1
|
Lucchini S, Constantinou M, Marino S. Unravelling the mosaic: Epigenetic diversity in glioblastoma. Mol Oncol 2024. [PMID: 39148319 DOI: 10.1002/1878-0261.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Despite decades of intensive research in the disease, its prognosis remains poor, with an average survival of only 14 months after diagnosis. The remarkable level of intra- and interpatient heterogeneity is certainly contributing to the lack of progress in tackling this tumour. Epigenetic dysregulation plays an important role in glioblastoma biology and significantly contributes to intratumour heterogeneity. However, it is becoming increasingly clear that it also contributes to intertumour heterogeneity, which historically had mainly been linked to diverse genetic events occurring in different patients. In this review, we explore how DNA methylation, chromatin remodelling, microRNA (miRNA) dysregulation, and long noncoding RNA (lncRNA) alterations contribute to intertumour heterogeneity in glioblastoma, including its implications for advanced tumour stratification, which is the essential first step for developing more effective patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
| | - Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
- Barts Brain Tumour Centre, Faculty of Medicine and Dentistry, Queen Mary University of London, UK
- Barts Health NHS Trust, London, UK
| |
Collapse
|
2
|
Lim-Fat MJ, Iorgulescu JB, Rahman R, Bhave V, Muzikansky A, Woodward E, Whorral S, Allen M, Touat M, Li X, Xy G, Patel J, Gerstner ER, Kalpathy-Cramer J, Youssef G, Chukwueke U, McFaline-Figueroa JR, Nayak L, Lee EQ, Reardon DA, Beroukhim R, Huang RY, Bi WL, Ligon KL, Wen PY. Clinical and Genomic Predictors of Adverse Events in Newly Diagnosed Glioblastoma. Clin Cancer Res 2024; 30:1327-1337. [PMID: 38252427 DOI: 10.1158/1078-0432.ccr-23-3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rifaquat Rahman
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Varun Bhave
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Eleanor Woodward
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sydney Whorral
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marie Allen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | | | | - Jay Patel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth R Gerstner
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ugonma Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - J Ricardo McFaline-Figueroa
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rameen Beroukhim
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raymond Y Huang
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith L Ligon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Drexler R, Khatri R, Schüller U, Eckhardt A, Ryba A, Sauvigny T, Dührsen L, Mohme M, Ricklefs T, Bode H, Hausmann F, Huber TB, Bonn S, Voß H, Neumann JE, Silverbush D, Hovestadt V, Suvà ML, Lamszus K, Gempt J, Westphal M, Heiland DH, Hänzelmann S, Ricklefs FL. Temporal change of DNA methylation subclasses between matched newly diagnosed and recurrent glioblastoma. Acta Neuropathol 2024; 147:21. [PMID: 38244080 PMCID: PMC10799798 DOI: 10.1007/s00401-023-02677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/24/2023] [Indexed: 01/22/2024]
Abstract
The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogeneity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoassay. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregulated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent glioblastoma targeted therapies.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Alicia Eckhardt
- Department of Pediatric Hematology and Oncology, Research Institute Children's Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Radiation Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tammo Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Helena Bode
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannah Voß
- Section of Mass Spectrometric Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia E Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dana Silverbush
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Volker Hovestadt
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mario L Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
4
|
Foltyn-Dumitru M, Alzaid H, Rastogi A, Neuberger U, Sahm F, Kessler T, Wick W, Bendszus M, Vollmuth P, Schell M. Unraveling glioblastoma diversity: Insights into methylation subtypes and spatial relationships. Neurooncol Adv 2024; 6:vdae112. [PMID: 39022646 PMCID: PMC11253205 DOI: 10.1093/noajnl/vdae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background The purpose of this study was to elucidate the relationship between distinct brain regions and molecular subtypes in glioblastoma (GB), focusing on integrating modern statistical tools and molecular profiling to better understand the heterogeneity of Isocitrate Dehydrogenase wild-type (IDH-wt) gliomas. Methods This retrospective study comprised 441 patients diagnosed with new IDH-wt glioma between 2009 and 2020 at Heidelberg University Hospital. The diagnostic process included preoperative magnetic resonance imaging and molecular characterization, encompassing IDH-status determination and subclassification, through DNA-methylation profiling. To discern and map distinct brain regions associated with specific methylation subtypes, a support-vector regression-based lesion-symptom mapping (SVR-LSM) was employed. Lesion maps were adjusted to 2 mm³ resolution. Significance was assessed with beta maps, using a threshold of P < .005, with 10 000 permutations and a cluster size minimum of 100 voxels. Results Of 441 initially screened glioma patients, 423 (95.9%) met the inclusion criteria. Following DNA-methylation profiling, patients were classified into RTK II (40.7%), MES (33.8%), RTK I (18%), and other methylation subclasses (7.6%). Between molecular subtypes, there was no difference in tumor volume. Using SVR-LSM, distinct brain regions correlated with each subclass were identified: MES subtypes were associated with left-hemispheric regions involving the superior temporal gyrus and insula cortex, RTK I with right frontal regions, and RTK II with 3 clusters in the left hemisphere. Conclusions This study linked molecular diversity and spatial features in glioblastomas using SVR-LSM. Future studies should validate these findings in larger, independent cohorts to confirm the observed patterns.
Collapse
Affiliation(s)
- Martha Foltyn-Dumitru
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Haidar Alzaid
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Aditya Rastogi
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulf Neuberger
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias Kessler
- Department of Neurology and Neurooncology Program, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology and Neurooncology Program, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marianne Schell
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Section for Computational Neuroimaging, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Mortazavi A, Khan AU, Nieblas-Bedolla E, Boddeti U, Bachani M, Ksendzovsky A, Johnson K, Zaghloul KA. Differential gene expression underlying epileptogenicity in patients with gliomas. Neurooncol Adv 2024; 6:vdae103. [PMID: 39022648 PMCID: PMC11252565 DOI: 10.1093/noajnl/vdae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Seizures are a common sequela for patients suffering from gliomas. Molecular properties are known to influence the initiation of seizures that may influence tumor growth. Different levels of gene expression with seizures related to gliomas remain unclear. We analyzed RNA sequencing of gliomas to further probe these differences. Methods Total RNA sequencing was obtained from The Cancer Genome Atlas-Lower-Grade Glioma project, comprised of 2021 World Health Organization classification low-grade gliomas, including IDH-mutant and IDH-wild type, to distinguish differential expression in patients who did and did not experience seizures. Utilizing QIAGEN Ingenuity Pathways Analysis, we identified canonical and functional pathways to characterize differential expression. Results Of 289 patients with gliomas, 83 (28.7%) had available information regarding seizure occurrence prior to intervention and other pertinent variables of interest. Of these, 50 (60.2%) were allocated to the seizure group. When comparing the level of RNA expression from these tumors between the seizure and non-seizure groups, 52 genes that were significantly differentially regulated were identified. We found canonical pathways that were altered, most significantly RhoGDI and semaphorin neuronal repulsive signaling. Functional gene analysis revealed tumors that promoted seizures had significantly increased functional gene sets involving neuronal differentiation and synaptogenesis. Conclusions In the setting of gliomas, differences in tumor gene expression exist between individuals with and without seizures, despite similarities in patient demographics and other tumor characteristics. There are significant differences in gene expression associated with neuron development and synaptogenesis, ultimately suggesting a mechanistic role of a tumor-neuron synapse in seizure initiation.
Collapse
Affiliation(s)
- Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Anas U Khan
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Ujwal Boddeti
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kory Johnson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
6
|
Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, Westphal M, Gempt J, Wefers AK, Neumann J, Bode H, Hausmann F, Huber TB, Bonn S, Jütten K, Delev D, Weber KJ, Harter PN, Onken J, Vajkoczy P, Capper D, Wiestler B, Weller M, Snijder B, Buck A, Weiss T, Keough MB, Ni L, Monje M, Silverbush D, Hovestadt V, Suvà ML, Krishna S, Hervey-Jumper SL, Schüller U, Heiland DH, Hänzelmann S, Ricklefs FL. Epigenetic neural glioblastoma enhances synaptic integration and predicts therapeutic vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552017. [PMID: 37609137 PMCID: PMC10441357 DOI: 10.1101/2023.08.04.552017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.
Collapse
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Ryba
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amanda Salviano-Silva
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika K. Wefers
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Neumann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Helena Bode
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Jütten
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Katharina J. Weber
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- University Cancer Center (UCT) Frankfurt, Frankfurt am Main, Germany
| | - Patrick N. Harter
- Neurological Institute (Edinger Institute), University Hospital Frankfurt, Frankfurt am Main, Germany
- Institute of Neuropathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, School of Medicine, Technical University Munich, Munich
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Switzerland. Department of Neurology, University of Zürich, Switzerland
| | - Michael B. Keough
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Lijun Ni
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Mario L. Suvà
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L. Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Drexler R, Göttsche J, Sauvigny T, Schüller U, Khatri R, Hausmann F, Hänzelmann S, Huber TB, Bonn S, Heiland DH, Delev D, Venkataramani V, Winkler F, Weller J, Zeyen T, Herrlinger U, Gempt J, Ricklefs FL, Dührsen L. Targeted anticonvulsive treatment of IDH-wildtype glioblastoma based on DNA methylation subclasses. Neuro Oncol 2023; 25:1006-1008. [PMID: 36860191 PMCID: PMC10158071 DOI: 10.1093/neuonc/noad014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Affiliation(s)
- Richard Drexler
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Göttsche
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Research Institute Children’s Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Robin Khatri
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Bonn
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter H Heiland
- Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Aachen, Aachen, Germany
| | - Varun Venkataramani
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Frank Winkler
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Johannes Weller
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zeyen
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Jens Gempt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Wenger A, Carén H. Methylation Profiling in Diffuse Gliomas: Diagnostic Value and Considerations. Cancers (Basel) 2022; 14:cancers14225679. [PMID: 36428772 PMCID: PMC9688075 DOI: 10.3390/cancers14225679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Diffuse gliomas cause significant morbidity across all age groups, despite decades of intensive research efforts. Here, we review the differences in diffuse gliomas in adults and children, as well as the World Health Organisation (WHO) 2021 classification of these tumours. We explain how DNA methylation-based classification works and list the methylation-based tumour types and subclasses for adult and paediatric diffuse gliomas. The benefits and utility of methylation-based classification in diffuse gliomas demonstrated to date are described. This entails the identification of novel tumour types/subclasses, patient stratification and targeted treatment/clinical management, and alterations in the clinical diagnosis in favour of the methylation-based over the histopathological diagnosis. Finally, we address several considerations regarding the use of DNA methylation profiling as a diagnostic tool, e.g., the threshold of the classifier, the calibrated score, tumour cell content and intratumour heterogeneity.
Collapse
Affiliation(s)
- Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
- Correspondence:
| |
Collapse
|
9
|
|