1
|
Follert P, Große-Segerath L, Lammert E. Blood flow-induced angiocrine signals promote organ growth and regeneration. Bioessays 2024:e2400207. [PMID: 39529434 DOI: 10.1002/bies.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Recently, we identified myeloid-derived growth factor (MYDGF) as a blood flow-induced angiocrine signal that promotes human and mouse hepatocyte proliferation and survival. Here, we review literature reporting changes in blood flow after partial organ resection in the liver, lung, and kidney, and we describe the angiocrine signals released by endothelial cells (ECs) upon blood flow alterations in these organs. While hepatocyte growth factor (HGF) and MYDGF are important angiocrine signals for liver regeneration, by now, angiocrine signals have also been reported to stimulate hyperplasia and/or hypertrophy during the regeneration of lungs and kidneys. In addition, angiocrine signals play a critical role in tumor growth. Understanding the mechano-elastic properties and flow-mediated alterations in the organ-specific microvasculature is crucial for therapeutic approaches to maintain organ health and initiate organ renewal.
Collapse
Affiliation(s)
- Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
| | - Linda Große-Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
- German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Metabolic Physiology, Düsseldorf, Germany
- German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
2
|
Souza JPA, Menezes LRA, Garcia FP, Scariot DB, Bandeira PT, Bespalhok MB, Giese SOK, Hughes DL, Nakamura CV, Barison A, Oliveira ARM, Campos RB, Piovan L. Synthesis, Mechanism Elucidation and Biological Insights of Tellurium(IV)-Containing Heterocycles. Chemistry 2021; 27:14427-14437. [PMID: 34406689 DOI: 10.1002/chem.202102287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Inspired by the synthetic and biological potential of organotellurium substances, a series of five- and six-membered ring organotelluranes containing a Te-O bond were synthesized and characterized. Theoretical calculations elucidated the mechanism for the oxidation-cyclization processes involved in the formation of the heterocycles, consistent with chlorine transfer to hydroxy telluride, followed by a cyclization step with simultaneous formation of the new Te-O bond and deprotonation of the OH group. Moreover, theoretical calculations also indicated anti-diastereoisomers to be major products for two chirality center-containing compounds. Antileishmanial assays against Leishmania amazonensis promastigotes disclosed 1,2λ4 -oxatellurane LQ50 (IC50 =4.1±1.0; SI=12), 1,2λ4 -oxatellurolane LQ04 (IC50 =7.0±1.3; SI=7) and 1,2λ4 -benzoxatellurole LQ56 (IC50 =5.7±0.3; SI=6) as more powerful and more selective compounds than the reference, being up to four times more active. A stability study supported by 125 Te NMR analyses showed that these heterocycles do not suffer structural modifications in aqueous-organic media or at temperatures up to 65 °C.
Collapse
Affiliation(s)
- João Pedro A Souza
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Leociley R A Menezes
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Francielle P Garcia
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Débora B Scariot
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Pamela T Bandeira
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Mateus B Bespalhok
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Siddhartha O K Giese
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - David L Hughes
- School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Celso V Nakamura
- Health Sciences Center, Universidade Estadual de Maringá, Maringá, PR, 87.020-900, Brazil
| | - Andersson Barison
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Alfredo R M Oliveira
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| | - Renan B Campos
- Academic Department of Chemistry and Biology, Universidade Tecnológica Federal do Paraná, Curitiba, PR, 81.280-340, Brazil
| | - Leandro Piovan
- Department of Chemistry, Universidade Federal do Paraná, Curitiba, PR, 81.931-480, Brazil
| |
Collapse
|
3
|
Matsushita K, Toyoda T, Yamada T, Morikawa T, Ogawa K. Comprehensive expression analysis of mRNA and microRNA for the investigation of compensatory mechanisms in the rat kidney after unilateral nephrectomy. J Appl Toxicol 2020; 40:1373-1383. [PMID: 32369870 DOI: 10.1002/jat.3990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 01/02/2023]
Abstract
Compensation is a physiological response that occurs during chemical exposure to maintain homeostasis. Because compensatory responses are not usually considered adverse effects, it is important to understand compensatory mechanisms for chemical risk assessment. Although the kidney is a major target organ for toxicity, there is controversy over whether hyperplasia or hypertrophy contributes to the compensatory mechanism, and there is limited information to apply for chemical risk assessment. In the present study, compensatory mechanisms of the kidney were investigated in a unilateral nephrectomy (UNx) model using adult male and female F344 rats. In residual kidneys of male and female rats after UNx, 5-bromo-2'-deoxyuridine-labeling indices and mRNA expression of cell cycle-related genes were increased, although there were no fluctuations in mRNA expression of transforming growth factor-β1, which contributes to hypertrophy in renal tubules. Pathway analysis using mRNA expression data from a complementary DNA (cDNA) microarray revealed that canonical pathways related to cell proliferation were mainly activated and that forkhead box M1 (FOXM1) was an upstream regulator of compensatory cell proliferation in residual kidneys of male and female rats. cDNA microarray for microRNAs (miRNAs) demonstrated that nine miRNAs were downregulated in residual kidneys, and mRNA/miRNA integrated analysis indicated that miRNAs were associated with the expression of factors downstream of FOXM1. Overall, these results suggested that FOXM1-mediated hyperplasia rather than hypertrophy contributed to compensatory mechanisms in the kidney and that miRNAs regulated downstream FOXM1 signaling. These results will be beneficial for evaluating nephrotoxicity in chemical risk assessment and for developing new biomarkers to predict nephrotoxicity.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takanori Yamada
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.,Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
4
|
Rojas-Canales DM, Li JY, Makuei L, Gleadle JM. Compensatory renal hypertrophy following nephrectomy: When and how? Nephrology (Carlton) 2019; 24:1225-1232. [PMID: 30809888 DOI: 10.1111/nep.13578] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2019] [Indexed: 12/16/2022]
Abstract
Following surgical removal of one kidney, the other enlarges and increases its function. The mechanism for the sensing of this change and the growth is incompletely understood but begins within days and compensatory renal hypertrophy (CRH) is the dominant contributor to the growth. In many individuals undergoing nephrectomy for cancer or kidney donation this produces a substantial and helpful increase in renal function. Two main mechanisms have been proposed, one in which increased activity by the remaining kidney leads to hypertrophy, the second in which there is release of a kidney specific factor in response to a unilateral nephrectomy that initiates CRH. Whilst multiple growth factors and pathways such as the mTORC pathway have been implicated in experimental studies, their roles and the precise mechanism of CRH are not defined. Unrestrained hypoxia inducible factor activation in renal cancer promotes growth and may play an important role in driving CRH.
Collapse
Affiliation(s)
- Darling M Rojas-Canales
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jordan Y Li
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Leek Makuei
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia
| | - Jonathan M Gleadle
- College of Medicine and Public Health and Medicine, Flinders University, Adelaide, South Australia, Australia.,Department of Renal Medicine, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Sadeghi-Azandaryani M, Zimmermann H, Korten I, Klose A, Scheiermann P, Treitl M, Heyn J. Altered renal functions in patients with occlusion of an accessory renal artery after endovascular stenting of an infrarenal aneurysm. J Vasc Surg 2017; 65:635-642. [DOI: 10.1016/j.jvs.2016.06.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022]
|
6
|
Hussain T, Shah SZA, Zhao D, Sreevatsan S, Zhou X. The role of IL-10 in Mycobacterium avium subsp. paratuberculosis infection. Cell Commun Signal 2016; 14:29. [PMID: 27905994 PMCID: PMC5131435 DOI: 10.1186/s12964-016-0152-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is an intracellular pathogen and is the causative agent of Johne's disease of domestic and wild ruminants. Johne's disease is characterized by chronic granulomatous enteritis leading to substantial economic losses to the livestock sector across the world. MAP persistently survives in phagocytic cells, most commonly in macrophages by disrupting its early antibacterial activity. MAP triggers several signaling pathways after attachment to pathogen recognition receptors (PRRs) of phagocytic cells. MAP adopts a survival strategy to escape the host defence mechanisms via the activation of mitogen-activated protein kinase (MAPK) pathway. The signaling mechanism initiated through toll like receptor 2 (TLR2) activates MAPK-p38 results in up-regulation of interleukin-10 (IL-10), and subsequent repression of inflammatory cytokines. The anti-inflammatory response of IL-10 is mediated through membrane-bound IL-10 receptors, leading to trans-phosphorylation and activation of Janus Kinase (JAK) family receptor-associated tyrosine kinases (TyKs), that promotes the activation of latent transcription factors, signal transducer and activators of transcription 3 (STAT3). IL-10 is an important inhibitory cytokine playing its role in blocking phagosome maturation and apoptosis. In the current review, we describe the importance of IL-10 in early phases of the MAP infection and regulatory mechanisms of the IL-10 dependent pathways in paratuberculosis. We also highlight the strategies to target IL-10, MAPK and STAT3 in other infections caused by intracellular pathogens.
Collapse
Affiliation(s)
- Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Srinand Sreevatsan
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St Paul, MN USA
| | - Xiangmei Zhou
- National Animal Transmissible Spongiform Encephalopathy Laboratory and key Laboratory of Animal and Zoonosis of Ministry Agriculture, College of Veterinary Medicine and State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
7
|
Martín JMP, Freire PF, Daimiel L, Martínez-Botas J, Sánchez CM, Lasunción MÁ, Peropadre A, Hazen MJ. The antioxidant butylated hydroxyanisole potentiates the toxic effects of propylparaben in cultured mammalian cells. Food Chem Toxicol 2014; 72:195-203. [DOI: 10.1016/j.fct.2014.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 02/06/2023]
|
8
|
Koutroutsos K, Kassimatis TI, Nomikos A, Giannopoulou I, Theohari I, Nakopoulou L. Effect of Smad pathway activation on podocyte cell cycle regulation: an immunohistochemical evaluation. Ren Fail 2014; 36:1310-6. [DOI: 10.3109/0886022x.2014.937664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
9
|
Suzuki S, Ohashi N, Kitagawa M. Roles of the Skp2/p27 axis in the progression of chronic nephropathy. Cell Mol Life Sci 2012; 70:3277-87. [PMID: 23255047 PMCID: PMC3753466 DOI: 10.1007/s00018-012-1232-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/14/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
S-phase kinase-associated protein 2 (Skp2) is an F-box protein component of the Skp/Cullin/F-box-type E3 ubiquitin ligase that targets several cell cycle regulatory proteins for degradation through the ubiquitin-dependent pathway. Skp2-mediated degradation of p27, a cyclin-dependent kinase inhibitor, is involved in cell cycle regulation. Tubular epithelial cell proliferation is a characteristic feature of renal damage that is apparent in the early stages of nephropathy. The p27 level is associated with the progression of renal injury, and increased Skp2 expression in progressive nephropathy is implicated in decreases of p27 expression. In Skp2−/− mice, renal damage caused by unilateral ureteral obstruction (UUO) was ameliorated by p27 accumulation, mainly in tubular epithelial cells. However, the amelioration of UUO-induced renal injury in Skp2−/− mice was prevented by p27 deficiency in Skp2−/−/p27−/− mice. These results suggest that the Skp2-mediated reduction in p27 is a pathogenic activity that occurs during the progression of nephropathy. Here, we discuss the roles of the Skp2/p27 axis and/or related signaling pathways/components in the progression of chronic nephropathy.
Collapse
Affiliation(s)
- Sayuri Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan
| | | | | |
Collapse
|
10
|
Erk in kidney diseases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:768512. [PMID: 21776388 PMCID: PMC3135240 DOI: 10.1155/2011/768512] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 02/01/2011] [Indexed: 11/17/2022]
Abstract
Acute or chronic kidney injury results from various insults and pathological conditions, and is accompanied by activation of compensatory repair mechanisms. Both insults and repair mechanisms are initiated by circulating factors, whose cellular effects are mediated by activation selective signal transduction pathways. Two main signal transduction pathways are activated during these processes, the phosphatidylinositol 3' kinase (PI-3K)/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK) cascades. This review will focus on the latter, and more specifically on the role of extracellular signal-regulated kinase (ERK) cascade in kidney injury and repair.
Collapse
|
11
|
High-calorie diet with moderate protein restriction prevents cachexia and ameliorates oxidative stress, inflammation and proteinuria in experimental chronic kidney disease. Clin Exp Nephrol 2010; 14:536-47. [PMID: 20820841 DOI: 10.1007/s10157-010-0340-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND In earlier studies we found that a high-fat, high-energy diet (HFED) attenuates proteinuria, azotemia and lipid accumulation in the remnant kidney of rats subjected to 5/6 nephrectomy. This study was conducted to explore the mechanism of the salutary effect of HFED in association with moderate protein restriction in this model. METHODS The 5/6 nephrectomized male rats were randomized to receive regular rat chow (CRF group, n = 6) or HFED diet (CRF + HFED, n = 7) for 12 weeks. Sham-operated rats served as controls (n = 6). RESULTS The CRF group exhibited azotemia, hypertension, proteinuria, diminished body weight, oxidative stress, glomerulosclerosis, tubulo-interstitial inflammation and upregulation of pro-oxidant [NAD(P)H oxidase], pro-inflammatory (NF-κB activation, increased MCP-1, lipoxygenase, ICAM-1, VCAM-1), pro-fibrotic (TGF-β, CTGF) and pro-apoptotic pathways (Bax, caspase-3) in the remnant kidney. Consumption of the HFED resulted in a 66% increment in lipid intake, 8% increment in carbohydrate intake and a 24% reduction in protein intake. The CRF + HFED group gained weight normally, had increments in leptin and adiponectin levels, and despite increments in plasma cholesterol and fatty acids, showed significant attenuation of oxidative stress, proteinuria and inflammation, and partial reversal of the remnant kidney upregulation of pro-oxidant, pro-inflammatory, pro-fibrotic and pro-apoptotic pathways. CONCLUSION Consumption of high-energy diet in association with mild protein restriction results in suppression of upregulated pathways that drive progression of renal injury in the remnant kidney model. These findings may have relevance in the management of chronic kidney disease in humans.
Collapse
|
12
|
Pateras IS, Apostolopoulou K, Niforou K, Kotsinas A, Gorgoulis VG. p57KIP2: "Kip"ing the cell under control. Mol Cancer Res 2009; 7:1902-19. [PMID: 19934273 DOI: 10.1158/1541-7786.mcr-09-0317] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
p57(KIP2) is an imprinted gene located at the chromosomal locus 11p15.5. It is a cyclin-dependent kinase inhibitor belonging to the CIP/KIP family, which includes additionally p21(CIP1/WAF1) and p27(KIP1). It is the least studied CIP/KIP member and has a unique role in embryogenesis. p57(KIP2) regulates the cell cycle, although novel functions have been attributed to this protein including cytoskeletal organization. Molecular analysis of animal models and patients with Beckwith-Wiedemann Syndrome have shown its nodal implication in the pathogenesis of this syndrome. p57(KIP2) is frequently down-regulated in many common human malignancies through several mechanisms, denoting its anti-oncogenic function. This review is a thorough analysis of data available on p57(KIP2), in relation to p21(CIP1/WAF1) and p27(KIP1), on gene and protein structure, its transcriptional and translational regulation, and its role in human physiology and pathology, focusing on cancer development.
Collapse
Affiliation(s)
- Ioannis S Pateras
- Molecular Carcinogenesis Group, Laboratory of Histology-Embryology, Medical School, University of Athens, Greece
| | | | | | | | | |
Collapse
|
13
|
Kasinath BS, Feliers D, Sataranatarajan K, Ghosh Choudhury G, Lee MJ, Mariappan MM. Regulation of mRNA translation in renal physiology and disease. Am J Physiol Renal Physiol 2009; 297:F1153-65. [PMID: 19535566 DOI: 10.1152/ajprenal.90748.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Translation, a process of generating a peptide from the codons present in messenger RNA, can be a site of independent regulation of protein synthesis; it has not been well studied in the kidney. Translation occurs in three stages (initiation, elongation, and termination), each with its own set of regulatory factors. Mechanisms controlling translation include small inhibitory RNAs such as microRNAs, binding proteins, and signaling reactions. Role of translation in renal injury in diabetes, endoplasmic reticulum stress, acute kidney injury, and, in physiological adaptation to loss of nephrons is reviewed here. Contribution of mRNA translation to physiology and disease is not well understood. Because it is involved in such diverse areas as development and cancer, it should prove a fertile field for investigation in renal science.
Collapse
Affiliation(s)
- Balakuntalam S Kasinath
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|