1
|
Monte Neto JTD, Kirsztajn GM. The role of podocyte injury in the pathogenesis of Fabry disease nephropathy. J Bras Nefrol 2024; 46:e20240035. [PMID: 39058283 PMCID: PMC11287863 DOI: 10.1590/2175-8239-jbn-2024-0035en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 07/28/2024] Open
Abstract
Renal involvement is one of the most severe morbidities of Fabry disease (FD), a multisystemic lysosomal storage disease with an X-linked inheritance pattern. It results from pathogenic variants in the GLA gene (Xq22.2), which encodes the production of alpha-galactosidase A (α-Gal), responsible for glycosphingolipid metabolism. Insufficient activity of this lysosomal enzyme generates deposits of unprocessed intermediate substrates, especially globotriaosylceramide (Gb3) and derivatives, triggering cellular injury and subsequently, multiple organ dysfunction, including chronic nephropathy. Kidney injury in FD is classically attributed to Gb3 deposits in renal cells, with podocytes being the main target of the pathological process, in which structural and functional alterations are established early and severely. This configures a typical hereditary metabolic podocytopathy, whose clinical manifestations are proteinuria and progressive renal failure. Although late clinical outcomes and morphological changes are well established in this nephropathy, the molecular mechanisms that trigger and accelerate podocyte injury have not yet been fully elucidated. Podocytes are highly specialized and differentiated cells that cover the outer surface of glomerular capillaries, playing a crucial role in preserving the structure and function of the glomerular filtration barrier. They are frequent targets of injury in many nephropathies. Furthermore, dysfunction and depletion of glomerular podocytes are essential events implicated in the pathogenesis of chronic kidney disease progression. We will review the biology of podocytes and their crucial role in regulating the glomerular filtration barrier, analyzing the main pathogenic pathways involved in podocyte injury, especially related to FD nephropathy.
Collapse
|
2
|
Silva CAB, Andrade LGMD, Vaisbich MH, Barreto FDC. Brazilian consensus recommendations for the diagnosis, screening, and treatment of individuals with fabry disease: Committee for Rare Diseases - Brazilian Society of Nephrology/2021. J Bras Nefrol 2022; 44:249-267. [PMID: 35212703 PMCID: PMC9269181 DOI: 10.1590/2175-8239-jbn-2021-0208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022] Open
Abstract
Fabry disease (FD) is an X-linked inherited disorder caused by mutations in the GLA gene encoding enzyme alpha-galactosidase A (α-Gal A). The purpose of this study was to produce a consensus statement to standardize the recommendations concerning kidney involvement in FD and provide advice on the diagnosis, screening, and treatment of adult and pediatric patients. This consensus document was organized from an initiative led by the Committee for Rare Diseases (Comdora) of the Brazilian Society of Nephrology (SBN). The review considered randomized clinical trials, real-world data studies, and the expertise of its authors. The purpose of this consensus statement is to help manage patient and physician expectations concerning the outcomes of treatment. Our recommendations must be interpreted within the context of available evidence. The decisions pertaining to each individual case must be made with the involvement of patients and their families and take into account not only the potential cost of treatment, but also concurrent conditions and personal preferences. The Comdora intends to update these recommendations regularly so as to reflect recent literature evidence, real-world data, and appreciate the professional experience of those involved. This consensus document establishes clear criteria for the diagnosis of FD and for when to start or stop specific therapies or adjuvant measures, to thus advise the medical community and standardize clinical practice.
Collapse
|
3
|
Silva CAB, Moura-Neto JA, Dos Reis MA, Vieira Neto OM, Barreto FC. Renal Manifestations of Fabry Disease: A Narrative Review. Can J Kidney Health Dis 2021; 8:2054358120985627. [PMID: 33786192 PMCID: PMC7960898 DOI: 10.1177/2054358120985627] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose of review In this narrative review, we describe general aspects, histological alterations, treatment, and implications of Fabry disease (FD) nephropathy. This information should be used to guide physicians and patients in a shared decision-making process. Source of information Original peer-reviewed articles, review articles, and opinion pieces were identified from PubMed and Google Scholar databases. Only sources in English were accessed. Methods We performed a focused narrative review assessing the main aspects of FD nephropathy. The literature was critically analyzed from a theoretical and contextual perspective, and thematic analysis was performed. Key findings FD nephropathy is related to the progressive accumulation of GL3, which occurs in all types of renal cells. It is more prominent in podocytes, which seem to play an important role in the pathogenesis of this nephropathy. A precise detection of renal disorders is of fundamental importance because the specific treatment of FD is usually delayed, making reversibility unlikely and leading to a worse prognosis. Limitations As no formal tool was applied to assess the quality of the included studies, selection bias may have occurred. Nonetheless, we have attempted to provide a comprehensive review on the topic using current studies from experts in FD and extensive review of the literature.
Collapse
Affiliation(s)
| | | | - Marlene Antônia Dos Reis
- Nephropathology Service, General Pathology, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Osvaldo Merege Vieira Neto
- Nephrology Service, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Fellype Carvalho Barreto
- Nephrology Service, Department of Internal Medicine, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
4
|
Abstract
The lysosome represents an important regulatory platform within numerous vesicle trafficking pathways including the endocytic, phagocytic, and autophagic pathways. Its ability to fuse with endosomes, phagosomes, and autophagosomes enables the lysosome to break down a wide range of both endogenous and exogenous cargo, including macromolecules, certain pathogens, and old or damaged organelles. Due to its center position in an intricate network of trafficking events, the lysosome has emerged as a central signaling node for sensing and orchestrating the cells metabolism and immune response, for inter-organelle and inter-cellular signaling and in membrane repair. This review highlights the current knowledge of general lysosome function and discusses these findings in their implication for renal glomerular cell types in health and disease including the involvement of glomerular cells in lysosomal storage diseases and the role of lysosomes in nongenetic glomerular injuries.
Collapse
|
5
|
Sachs W, Sachs M, Krüger E, Zielinski S, Kretz O, Huber TB, Baranowsky A, Westermann LM, Voltolini Velho R, Ludwig NF, Yorgan TA, Di Lorenzo G, Kollmann K, Braulke T, Schwartz IV, Schinke T, Danyukova T, Pohl S, Meyer-Schwesinger C. Distinct Modes of Balancing Glomerular Cell Proteostasis in Mucolipidosis Type II and III Prevent Proteinuria. J Am Soc Nephrol 2020; 31:1796-1814. [PMID: 32641396 PMCID: PMC7460914 DOI: 10.1681/asn.2019090960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/14/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The mechanisms balancing proteostasis in glomerular cells are unknown. Mucolipidosis (ML) II and III are rare lysosomal storage disorders associated with mutations of the Golgi-resident GlcNAc-1-phosphotransferase, which generates mannose 6-phosphate residues on lysosomal enzymes. Without this modification, lysosomal enzymes are missorted to the extracellular space, which results in lysosomal dysfunction of many cell types. Patients with MLII present with severe skeletal abnormalities, multisystemic symptoms, and early death; the clinical course in MLIII is less progressive. Despite dysfunction of a major degradative pathway, renal and glomerular involvement is rarely reported, suggesting organ-specific compensatory mechanisms. METHODS MLII mice were generated and compared with an established MLIII model to investigate the balance of protein synthesis and degradation, which reflects glomerular integrity. Proteinuria was assessed in patients. High-resolution confocal microscopy and functional assays identified proteins to deduce compensatory modes of balancing proteostasis. RESULTS Patients with MLII but not MLIII exhibited microalbuminuria. MLII mice showed lysosomal enzyme missorting and several skeletal alterations, indicating that they are a useful model. In glomeruli, both MLII and MLIII mice exhibited reduced levels of lysosomal enzymes and enlarged lysosomes with abnormal storage material. Nevertheless, neither model had detectable morphologic or functional glomerular alterations. The models rebalance proteostasis in two ways: MLII mice downregulate protein translation and increase the integrated stress response, whereas MLIII mice upregulate the proteasome system in their glomeruli. Both MLII and MLIII downregulate the protein complex mTORC1 (mammalian target of rapamycin complex 1) signaling, which decreases protein synthesis. CONCLUSIONS Severe lysosomal dysfunction leads to microalbuminuria in some patients with mucolipidosis. Mouse models indicate distinct compensatory pathways that balance proteostasis in MLII and MLIII.
Collapse
Affiliation(s)
- Wiebke Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lena Marie Westermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renata Voltolini Velho
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nataniel Floriano Ludwig
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Timur Alexander Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giorgia Di Lorenzo
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Kollmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Braulke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ida Vanessa Schwartz
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|