- Clinical and Translational Research Institute Faculty of Medical Sciences, Newcastle University Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|