1
|
Peng Y, Qu R, Yang Y, Fan T, Sun B, Khan AU, Wu S, Liu W, Zhu J, Chen J, Li X, Dai J, Ouyang J. Regulation of the integrin αVβ3- actin filaments axis in early osteogenic differentiation of human mesenchymal stem cells under cyclic tensile stress. Cell Commun Signal 2023; 21:308. [PMID: 37904190 PMCID: PMC10614380 DOI: 10.1186/s12964-022-01027-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/24/2022] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Integrins are closely related to mechanical conduction and play a crucial role in the osteogenesis of human mesenchymal stem cells. Here we wondered whether tensile stress could influence cell differentiation through integrin αVβ3. METHODS We inhibited the function of integrin αVβ3 of human mesenchymal stem cells by treating with c(RGDyk). Using cytochalasin D and verteporfin to inhibit polymerization of microfilament and function of nuclear Yes-associated protein (YAP), respectively. For each application, mesenchymal stem cells were loaded by cyclic tensile stress of 10% at 0.5 Hz for 2 h daily. Mesenchymal stem cells were harvested on day 7 post-treatment. Western blotting and quantitative RT-PCR were used to detect the expression of alkaline phosphatase (ALP), RUNX2, β-actin, integrin αVβ3, talin-1, vinculin, FAK, and nuclear YAP. Immunofluorescence staining detected vinculin, actin filaments, and YAP nuclear localization. RESULTS Cyclic tensile stress could increase the expression of ALP and RUNX2. Inhibition of integrin αVβ3 activation led to rearrangement of actin filaments and downregulated the expression of ALP, RUNX2 and promoted YAP nuclear localization. When microfilament polymerization was inhibited, ALP, RUNX2, and nuclear YAP nuclear localization decreased. Inhibition of YAP nuclear localization could reduce the expression of ALP and RUNX2. CONCLUSIONS Cyclic tensile stress promotes early osteogenesis of human mesenchymal stem cells via the integrin αVβ3-actin filaments axis. YAP nuclear localization participates in this process of human mesenchymal stem cells. Video Abstract.
Collapse
Affiliation(s)
- Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenqing Liu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinhui Zhu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junxin Chen
- Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China
| | - Xiaoqing Li
- Shenzhen Andy New Material Technology Co., LTD, Shenzhen, 518106, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Virtual and Reality Experimental Education Center for Medical Morphology and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
The Psoriasis Therapeutic Potential of a Novel Short Laminin Peptide C16. Int J Mol Sci 2019; 20:ijms20133144. [PMID: 31252620 PMCID: PMC6651782 DOI: 10.3390/ijms20133144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 01/18/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive growth of keratinocytes and hyperkeratosis in the epidermis. An abnormality of the non-lesional epidermis at an early stage of psoriasis is involved in triggering inflammatory cell infiltration into the dermis. Integrin α5β1 acts as a receptor for fibronectin and has been found to be overexpressed in non-lesional psoriatic epidermis. To investigate whether α5β1 integrin has a potential as a drug target for psoriasis treatment, the α5β1 integrin-binding peptide, C16, was used to obstruct the HaCat keratinocyte cellular responses induced by fibronectin (Fn) in culture and psoriasis-like skin inflammation induced in mice by imiquimod (IMQ). The C16 exhibited antagonistic activity against α5β1 integrin in HaCat cells, with evidence of suppression of the Fn-mediated proliferative, cytoskeletal, and inflammatory responses. Topical treatment with C16 greatly reduced the IMQ-induced epidermal hyperplasia, infiltration of neutrophils/macrophages, and expression of pro-inflammatory mediators in mouse skin. The C16SP (C16-derived short peptide; DITYVRLKF) also exhibited antagonistic activity, suppressing α5β1 integrin activity in culture, and reducing IMQ-induced skin inflammation. Taken together, this study provides the first evidence that α5β1 integrin may be a potential drug target for psoriasis. The synthetic C16 peptide may serve as an agent for psoriasis therapy.
Collapse
|
3
|
Jiang F, Guo N, Dusting GJ. 3',4'-Dihydroxyflavonol down-regulates monocyte chemoattractant protein-1 in smooth muscle: role of focal adhesion kinase and PDGF receptor signalling. Br J Pharmacol 2009; 157:597-606. [PMID: 19371329 DOI: 10.1111/j.1476-5381.2009.00199.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE We investigated the effects of a synthetic flavonol, 3',4'-dihydroxyflavonol (DiOHF) on the expression of monocyte chemoattractant protein-1 (MCP-1) in rat vascular smooth muscle cells. EXPERIMENTAL APPROACH MCP-1 expression was assessed by quantitative real-time PCR and protein phosphorylation by immunoprecipitation and Western blots. KEY RESULTS DiOHF (1-30 micromol x L(-1)) concentration-dependently reduced MCP-1 expression in both quiescent cells and cells stimulated with platelet-derived growth factor (PDGF) or interleukin 1-beta. The effect of DiOHF was associated with a suppression of focal adhesion kinase (FAK)-mediated signalling. In vitro kinase assays demonstrated that DiOHF is a potent inhibitor of FAK kinase activity (EC(50)= 2.4 micromol x L(-1)). Expression of FAK-related non-kinase reduced basal MCP-1 expression, but not that induced by PDGF or interleukin 1-beta. DiOHF also inhibited autophosphorylation of PDGF receptors. The PDGF receptor inhibitor AG-1296 potently suppressed basal and PDGF-induced MCP-1 expression. Inhibition of extracellular signal-regulated kinase activation by DiOHF, either directly or indirectly, may also be involved in its effects on MCP-1 expression. DiOHF had no inhibitory effect on either p38 or nuclear factor-kappaB activation. Moreover, DiOHF inhibited smooth muscle cell spreading (a FAK-mediated response) and proliferation. CONCLUSIONS AND IMPLICATIONS This is the first report on a flavonoid compound (DiOHF) that is a potent FAK inhibitor. DiOHF also inhibits PDGF receptor autophosphorylation. These effects underlie the inhibitory action of DiOHF on MCP-1 expression in smooth muscle cells. Our results suggest that DiOHF might be a useful tool for dissection of the (patho)physiological roles of FAK signalling.
Collapse
Affiliation(s)
- F Jiang
- Bernard O'Brien Institute of Microsurgery, University of Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
4
|
Abstract
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that localizes to cellular focal adhesions or cell contacts within the extracellular matrix. FAK is activated by a variety of cell surface receptors and transmits signals to a range of targets. FAK participates in growth factor receptor-mediated signaling pathways and plays essential roles in cell survival, proliferation, migration, and invasion. In the present chapter, the mechanisms of FAK activation, the modulation of FAK function by phosphorylation, and the mechanisms regulating FAK expression are reviewed. Overexpression of FAK is widely observed in numerous tumor types, and is used as a marker for invasion and metastasis. FAK could be therapeutically targeted at various levels, such as at the level of FAK gene transcription by regulating its transcription factor(s) with siRNA, at the FAK mRNA level with FAK siRNA, or at the protein level. At the protein level, FAK's localization to focal adhesions could be disrupted by expression of dominant-negative FAK-Related Non-Kinase or its focal adhesion targeting domain, and its kinase activity could be inhibited by FIP200, the FAK kinase domain-interacting protein and kinase-activity inhibitor. In recent years, small molecule inhibitors against FAK transcription and activation have been discovered, and these will provide additional approaches for potential tumor therapies.
Collapse
|
5
|
Wei CC, Chang MS. A novel transcript of mouse interleukin-20 receptor acts on glomerular mesangial cells as an aggravating factor in lupus nephritis. Genes Immun 2008; 9:668-79. [PMID: 18769441 DOI: 10.1038/gene.2008.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We identified a novel soluble protein, mouse (m)IL-20R1a, generated by alternative splicing of the mIL-20R1 gene, which encodes one subunit of the receptor complex for mIL-19, mIL-20 and mIL-24. mIL-20R1a has 77.14% amino-acid identity with the extracellular domain of mIL-20R1. However, no significant interaction between mIL-20R1a and mIL-19 or mIL-20 was detected. Consequently, we aimed to clarify whether mIL-20R1a might function as a novel effector on certain cells. Competitive binding assays demonstrated that mIL-20R1a bound to cell surfaces and resulted in AKT and JNK phosphorylation in primary mesangial cells (MCs) isolated from either the wild-type mice, DBA/W mice, or the SLE-prone mice, NZB/W mice. NZB/W MCs expressed more mIL-20R1a transcript than DBA/W MCs did. Furthermore, mIL-20R1a-treated NZB/W MCs produced higher level of chemokines, renal fibrogenic factors and ROS than mIL-20R1a-treated DBA/W MCs did. These factors are involved in the pathogenesis of lupus nephritis. Endogenous mIL-20R1a was upregulated in the bladder, colon and spleen tissue of NZB/W mice. Elevated mIL-20R1a in the spleen tissue of NZB/W mice was expressed mainly in monocytes and B cells. mIL-20R1a further induced mIL-10 production by the anti-IgM antibody-stimulated B cells in NZB/W mice. Therefore, mIL-20R1a-mediated effects may exacerbate the disease outcome of lupus nephritis.
Collapse
Affiliation(s)
- C-C Wei
- Institute of Basic Medical Sciences, Medical College, National Cheng Kung University, Tainan, Taiwan
| | | |
Collapse
|
6
|
Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res 2006; 313:22-37. [PMID: 17081517 PMCID: PMC1780174 DOI: 10.1016/j.yexcr.2006.09.013] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 01/08/2023]
Abstract
The intracellular signaling events controlling human mesenchymal stem cells (hMSC) differentiation into osteoblasts are not entirely understood. We recently demonstrated that contact with extracellular matrix (ECM) proteins is sufficient to induce osteogenic differentiation of hMSC through an ERK-dependent pathway. We hypothesized that FAK signaling pathways provide a link between activation of ERK1/2 by ECM, and stimulate subsequent phosphorylation of the Runx2/Cbfa-1 transcription factor that controls osteogenic gene expression. We plated hMSC on purified collagen I (COLL-I) and vitronectin (VN) in the presence or absence of FAK-specific siRNA, and assayed for phosphorylation of Runx2/Cbfa-1 as well as expression of established osteogenic differentiation markers (bone sialoprotein-2, osteocalcin, alkaline phosphatase, calcium deposition, and spectroscopically determined mineral:matrix ratio). We found that siRNA treatment reduced FAK mRNA levels by >40% and decreased ECM-mediated phosphorylation of FAK Y397 and ERK1/2. Serine phosphorylation of Runx2/Cbfa-1 was significantly reduced after 8 days in treated cells. Finally, FAK inhibition blocked osterix transcriptional activity and the osteogenic differentiation of hMSC, as assessed by lowered expression of osteogenic genes (RT-PCR), decreased alkaline phosphatase activity, greatly reduced calcium deposition, and a lower mineral:matrix ratio after 28 days in culture. These results suggest that FAK signaling plays an important role in regulating ECM-induced osteogenic differentiation of hMSC.
Collapse
Affiliation(s)
- Roman M. Salasznyk
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3596 and
| | - Robert F. Klees
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3596 and
| | - William A. Williams
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3596 and
| | - Adele Boskey
- Hospital for Special Surgery, New York, NY 10021
| | - George E. Plopper
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3596 and
- Corresponding Author: George E. Plopper, Ph.D., Associate Professor, Department of Biology, Rensselaer Polytechnic Institute, 110 8 Street, Troy, NY 12180-3596, (518) 276-8288 phone, (518) 276-2162 fax, , http://www.rpi.edu/~ploppg
| |
Collapse
|