1
|
Ishiga K, Kobayashi R, Kanaoka T, Harada J, Kato I, Fujii S, Wakui H, Toya Y, Tamura K. Two acute kidney injury episodes after ICI therapy: a case report. CEN Case Rep 2024; 13:408-415. [PMID: 38453804 PMCID: PMC11444024 DOI: 10.1007/s13730-024-00855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
A 74-year-old Japanese male with lung squamous cell carcinoma received his first dose of immune checkpoint inhibitors (ICIs): ipilimumab and nivolumab. He developed acute kidney injury (AKI) and was admitted to our department. We diagnosed kidney immune-related adverse effects (irAE), and a kidney biopsy revealed acute tubulointerstitial nephritis. We started oral prednisolone (PSL) and his AKI immediately improved. The patient maintained stable findings after PSL was tapered off. However, seven months after the ICI administration, he developed rapid progressive glomerular nephritis and was admitted to our department again. The second kidney biopsy showed findings consistent with anti-glomerular basement membrane glomerulonephritis. Although the patient was treated with pulse methylprednisolone followed by oral PSL and plasma exchange, he became dependent on maintenance hemodialysis. To our knowledge, no case report has described two different types of biopsy-proven nephritis. In cases of suspected relapsing kidney irAEs, both a relapse of previous nephritis and the development of another type of nephritis should be considered.
Collapse
Affiliation(s)
- Kohei Ishiga
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| | - Tomohiko Kanaoka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Jotaro Harada
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| |
Collapse
|
2
|
Arnold F, Kupferschmid L, Weissenborn P, Heldmann L, Hummel JF, Zareba P, Sagar, Rogg M, Schell C, Tanriver Y. Tissue-resident memory T cells break tolerance to renal autoantigens and orchestrate immune-mediated nephritis. Cell Mol Immunol 2024; 21:1066-1081. [PMID: 38961265 PMCID: PMC11364874 DOI: 10.1038/s41423-024-01197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
Immune-mediated nephritis is a leading cause of acute kidney injury and chronic kidney disease. While the role of B cells and antibodies has been extensively investigated in the past, the advent of immune-checkpoint inhibitors has led to a reappraisal of the role of T cells in renal immunology. However, it remains elusive how T cells with specificity for renal autoantigens are activated and participate in immune-mediated nephritis. Here, we followed the fate and function of pathogen-activated autoreactive CD8 T cells that are specific for a renal autoantigen. We demonstrate that recently activated splenic CD8 T cells developed a hybrid phenotype in the context of renal autoantigen cross-presentation, combining hallmarks of activation and T cell dysfunction. While circulating memory T cells rapidly disappeared, tissue-resident memory T cells emerged and persisted within the kidney, orchestrating immune-mediated nephritis. Notably, T cells infiltrating kidneys of patients with interstitial nephritis also expressed key markers of tissue residency. This study unveils how a tissue-specific immune response can dissociate from its systemic counterpart driving a compartmentalized immune response in the kidneys of mice and man. Consequently, targeting tissue-resident memory T cells emerges as a promising strategy to control immune-mediated kidney disease.
Collapse
Affiliation(s)
- Frederic Arnold
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laurence Kupferschmid
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Weissenborn
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Heldmann
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paulina Zareba
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Wang X, Yang T, Shi S, Xu C, Wang F, Dai D, Guan G, Zhang Y, Wang S, Wang J, Zhang B, Liu P, Bai X, Jin Y, Li X, Zhu C, Chen D, Xu Q, Guo Y. Heterogeneity-induced NGF-NGFR communication inefficiency promotes mitotic spindle disorganization in exhausted T cells through PREX1 suppression to impair the anti-tumor immunotherapy with PD-1 mAb in hepatocellular carcinoma. Cancer Med 2024; 13:e6736. [PMID: 38204220 PMCID: PMC10905245 DOI: 10.1002/cam4.6736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The mechanism of decreased T cells infiltrating tumor tissues in hepatocellular carcinoma is poorly understood. METHODS Cells were separated from the single-cell RNA-sequence dataset of hepatocellular carcinoma patients (GSE149614) for cell-cell communication. Flow cytometry, EDU staining, H3-Ser28 staining, confocal immunofluorescence staining, western blotting and naked microsubcutaneous tumors were performed for the mechanism of NGF-NGFR promoting proliferation. RESULTS The present study has revealed that during the process of T-cell infiltration from adjacent tissues to tumor tissues, an inefficiency in NGF-NGFR communication occurs in the tumor tissues. Importantly, NGF secreted by tumor cells interacts with NGFR present on the membranes of the infiltrated T cells, thereby promoting the proliferation through the activation of mitotic spindle signals. Mechanistically, the mediation of mitotic spindle signal activation promoting proliferation is executed by HDAC1-mediated inhibition of unclear trans-localization of PREX1. Furthermore, PD-1 mAb acts synergistically with the NGF-NGFR communication to suppress tumor progression in both mouse models and HCC patients. Additionally, NGF-NGFR communication was positively correlates with the PD-1/PDL-1 expression. However, expressions of NGF and NGFR are low in tumor tissues, which is responsible for the invasive clinicopathological features and the disappointing prognosis in HCC patients. CONCLUSION Inefficiency in NGF-NGFR communication impairs PD-1 mAb immunotherapy and could thus be utilized as a novel therapeutic target in the treatment of HCC patients in clinical practice.
Collapse
Affiliation(s)
- Xin Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tongwang Yang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Academician WorkstationChangsha Medical UniversityChangshaChina
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical PreparationsChangsha Medical UniversityChangshaChina
| | - Shangheng Shi
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Chuanshen Xu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Feng Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Deshu Dai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Ge Guan
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yong Zhang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Shuxian Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jianhong Wang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Bingliang Zhang
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Peng Liu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiaoshuai Bai
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Yan Jin
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xinqiang Li
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Cunle Zhu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Dexi Chen
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Beijing Institute of HepatologyCapital Medical UniversityBeijingChina
| | - Qingguo Xu
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
- Academician WorkstationChangsha Medical UniversityChangshaChina
| | - Yuan Guo
- Liver Disease CenterThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| |
Collapse
|
4
|
Singh J, Minz RW, Saikia B, Nada R, Sharma A, Jha S, Anand S, Rathi M, D'Cruz S. Diminished PD-L1 regulation along with dysregulated T lymphocyte subsets and chemokine in ANCA-associated vasculitis. Clin Exp Med 2023; 23:1801-1813. [PMID: 36219364 DOI: 10.1007/s10238-022-00908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022]
Abstract
ANCA-associated vasculitis (AAV) is a life-threatening disease characterized by small vessel inflammation and pathogenic self-directed antibodies. Programmed death-ligand 1 receptor (PD-1) and programmed cell death ligand-1 (PD-L1) are immune checkpoint molecules crucial for maintaining tolerance and immune homeostasis. After checkpoint inhibition therapy, development of various autoimmune diseases and immune-related adverse events (irAEs) have been observed. Here, we investigated the immunomodulatory roles of neutrophils through the expression of immune checkpoint molecule (PD-L1), migratory molecules (CXCR2), chemotactic chemokines (CXCL5) and other important molecules (BAFF and HMGB1) in development of AAV. We also scrutinized the immune mechanism responsible for development of pauci-immune crescentic GN (PICGN). We demonstrate for the first time that the frequency of PD-L1 expressing neutrophils was significantly reduced in AAV patients compared to healthy controls and correlated negatively with disease severity (BVASv3). Further, in renal biopsy, reduced PD-L1 immune checkpoint expression provides a microenvironment that unleashes uncontrolled activated CD4 + T cells, B cells, neutrophils and macrophages and ultimately causes engulfment of immune complexes leading to PICGN. Furthermore, during remission, reduced neutrophils PD-L1 and CXCR2 expression, increased neutrophils CXCL5 expression and increased peripheral effector memory T cells and increased HMGB1 and BAFF levels in serum, demonstrate the propensity for the persistence of sub-clinical inflammation, which could explain relapse, in this group of diseases.
Collapse
Affiliation(s)
- Jagdeep Singh
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Biman Saikia
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Ritambhra Nada
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Aman Sharma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Saket Jha
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shashi Anand
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manish Rathi
- Department of Nephrology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sanjay D'Cruz
- Department of General Medicine, Government Medical College and Hospital, Chandigarh, 160030, India
| |
Collapse
|
5
|
Lv Y, Shi H, Liu H, Zhou L. Current therapeutic strategies and perspectives in refractory ITP: What have we learned recently? Front Immunol 2022; 13:953716. [PMID: 36003388 PMCID: PMC9393521 DOI: 10.3389/fimmu.2022.953716] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder featured by increased platelet destruction and deficient megakaryocyte maturation. First-line treatments include corticosteroids, intravenous immunoglobulin and intravenous anti-D immunoglobulin. Second-line treatments consist of rituximab, thrombopoietin receptor agonists and splenectomy. Although most patients benefit from these treatments, an individualized treatment approach is warranted due to the large heterogeneity among ITP patients. In addition, ITP patients may relapse and there remains a subset of patients who become refractory to treatments. The management of these refractory patients is still a challenge. This review aims to summarize emerging therapeutic approaches for refractory ITP in several categories according to their different targets, including macrophages, platelets/megakaryocytes, T cells, B cells, and endothelial cells. Moreover, current management strategies and combination regimens of refractory ITP are also discussed.
Collapse
Affiliation(s)
- Yue Lv
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Huiping Shi
- Soochow University Medical College, Suzhou, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
6
|
Greisen SR, Kragstrup TW, Thomsen JS, Hørslev-Pedersen K, Hetland ML, Stengaard-Pedersen K, Østergaard M, Ørnbjerg L, Junker P, Sharpe AH, Freeman GJ, Hvid M, Moestrup SK, Hauge EM, Deleuran B. The Programmed Death-1 Pathway Counter-Regulates Inflammation-Induced Osteoclast Activity in Clinical and Experimental Settings. Front Immunol 2022; 13:773946. [PMID: 35356000 PMCID: PMC8959817 DOI: 10.3389/fimmu.2022.773946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
Objective The programmed death-1 (PD-1) pathway is essential for maintaining self-tolerance and plays an important role in autoimmunity, including rheumatoid arthritis (RA). Here, we investigated how membrane-bound and soluble (s)PD-1 influence bone homeostasis during chronic inflammation, exemplified in RA. Methods Bone mineral density and bone microstructure were examined in PD-1 and PD-L1 knockout (KO) mice and compared with wild-type (WT) mice. Receptor activator of nuclear factor kappa-B ligand (RANKL) was measured in serum, and the expression examined on activated bone marrow cells. Osteoclast formation was examined in cells from murine spleen and bone marrow and from human synovial fluid cells. sPD-1 was measured in chronic and early (e)RA patients and correlated to markers of disease activity and radiographic scores. Results PD-1 and PD-L1 KO mice showed signs of osteoporosis. This was supported by a significantly reduced trabecular bone volume fraction and deteriorated microstructure, as well as increased osteoclast formation and an increased RANKL/OPG ratio. The recombinant form of sPD-1 decreased osteoclast formation in vitro, but was closely associated with disease activity markers in eRA patients. Sustained elevated sPD-1 levels indicated ongoing inflammation and were associated with increased radiographic progression. Conclusion The PD-1 pathway is closely associated with bone homeostasis, and lacking members of this pathway causes a deteriorated bone structure. The immunological balance in the microenvironment determines how the PD-1 pathway regulates osteoclast formation. In eRA patients, sPD-1 may serve as a biomarker, reflecting residual but clinically silent disease activity and radiographic progression.
Collapse
Affiliation(s)
- Stinne R Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark
| | - Tue W Kragstrup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark
| | | | - Kim Hørslev-Pedersen
- Danish Hospital for the Rheumatic Diseases , and University of Southern Denmark, Sonderborg, Denmark
| | - Merete Lund Hetland
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mikkel Østergaard
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Ørnbjerg
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Peter Junker
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Arlene H Sharpe
- Department of Immunology, Harvard Medical School, Boston, MA, United States
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine , Aarhus University, Aarhus, Denmark
| | | | - Ellen Margrethe Hauge
- Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine , Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology , Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Mi Y, Han J, Zhu J, Jin T. Role of the PD-1/PD-L1 Signaling in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Recent Insights and Future Directions. Mol Neurobiol 2021; 58:6249-6271. [PMID: 34480337 PMCID: PMC8639577 DOI: 10.1007/s12035-021-02495-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmunity-related chronic demyelination disease of the central nervous system (CNS), causing young disability. Currently, highly specific immunotherapies for MS are still lacking. Programmed cell death 1 (PD-1) is an immunosuppressive co-stimulatory molecule, which is expressed on activated T lymphocytes, B lymphocytes, natural killer cells, and other immune cells. PD-L1, the ligand of PD-1, is expressed on T lymphocytes, B lymphocytes, dendritic cells, and macrophages. PD-1/PD-L1 delivers negative regulatory signals to immune cells, maintaining immune tolerance and inhibiting autoimmunity. This review comprehensively summarizes current insights into the role of PD-1/PD-L1 signaling in MS and its animal model experimental autoimmune encephalomyelitis (EAE). The potentiality of PD-1/PD-L1 as biomarkers or therapeutic targets for MS will also be discussed.
Collapse
Affiliation(s)
- Yan Mi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Present Address: Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| |
Collapse
|
8
|
Zheng J, Huang J, Ma W, Yang W, Hu B. The Antitumor Activity of CAR-T-PD1 Cells Enhanced by HPV16mE7-Pulsed and SOCS1-Silenced DCs in Cervical Cancer Models. Cancer Manag Res 2021; 13:6045-6053. [PMID: 34377023 PMCID: PMC8349543 DOI: 10.2147/cmar.s321402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/21/2021] [Indexed: 12/28/2022] Open
Abstract
Background Genetically T cells modified with cancer-specific chimeric antigen receptors (CARs) showed great promise in mediate tumor regression, especially in patients with advanced leukemia. However, the therapeutic effect against solid tumors is not as prominent as anticipated to exhibit potent antitumor efficacy. The underlying mechanism maybe attributed to the inhibitory co-stimulatory pathways such as (PD1/PDL1), which provide tumor cells an escape mechanism from immunosurveillance. Therefore, by exchanging the transmembrane and cytoplasmic tail of PD1 with positive costimulatory molecules, such as CD28 and 4–1BB signaling domains (PD1-CD28-4-1BB, PD1-CAR), the T cell-negative co-stimulatory PD1/PDL1 signal pathway was thus converted into a positive one. This study aimed to investigate whether the genetically modified CAR-T-PD1 cells activated by SOCS1 silenced DCs have enhanced anti-neoplastic potential in vitro/in vivo. Methods In order to enhance the antigenicity and reduce transformation activity, a modified HPV16 E7 (HPV16mE7) was employed to load on dendritic cells (DCs) with SOCS1 silenced to improve its antitumor efficiency and targeting ability against cervical cancer. The CAR-T-PD1 cells activated by the generated DCs were transfused into murine models bearing tumor of CaSki cells that expressing PDL1 and HPV16 E6/E7 for in vitro/in vivo antitumor activity assay. Results The data showed that DC-activated CAR-T-PD1 cells significantly increased the secretion of IL-2, IFN-γ and TNF-α, whilst enhanced cytotoxic activity, suppressed tumor growth and prolong the survival time compared with the controls. Conclusion These results indicated that the genetically engineered T cells activated by DCs had improved antitumor efficiency and targeting ability. Furthermore, it was suggested that it may have important implications for the improvement of T cell immunotherapy against cervical cancer.
Collapse
Affiliation(s)
- Jingwei Zheng
- Clinical Medical College of Jilin University, Changchun, 130012, People's Republic of China
| | - Jingsong Huang
- Department of Transfusion, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, People's Republic of China
| | - Wei Ma
- The Central Laboratory, Wuhan No.1 Hospital, the Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, 430022, People's Republic of China
| | - Wenqiang Yang
- The Central Laboratory, Wuhan No.1 Hospital, the Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, 430022, People's Republic of China
| | - Bicheng Hu
- The Central Laboratory, Wuhan No.1 Hospital, the Hospital of Traditional Chinese and Western Medicine Affiliated to Hubei University of Chinese Medicine, Wuhan, 430022, People's Republic of China
| |
Collapse
|
9
|
Zhai Y, Moosavi R, Chen M. Immune Checkpoints, a Novel Class of Therapeutic Targets for Autoimmune Diseases. Front Immunol 2021; 12:645699. [PMID: 33968036 PMCID: PMC8097144 DOI: 10.3389/fimmu.2021.645699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases, such as multiple sclerosis and type-1 diabetes, are the outcomes of a failure of immune tolerance. Immune tolerance is sustained through interplays between two inter-dependent clusters of immune activities: immune stimulation and immune regulation. The mechanisms of immune regulation are exploited as therapeutic targets for the treatment of autoimmune diseases. One of these mechanisms is immune checkpoints (ICPs). The roles of ICPs in maintaining immune tolerance and hence suppressing autoimmunity were revealed in animal models and validated by the clinical successes of ICP-targeted therapeutics for autoimmune diseases. Recently, these roles were highlighted by the clinical discovery that the blockade of ICPs causes autoimmune disorders. Given the crucial roles of ICPs in immune tolerance, it is plausible to leverage ICPs as a group of therapeutic targets to restore immune tolerance and treat autoimmune diseases. In this review, we first summarize working mechanisms of ICPs, particularly those that have been utilized for therapeutic development. Then, we recount the agents and approaches that were developed to target ICPs and treat autoimmune disorders. These agents take forms of fusion proteins, antibodies, nucleic acids, and cells. We also review and discuss safety information for these therapeutics. We wrap up this review by providing prospects for the development of ICP-targeting therapeutics. In summary, the ever-increasing studies and results of ICP-targeting of therapeutics underscore their tremendous potential to become a powerful class of medicine for autoimmune diseases.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Reza Moosavi
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Lin X, Xu A, Zhou L, Zhao N, Zhang X, Xu J, Feng S, Zheng C. Imbalance of T Lymphocyte Subsets in Adult Immune Thrombocytopenia. Int J Gen Med 2021; 14:937-947. [PMID: 33776472 PMCID: PMC7989055 DOI: 10.2147/ijgm.s298888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Primary immune thrombocytopenia (ITP) is defined as an acquired autoimmune disease characterized by isolated thrombocytopenia. This work is to further clarify the relationship between T cell immune dysfunction and the pathogenesis of ITP. METHODS 37 adult patients with ITP were selected and were classified into newly diagnosed ITP (nITP, n = 13), persistent ITP (pITP, n = 6) and chronic ITP (cITP n = 18). The frequency of cytotoxic T lymphocytes (Tc1, Tc2, and Tc17) and helper T cells (Th1, Th2, and Th17), Tregs, and the expression of chemokine receptors and PD-1 on CD4+ T cells were investigated by flow cytometry. Plasma levels of T cell-related cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, IL-17) were measured by cytometric beads array (CBA). RESULTS The percentage of Tc1 in cITP was greatly higher than nITP and healthy controls (p < 0.05, p < 0.01). The percentage of Treg in nITP and cITP groups was remarkably lower than those in healthy control group (p < 0.05, p < 0.001); and according to platelet count analysis (PLT<50x109/L or PLT>50x109/L), Treg cells in ITP group were significantly lower than those in healthy control group (p < 0.001, p < 0.05). The percentage of CD4+CXCR3+ of cITP was significantly higher than healthy controls and nITP (p < 0.01, p < 0.05). The percentage of CD4+CCR6+ in cITP was significantly higher than healthy controls and nITP (p < 0.001, p < 0.05). The expression of PD-1 in cITP patients was higher than healthy control (p < 0.05), but there was no significant difference among nITP, pITP and cITP (p = 0.25). The levels of IL-2, IFN-γ and TNFα in nITP group and cITP group were significantly higher than those in healthy control group (p < 0.01, p < 0.05; p < 0.01, p < 0.05; p < 0.05, p < 0.05), and the level of IL-10 in nITP group was significantly higher than that in pITP group (p < 0.05). CONCLUSION Our results suggest that T lymphocyte immune dysfunction does exist in adult ITP patients and plays an important role in the pathogenesis of ITP.
Collapse
Affiliation(s)
- Xiuxiu Lin
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Anhui Xu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Li Zhou
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Na Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Xinhui Zhang
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People’s Republic of China
| | - Jin Xu
- Wannan Medical College, Wuhu, People’s Republic of China
| | - Shanglong Feng
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People’s Republic of China
| | - Changcheng Zheng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
11
|
Abstract
Renal inflammation, induced by autoantigen recognition or toxic drugs, leads to renal tissue injury and decline in kidney function. Recent studies have demonstrated the crucial role for regulatory T cells in suppressing pathogenic adaptive but also innate immune responses in the inflamed kidney. However, there is also evidence for other immune cell populations with immunosuppressive function in renal inflammation. This review summarizes mechanisms of immune cell regulation in immune-mediated glomerulonephritis and acute and chronic nephrotoxicity.
Collapse
|
12
|
Nagai K. Co-inhibitory Receptor Signaling in T-Cell-Mediated Autoimmune Glomerulonephritis. Front Med (Lausanne) 2020; 7:584382. [PMID: 33251233 PMCID: PMC7672203 DOI: 10.3389/fmed.2020.584382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune glomerulonephritis occurs as a consequence of autoantibodies and T-cell effector functions that target autoantigens. Co-signaling through cell surface receptors profoundly influences the optimal activation of T cells. The scope of this review is signaling mechanisms and the functional roles of representative T-cell co-inhibitory receptors in the regulation of autoimmune glomerulonephritis, along with current therapeutic challenges mainly on preclinical trials. Co-inhibitory receptors utilize both shared and unique signaling pathway, suggesting specialized functions that provide the rationale behind therapies for autoimmune glomerulonephritis by targeting these inhibitory receptors. These receptors largely suppress Th1 immunity, modify Th17 and Th2 immune response, and enhance Treg function. Anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA4) immunoglobulin (Ig), which is able to block both activating CD28 and inhibitory CTLA4 signaling, has been shown in preclinical and clinical investigations to have effects on glomerular disease. Other inhibitory receptors for treating glomerulonephritis have not been clinically tested, and efficacy of manipulating these pathways requires further preclinical investigation. While immune checkpoint inhibition using anti-CTLA4 antibodies and anti-programmed cell death 1 (PD-1)/PD-L1 antibodies has been approved for the treatment of several cancers, blockade of CTLA4 and PD-1/PD-L1 is associated with adverse effects that resemble autoimmune disorders, including systemic vasculitis. A renal autoimmune vasculitis model features an initial Th17 dominancy followed later by a Th1-dominant outcome and Treg cells that attenuate autoreactive T-cell function. Toward the development of effective therapies for T-cell-mediated autoimmune glomerulonephritis, it would be preferable to pay attention to the impact of the inhibitory pathways in immunological renal disease settings.
Collapse
Affiliation(s)
- Kei Nagai
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Synergism of PDL/PD1 and IL33/ST2 Axis in Tumor Immunology. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
When it comes to tumor immunology, understanding of molecular pathways is rather important. During oncogenesis, many molecules should be taken in consideration altogether in context of a single malignancy. It is of a great significance to determine whether these molecules act synergistically or contrary, whether to understand a malignant disease more thoroughly, or even more important, to reveal new approaches of therapy. In this review, we discuss whether and how IL-33/ST2 and PD-1/PDL axis involve in antitumor immunity.
Collapse
|
14
|
The co-inhibitory molecule PD-L1 contributes to regulatory T cell-mediated protection in murine crescentic glomerulonephritis. Sci Rep 2019; 9:2038. [PMID: 30765734 PMCID: PMC6375967 DOI: 10.1038/s41598-018-38432-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Immune-mediated glomerular diseases like crescentic glomerulonephritis (cGN) are driven by inappropriately regulated cellular and humoral immune responses subsequently leading to renal tissue injury. Recent studies demonstrated the crucial role for regulatory T cells (Tregs) in suppressing pathogenic T-cell responses during nephrotoxic nephritis (NTN), a murine model of cGN. However, mechanisms of immune regulation in cGN are less clear. Here, we aim at investigating the role of the co-inhibitory PD-1/PD-L1 pathway in Treg-mediated suppression of renal inflammation. We demonstrated that Foxp3+ Tregs expressing PD-L1 infiltrate the kidney during NTN. Inhibition of PD-L1 signalling by using PD-L1−/− mice or by blockage of PD-L1 in wildtype mice resulted in an increased Treg frequency in the inflamed kidney. However, mice lacking PD-L1 developed more severe NTN associated with an elevated pathogenic renal Th1 immune response, which was reversed by blockage of IFNγ in these mice. Interestingly, lack of PD-L1 altered the gene expression profile of Tregs in homeostasis and kidney inflammation. Functionally, Tregs from nephritic PD-L1−/− mice had impaired suppressive capacity in vitro and failed to protect from NTN in vivo. Thus, PD-L1 displays a protective role in NTN, which is related to Treg-mediated suppression of the Th1 immune response.
Collapse
|
15
|
Takahashi N, Tsuji K, Tamiya H, Shinohara T, Kuroda N, Takeuchi E. Goodpasture's disease in a patient with advanced lung cancer treated with nivolumab: An autopsy case report. Lung Cancer 2018; 122:22-24. [PMID: 30032835 DOI: 10.1016/j.lungcan.2018.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 03/04/2018] [Accepted: 05/19/2018] [Indexed: 10/16/2022]
Abstract
Nivolumab, an anti-programmed death-1 immune checkpoint inhibitor (ICI), is now widely used to treat numerous cancers. Although most adverse effects related to ICIs are controllable, fulminant immune-related adverse events can occur. A 74-year-old patient with non-small-cell lung cancer was treated with nivolumab as a second-line treatment. After 8 cycles, acute kidney injury with macroscopic hematuria appeared, followed by diffuse ground-glass opacities with hemoptysis. Since the clinical course suggested Goodpasture's disease, methylprednisolone pulse therapy and plasma exchange were started. Later, it was confirmed that the serum anti-glomerular basement membrane antibody was positive. However, the patient died 35 days after admission due to respiratory failure, and an autopsy showed crescentic glomerulonephritis and massive alveolar hemorrhage which were compatible with Goodpasture's disease. Our case provides a possible link between nivolumab and lethal Goodpasture's disease.
Collapse
Affiliation(s)
- Naoki Takahashi
- Department of Internal Medicine, Kochi Red Cross Hospital, Kochi, 2-13-51 Shin-honmachi, Kochi, 780-8562, Japan
| | - Kazuya Tsuji
- Department of Internal Medicine, Kochi Red Cross Hospital, Kochi, 2-13-51 Shin-honmachi, Kochi, 780-8562, Japan
| | - Hiroyuki Tamiya
- Department of Internal Medicine, Kochi Red Cross Hospital, Kochi, 2-13-51 Shin-honmachi, Kochi, 780-8562, Japan
| | - Tsutomu Shinohara
- Department of Clinical Investigation, National Hospital Organization Kochi Hospital, 1-2-25 Asakuranishimachi, Kochi, 780-8077, Japan.
| | - Naoto Kuroda
- Department of Diagnostic Pathology, Kochi Red Cross Hospital, Kochi, 2-13-51 Shin-honmachi, Kochi, 780-8562, Japan
| | - Eiji Takeuchi
- Department of Internal Medicine, Kochi Red Cross Hospital, Kochi, 2-13-51 Shin-honmachi, Kochi, 780-8562, Japan
| |
Collapse
|
16
|
Analysis of PD-1 and Tim-3 expression on CD4 + T cells of patients with rheumatoid arthritis; negative association with DAS28. Clin Rheumatol 2018; 37:2063-2071. [PMID: 29626269 DOI: 10.1007/s10067-018-4076-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022]
Abstract
Expression of T cell immunoglobulin and mucin-domain containing-3 (Tim-3) and programmed cell death-1 (PD-1) was studied on CD4+ T cells of patients with rheumatoid arthritis (RA). Association of Tim-3 and PD-1 expression with disease activity of RA patients was also addressed. A total of 37 RA patients and 31 sex- and age-matched healthy controls were included in this study. Disease activity of RA patients was determined by Disease Activity Score of 28 joints scoring system (DAS28). A three-color flow cytometry method was applied to determine the frequency of Tim-3+/PD-1+/CD4+ T cells. To measure the cytokine production, peripheral blood mononuclear cells (PBMCs) were stimulated with PMA/ionomycin. Concentrations of IL-17, IL-10, IFN-γ, and TNF-α were measured in culture supernatants by ELISA. The frequency of PD-1+/CD4+ and Tim-3+/PD-1+/CD4+ T cells was significantly higher in patients with RA compared to that in controls (p = 0.0013 and p = 0.050, respectively). The percentage of Tim-3+/CD4+ T cells was similar in patients and controls (p = 0.4498). The RA patients have produced significant higher levels of TNF-α, IL-17, and IFN-γ than those of healthy controls (p = 0.0121, p = 0.0417, and p = 0.0478, respectively). Interestingly, an inverse correlation was found between the frequency of Tim-3+/CD4+ cells and DAS28 of RA patients (r = - 0.4696, p = 0.0493). Similarly, the percentage of Tim-3+/PD-1+/CD4+ T cells was also revealed an inverse correlation with DAS28 (r = - 0.5268, p = 0.0493). Moreover, significant positive correlations were detected between the concentrations of TNF-α (r = 0.6418, p = 0.0023) and IL-17 (r = 0.4683, p = 0.0373) with disease activity of RA patients. Our results indicate that Tim-3 and PD-1 are involved in immune dysregulation mechanisms of rheumatoid arthritis and could be considered as useful biomarkers for determination of disease activity and progression.
Collapse
|
17
|
Wang Y, Pang N, Wang X, Liu Y, Wang X, Wang L, Sun M, Yasen H, Zhao F, Fan W, Guo X, Ding J. Percentages of PD-1 +CD4 +T cells and PD-L1 +DCs are increased and sPD-1 level is elevated in patients with immune thrombocytopenia. Hum Vaccin Immunother 2018; 14:832-838. [PMID: 29333980 PMCID: PMC5893189 DOI: 10.1080/21645515.2017.1342913] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/19/2017] [Accepted: 06/11/2017] [Indexed: 01/22/2023] Open
Abstract
The present study is to measure the expression of programmed death (PD)-1 / programmed death ligand-1 (PD-L1) negative costimulatory molecules, soluble format sPD-1 in patients with immune thrombocytopenia (ITP), and to investigate their correlation with the secretion of cytokines. A total of 35 patients with ITP were included in the present study. Twenty healthy subjects who received physical examination at our hospital were included as control group. Peripheral blood was collected from all ITP patients and healthy subjects. Flow cytometry was performed to determine the percentages of PD-1+CD4+T cells and PD-L1+DCs in ITP patients and healthy subjects. Enzyme-linked immunosorbent assay was performed to measure the concentrations of interferon (IFN)-γ, interleukin (IL)-17 and sPD-1 in peripheral blood from ITP patients and healthy subjects. Percentages of PD-1+CD4+T cells and PD-L1+DCs in peripheral blood from ITP patients before treatment were significantly higher than that from healthy subjects, but were not different from those after treatment. Serum concentrations of IFN-γ, IL-17 and sPD-1 in ITP patients before treatment were significantly higher than those in healthy subjects, and these concentrations were significantly reduced after treatment. The concentration of sPD-1 was positively correlated with the concentration of IFN-γ, and negatively correlated with platelet count. Percentages of PD-1+CD4+T cells and PD-L1+DCs in ITP patients are higher than those in healthy subjects, but elevated sPD-1 concentration in the blood blocks PD-1/PD-L1 signaling pathway, leading to unaffected Th cell function. Elevated concentrations of IFN-γ and IL-17 in the blood may participate in the occurrence and development of ITP.
Collapse
Affiliation(s)
- Yingying Wang
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Nannan Pang
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Xinyou Wang
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Ying Liu
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Xiujuan Wang
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Lei Wang
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Mingling Sun
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Halida Yasen
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Fang Zhao
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Wenxia Fan
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Xinhong Guo
- Hematology Disease Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China; Xinjiang Uygur Autonomous Region Research Institute of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
| | - Jianbing Ding
- State Key Laboratory Incubation Base of Major Diseases in Xinjiang, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, P.R. China
- Basic Medical College, Xinjiang Medical University, Urumqi, P.R. China
| |
Collapse
|
18
|
Grywalska E, Smarz-Widelska I, Krasowska-Zajac E, Korona-Glowniak I, Zaluska-Patel K, Mielnik M, Podgajna M, Malm A, Rolinski J, Zaluska W. The PD-1/PD-L1 Inhibitory Pathway is Altered in Primary Glomerulonephritides. Arch Immunol Ther Exp (Warsz) 2018; 66:133-143. [PMID: 28770269 PMCID: PMC5851708 DOI: 10.1007/s00005-017-0485-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023]
Abstract
The pathogenesis of primary proliferative and non-proliferative glomerulonephritides (PGN and NPGN) is still not fully understood, however, current evidence suggests that most cases of PGN and NPGN are the results of immunologic response to different etiologic agents that activates various biological processes leading to glomerular inflammation and injury. Programmed cell death protein 1 (PD-1) is the major inhibitory receptor regulating T cell exhaustion. The aim of this study was to evaluate the frequencies of PD-1-positive and PD-ligand 1 (PD-L1)-positive T and B lymphocytes in patients with NPGN and PGN in relation to clinical parameters for the first time. The study included peripheral blood (PB) samples from 20 newly diagnosed PGN and NPGN patients. The control group comprised of 20 healthy age- and sex-matched subjects. The viable PB lymphocytes underwent labelling with fluorochrome-conjugated monoclonal antibodies anti-PD-1 and anti-PD-L1, and were analyzed using a flow cytometer. The frequencies of CD4+/PD1+ T lymphocytes, CD8+/PD1+ T lymphocytes, and CD19+/PD-1+ B lymphocytes in the PGN group exceeded values obtained both in the NPGN group, and the control group. Alteration of PD-1/PD-L1 pathway may be involved in poorer prognosis, as patients with PGN are characterized by higher frequencies of PD-1-positive and PD-L1-positive T and B lymphocytes than patients with NPGN. Our results suggest that deregulation of PD-1/PD-L1 axis may contribute to the PGN and NPGN pathogenesis. High percentages of lymphocytes with PD-1 and PD-L1 expression may be related to the continuous T-cell activation and development of glomerular inflammation and injury.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Lublin, Poland
| | - Ewelina Krasowska-Zajac
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | | | - Karolina Zaluska-Patel
- Department of Didactics and Medical Simulation, Medical University of Lublin, Lublin, Poland
| | - Michal Mielnik
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Martyna Podgajna
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Lublin, Poland
| | - Jacek Rolinski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Wojciech Zaluska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Lublin, Poland.
- Department of Nephrology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
19
|
Ooi JD, Li M, Kourkoutzelos K, Yagita H, Azuma M, Holdsworth SR, Kitching AR. Programmed death 1 and its ligands do not limit experimental foreign antigen-induced immune complex glomerulonephritis. Nephrology (Carlton) 2015; 20:892-8. [DOI: 10.1111/nep.12532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Joshua D Ooi
- Centre for Inflammatory Diseases; Monash University Department of Medicine; Melbourne Victoria Australia
| | - Ming Li
- Centre for Inflammatory Diseases; Monash University Department of Medicine; Melbourne Victoria Australia
| | - Katerina Kourkoutzelos
- Centre for Inflammatory Diseases; Monash University Department of Medicine; Melbourne Victoria Australia
| | - Hideo Yagita
- Department of Immunology; Juntendo University School of Medicine
| | - Miyuki Azuma
- Department of Molecular Immunology; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Tokyo Japan
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases; Monash University Department of Medicine; Melbourne Victoria Australia
- Department of Nephrology; Monash Health; Melbourne Victoria Australia
| | - A Richard Kitching
- Centre for Inflammatory Diseases; Monash University Department of Medicine; Melbourne Victoria Australia
- Department of Nephrology; Monash Health; Melbourne Victoria Australia
- Department of Paediatric Nephrology; Monash Health; Melbourne Victoria Australia
| |
Collapse
|
20
|
Greenhall GHB, Salama AD. What is new in the management of rapidly progressive glomerulonephritis? Clin Kidney J 2015; 8:143-50. [PMID: 25815169 PMCID: PMC4370308 DOI: 10.1093/ckj/sfv008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Rapidly progressive glomerulonephritis (RPGN) results from severe crescentic damage to glomeruli and leads to irreversible kidney failure if not diagnosed and managed in a timely fashion. Traditional treatment has relied on glucocorticoids and cyclophosphamide, with additional plasmapheresis for certain conditions. Here we describe updates in the management of RPGN, according to the underlying renal pathology. However, there remains a paucity of trials that have enrolled patients with more advanced renal disease, dialysis dependence or with RPGN, and we are therefore still reliant on extrapolation of data from studies of patients with a less severe form of disease. In addition, reporting bias results in publication of cases or cohorts showing benefit for newer agents in advanced disease or RPGN, but it remains unclear how many unsuccessful outcomes in these circumstances take place. Since clinical trials specifically in RPGN are unlikely, use of biologic registries or combination of sufficient sized cohort series may provide indications of benefit outside of a clinical trial setting and should be encouraged, in order to provide some evidence for the efficacy of therapeutic regimens in RPGN and advanced renal disease.
Collapse
Affiliation(s)
| | - Alan D Salama
- UCL Centre for Nephrology , Royal Free Hospital , London , UK
| |
Collapse
|
21
|
Papotto PH, Marengo EB, Sardinha LR, Goldberg AC, Rizzo LV. Immunotherapeutic strategies in autoimmune uveitis. Autoimmun Rev 2014; 13:909-16. [PMID: 24833504 PMCID: PMC4181827 DOI: 10.1016/j.autrev.2014.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/20/2014] [Indexed: 12/11/2022]
Abstract
Autoimmune uveitis is an organ-specific disorder characterized by irreversible lesions to the eye that predominantly affect people in their most productive years and is among the leading causes of visual deficit and blindness. Currently available therapies are effective in the treatment of a wide spectrum of uveitis, but are often associated with severe side effects. Here, we review ongoing research with promising immunomodulatory therapeutic strategies, describing their specific features, interactions and the responses triggered by the targeted immune molecules that aim to minimize clinical complications and the likelihood of disease relapse. We first review the main features of the disease, diagnostic tools, and traditional forms of therapy, as well as the animal models predominantly used to understand the pathogenesis and test the novel intervention approaches aiming to control the acute immune and inflammatory responses and to dampen chronic responses. Both exploratory research and clinical trials have targeted either the blockade of effector pathways or of their companion co-stimulatory molecules. Examples of targets are T cell receptors (CD3), their co-stimulatory receptors (CD28, CTLA-4) and corresponding ligands (B7-1 and B7-2, also known as CD80 and CD86), and cytokines like IL-2 and their receptors. Here, we summarize the available evidence on effectiveness of these treatments in human and experimental uveitis and highlight a novel CD28 antagonist monovalent Fab′ antibody, FR104, which has shown preclinical efficacy suppressing effector T cells while enhancing regulatory T cell function and immune tolerance in a humanized graft-versus-host disease (GVHD) mice model and is currently being tested in a mouse autoimmune uveitis model with encouraging results.
Collapse
Affiliation(s)
- Pedro Henrique Papotto
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627-701, 2-SS Bloco A, 05651-901 São Paulo, Brazil
| | - Eliana Blini Marengo
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627-701, 2-SS Bloco A, 05651-901 São Paulo, Brazil
| | - Luiz Roberto Sardinha
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627-701, 2-SS Bloco A, 05651-901 São Paulo, Brazil
| | - Anna Carla Goldberg
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627-701, 2-SS Bloco A, 05651-901 São Paulo, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (iii-INCT), Brazil
| | - Luiz Vicente Rizzo
- Hospital Israelita Albert Einstein, Av. Albert Einstein 627-701, 2-SS Bloco A, 05651-901 São Paulo, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (iii-INCT), Brazil.
| |
Collapse
|
22
|
Tabeya T, Yamamoto M, Naishiro Y, Ishigami K, Shimizu Y, Yajima H, Suzuki C, Seki N, Takano K, Himi T, Imai K, Takahashi H, Shinomura Y. The role of cytotoxic T cells in IgG4-related dacryoadenitis and sialadenitis, the so-called Mikulicz's disease. Mod Rheumatol 2014; 24:953-60. [DOI: 10.3109/14397595.2014.882045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Hair Follicle Mesenchyme-Associated PD-L1 Regulates T-Cell Activation Induced Apoptosis: A Potential Mechanism of Immune Privilege. J Invest Dermatol 2014; 134:736-745. [DOI: 10.1038/jid.2013.368] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/18/2022]
|