1
|
Zhang Q, Ye J, Zhang Z, Hu Y, Wang X, Jiang W, Guo X, Chen L, Cheng S, Li J, Zhang L. Aristolocholic acid I promotes renal tubular epithelial fibrosis by upregulating matrix metalloproteinase-9 expression via activating the C3a/C3aR axis of macrophages. Toxicol Lett 2023; 381:27-35. [PMID: 37084829 DOI: 10.1016/j.toxlet.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Aristolochic acid I (AAI) can cause nephrotoxicity and is characterized by interstitial fibrosis. The C3a/C3aR axis of macrophages and matrix metalloproteinase-9 (MMP-9) play important roles in fibrosis, but whether they are involved in AAI-induced renal interstitial fibrosis and are related remains to be elucidated. In this study, we investigated whether C3a/C3aR axis of macrophages promotes renal interstitial fibrosis by regulating MMP-9 in aristolochic acid nephropathy (AAN). Intraperitoneal injection of AAI for 28 days successfully induced AAN in C57bl/6 mice. The content of C3a in the kidney of AAN mice was increased, and there was a significant distribution of macrophages in the renal tubules. The same results were observed in the in vitro experiment. We also explored the role and mechanism of macrophages after AAI administration in the epithelial-mesenchymal transformation (EMT) of renal tubular epithelial cells (RTECs) and found that AAI could activate the C3a/C3aR axis of macrophages to upregulate p65 expression in macrophages. p65 upregulated MMP-9 expression in macrophages not only directly but also by promoting the secretion if interleukin-6 by macrophages and then activating STAT3 in RTECs. The upregulation of MMP-9 expression could promote the EMT of RTECs. Taken together, our study demonstrated that the AAI-activated the C3a/C3aR axis of macrophages, which induced MMP-9 production, was one of the causes of renal interstitial fibrosis. Therefore, targeting the C3a/C3aR axis of macrophages is an effective therapeutic strategy for the prevention and treatment of renal interstitial fibrosis in AAN.
Collapse
Affiliation(s)
- Qi Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Ye
- School of Life Science, Nanjing University, Nanjing 210023, China
| | - Zhaofeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongkang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenjuan Jiang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinlong Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Langqun Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siyu Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jinling Pharmaceutical Co., Ltd., Nanjing, 210009, China.
| | - Liang Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Autenrieth TJ, Frank SC, Greiner AM, Klumpp D, Richter B, Hauser M, Lee SI, Levine J, Bastmeyer M. Actomyosin contractility and RhoGTPases affect cell-polarity and directional migration during haptotaxis. Integr Biol (Camb) 2017; 8:1067-1078. [PMID: 27713970 DOI: 10.1039/c6ib00152a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although much is known about chemotaxis- induced by gradients of soluble chemical cues - the molecular mechanisms involved in haptotaxis (migration induced by substrate-bound protein gradients) are largely unknown. We used micropatterning to produce discontinuous gradients consisting of μm-sized fibronectin-dots arranged at constant lateral but continuously decreasing axial spacing. Parameters like gradient slope, protein concentration and size or shape of the fibronectin dots were modified to determine optimal conditions for directional cell migration in gradient patterns. We demonstrate that fibroblasts predominantly migrate uphill towards a higher fibronectin density in gradients with a dot size of 2 × 2 μm, a 2% and 6% slope, and a low fibronectin concentration of 1 μg ml-1. Increasing dot size to 3.5 × 3.5 μm resulted in stationary cells, whereas rectangular dots (2 × 3 μm) orientated perpendicular to the gradient axis preferentially induce lateral migration. During haptotaxis, the Golgi apparatus reorients to a posterior position between the nucleus and the trailing edge. Using pharmacological inhibitors, we demonstrate that actomyosin contractility and microtubule dynamics are a prerequisite for gradient recognition indicating that asymmetric intracellular forces are necessary to read the axis of adhesive gradients. In the haptotaxis signalling cascade, RhoA and Cdc42, and the atypical protein kinase C zeta (aPKCζ), but not Rac, are located upstream of actomyosin contractility.
Collapse
Affiliation(s)
- Tatjana J Autenrieth
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany. and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany and Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stephanie C Frank
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany. and Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexandra M Greiner
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| | - Dominik Klumpp
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| | - Benjamin Richter
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany. and Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Mario Hauser
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Seong-Il Lee
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook NY, USA
| | - Joel Levine
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook NY, USA
| | - Martin Bastmeyer
- Zoological Institute, Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany. and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany and Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Woldu SL, Hutchinson RC, Krabbe LM, Sanli O, Margulis V. The Rho GTPase signalling pathway in urothelial carcinoma. Nat Rev Urol 2017; 15:83-91. [PMID: 29133936 DOI: 10.1038/nrurol.2017.184] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Urothelial carcinoma remains a clinical challenge: non-muscle-invasive disease has a high rate of recurrence and risk of progression, and outcomes for patients with advanced disease are poor, owing to a lack of effective systemic therapies. The Rho GTPase family of enzymes was first identified >30 years ago and contains >20 members, which are divided into eight subfamilies: Cdc42, Rac, Rho, RhoUV, RhoBTB, RhoDF, RhoH, and Rnd. Rho GTPases are molecular on-off switches, which are increasingly being understood to have a critical role in a number of cellular processes, including cell migration, cell polarity, cell adhesion, cell cycle progression, and regulation of the cytoskeleton. This switch is an evolutionarily conserved system in which GTPases alternate between GDP-bound (inactive) and GTP-bound (active) forms. The activities of these Rho GTPases are many, context-dependent, and regulated by a number of proteins that are being progressively elucidated. Aberrations of the Rho GTPase signalling pathways have been implicated in various malignancies, including urothelial carcinoma, and understanding of the role of Rho GTPases in these diseases is increasing. This signalling pathway has the potential for therapeutic targeting in urothelial carcinoma. Research in this area is nascent, and much work is necessary before current laboratory-based research can be translated into the clinic.
Collapse
Affiliation(s)
- Solomon L Woldu
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Ryan C Hutchinson
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Laura-Maria Krabbe
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Oner Sanli
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| | - Vitaly Margulis
- University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9110, USA
| |
Collapse
|
4
|
Liu X, Bi Y. Y-27632 Increases Sensitivity of PANC-1 Cells to EGCG in Regulating Cell Proliferation and Migration. Med Sci Monit 2016; 22:3529-3534. [PMID: 27694793 PMCID: PMC5063426 DOI: 10.12659/msm.897594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background The study aimed to investigate the inhibitory effect of (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-yl) cyclohexanecarboxamide (Y-27632) and (−)-epigallocatechin-3-gallate (EGCG) on the proliferation and migration of PANC-1 cells. EGCG, found in green tea, has been previously shown to be one of the most abundant and powerful catechins in cancer prevention and treatment. Y-27632, a selective inhibitor of rho-associated protein kinase 1, is widely used in treating cardiovascular disease, inflammation, and cancer. Material/Methods PANC-1 cells, maintained in Dulbecco’s Modified Eagle’s Medium, were treated with dimethyl sulfoxide (control) as well as different concentrations (20, 40, 60, and 80 μg/mL) of EGCG for 48 h. In addition, PANC-1 cells were treated separately with 60 μg/mL EGCG, 20 μM Y-27632, and EGCG combined with Y-27632 (60 μg/mL EGCG + 20 μM Y-27632) for 48 h. The effect of EGCG and Y-27632 on the proliferation and migration of PANC-1 cells was evaluated using Cell Counting Kit-8 and transwell migration assays. The expression of peroxisome proliferator–activated receptor alpha (PPARα) and Caspase-3 mRNA was determined by Quantitative real-time polymerase chain reaction (RT-qPCR). Results EGCG (20–80 μg/mL) inhibited cell viability in a dose-dependent manner. Y-27632 enhanced the sensitivity of PANC-1 cells to EGCG (by increasing the expression of PPARα and Caspase-3 mRNA) and suppressed cell proliferation. PANC-1 cell migration was inhibited by treatment with a combination of EGCG and Y-27632. Conclusions Y-27632 increases the sensitivity of PANC-1 cells to EGCG in regulating cell proliferation and migration, which is likely to be related to the expression of PPARα mRNA and Caspase-3 mRNA.
Collapse
Affiliation(s)
- Xing Liu
- School of Public Health, Wuhan University, Wuhan, Hubei, China (mainland)
| | - Yongyi Bi
- School of Public Health, Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
5
|
Jiang L, Wen J, Luo W. Rho‑associated kinase inhibitor, Y‑27632, inhibits the invasion and proliferation of T24 and 5367 bladder cancer cells. Mol Med Rep 2015; 12:7526-30. [PMID: 26459851 DOI: 10.3892/mmr.2015.4404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/17/2015] [Indexed: 11/05/2022] Open
Abstract
The serine/threonine kinases, Rho‑associated protein kinase I and II (ROCK I and II), regulate the cytoskeleton by acting downstream of the small GTPase, Rho, and have been implicated in tumorigenesis and cancer metastasis. Inhibition of ROCK signaling has been shown to suppress the invasion and migration of several types of cancer cells. In this study, the effect of the ROCK inhibitor, Y‑27632, on the proliferation and invasion of T24 and 5637 bladder cancer cells was investigated. In the proliferation assays, the cells were exposed to 0, 10, 25, 50, 75, 100, 125 or 150 µmol/l Y‑27632 and proliferation was determined using Cell Counting kit‑8 after 24, 48 and 72 h. In the invasion assays, the cells were placed in the upper chamber of transwell plates and subjected to 0, 25, 50 or 75 µmol/l Y‑27632 for 24 h, after which invasion was measured. Y‑27632 significantly suppressed the cell proliferation of T24 and 5637 cells in a concentration- and time‑dependent manner. Y‑27632 also inhibited the invasion of T24 and 5637 cells in a concentration‑dependent manner (P<0.001). In addition, Y‑27632 suppressed myosin light chain kinase (MLCK) phosphorylation in T24 and 5637 cells, confirming that it is also a downstream effector of the Rho/ROCK pathway in T24 and 5637 bladder cancer cells. In conclusion, the Rho/ROCK/P‑MLCK pathway may be important in tumor cell metastasis in bladder cancer.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Emergency, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, P.R. China
| | - Jiaming Wen
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei Luo
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
6
|
Antitumoral effect of a selective Rho-kinase inhibitor Y-27632 against Ehrlich ascites carcinoma in mice. Pharmacol Rep 2014; 66:114-20. [PMID: 24905316 DOI: 10.1016/j.pharep.2013.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 05/21/2013] [Accepted: 06/13/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND The Rho proteins and Rho-kinase (ROCK) enzymes are responsible for signal transduction, and cause cell permeability, contractility, differentiation, migration, proliferation or apoptosis depending on cell types. All of these functions are vital for cancer initiation and progression. In this study, the preventive and protective effects of a selective ROCK inhibitor Y-27632 against Ehrlich ascites carcinoma in Swiss albino mice were investigated. METHODS Adult male albino mice were divided into five equal groups, and Y-27632 (0.1, 1, and 10 mg/kg) was given to groups as two steps; before (pre-carcinoma) and after inoculation of carcinoma cell suspensions (post-carcinoma). At the end of the experiments (at day 15), cardiac blood samples, the ascitic fluid, and intestinal specimens were collected for histopathology and biochemical investigation. RESULTS Significant decreases in the body weight and immunostaining scores in small and large intestine for ROCK2, preservation of serum glutathione (GSH) levels, and an increase in tumor level of nitric oxide were recorded in groups pretreated with Y-27632. However, treatment with Y-27632 after tumor inoculation did not affect body weight and ROCK2 immunostaining scores, increased serum MDA levels, and decreased GSH levels. CONCLUSIONS This is the first study on the effectiveness of Y-27632 in this experimental tumor model. Our findings provided direct evidence for ROCK involvement in tumor development. These data suggest that pretreatment with Y-27632 has a protective effect against tumor formation.
Collapse
|