1
|
Quist M, van Os M, van Laake LW, Bovenschen N, Crnko S. Integration of circadian rhythms and immunotherapy for enhanced precision in brain cancer treatment. EBioMedicine 2024; 109:105395. [PMID: 39413708 PMCID: PMC11530607 DOI: 10.1016/j.ebiom.2024.105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
Circadian rhythms significantly impact (patho)physiological processes, with disruptions linked to neurodegenerative diseases and heightened cancer vulnerability. While immunotherapy has shown promise in treating various cancers, its efficacy in brain malignancies remains limited. This review explores the nexus of circadian rhythms and immunotherapy in brain cancer treatment, emphasising precision through alignment with the body's internal clock. We evaluate circadian regulation of immune responses, including cell localisation and functional phenotype, and discuss how circadian dysregulation affects anti-cancer immunity. Additionally, we analyse and assess the effectiveness of current immunotherapeutic approaches for brain cancer including immune checkpoint blockades, adoptive cellular therapies, and other novel strategies. Future directions, such as chronotherapy and personalised treatment schedules, are proposed to optimise immunotherapy precision against brain cancers. Overall, this review provides an understanding of the often-overlooked role of circadian rhythms in brain cancer and suggests avenues for improving immunotherapeutic outcomes.
Collapse
Affiliation(s)
- Matthias Quist
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maas van Os
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Linda W van Laake
- Department of Cardiology, Experimental Cardiology Laboratory, University Medical Centre Utrecht, Utrecht, the Netherlands; Regenerative Medicine Centre and Circulatory Health Research Centre, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands; Centre for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sandra Crnko
- Department of Pathology, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Dalboni da Rocha JL, Zou Stinnett P, Scoggins MA, McAfee SS, Conklin HM, Gajjar A, Sitaram R. Functional MRI Assessment of Brain Activity Patterns Associated with Reading in Medulloblastoma Survivors. Brain Sci 2024; 14:904. [PMID: 39335401 PMCID: PMC11429556 DOI: 10.3390/brainsci14090904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Medulloblastoma, a malignant brain tumor primarily affecting children, poses significant challenges to patients and clinicians due to its complex treatment and potential long-term cognitive consequences. While recent advancements in treatment have significantly improved survival rates, survivors often face cognitive impairments, particularly in reading, impacting their quality of life. According to the double deficit theory, reading impairments are caused by deficits in one or both of two independent reading-related functions: phonological awareness and rapid visual naming. This longitudinal study investigates neurofunctional changes related to reading in medulloblastoma survivors in comparison to controls using functional MRI acquired during rapid automatized naming tasks over three annual visits. Support vector machine classification of functional MRI data reveals a progressive divergence in brain activity patterns between medulloblastoma survivors and healthy controls over time, suggesting delayed effects of cancer treatment on brain function. Alterations in brain regions involved in visual processing and orthographic recognition during rapid naming tasks imply disruptions in the ventral visual pathway associated with normal orthographic processing. These alterations are correlated with performance in tasks involving sound awareness, reading fluency, and word attack. These findings underscore the dynamic nature of post-treatment neurofunctional alterations and the importance of early identification and intervention to address cognitive deficits in survivors.
Collapse
Affiliation(s)
- Josue L. Dalboni da Rocha
- Department of Diagnostic Imaging, St. Jude Children Research’s Hospital, Memphis, TN 38105, USA; (J.L.D.d.R.); (P.Z.S.); (S.S.M.)
| | - Ping Zou Stinnett
- Department of Diagnostic Imaging, St. Jude Children Research’s Hospital, Memphis, TN 38105, USA; (J.L.D.d.R.); (P.Z.S.); (S.S.M.)
| | - Matthew A. Scoggins
- Department of Psychology and Biobehavioral Sciences, St. Jude Children Research’s Hospital, Memphis, TN 38105, USA; (M.A.S.); (H.M.C.)
| | - Samuel S. McAfee
- Department of Diagnostic Imaging, St. Jude Children Research’s Hospital, Memphis, TN 38105, USA; (J.L.D.d.R.); (P.Z.S.); (S.S.M.)
| | - Heather M. Conklin
- Department of Psychology and Biobehavioral Sciences, St. Jude Children Research’s Hospital, Memphis, TN 38105, USA; (M.A.S.); (H.M.C.)
| | - Amar Gajjar
- Department of Pediatric Medicine, St. Jude Children Research’s Hospital, Memphis, TN 38105, USA;
| | - Ranganatha Sitaram
- Department of Diagnostic Imaging, St. Jude Children Research’s Hospital, Memphis, TN 38105, USA; (J.L.D.d.R.); (P.Z.S.); (S.S.M.)
| |
Collapse
|
3
|
Russell GC, Hamzaoui Y, Rho D, Sutrave G, Choi JS, Missan DS, Reckard GA, Gustafson MP, Kim GB. Synthetic biology approaches for enhancing safety and specificity of CAR-T cell therapies for solid cancers. Cytotherapy 2024; 26:842-857. [PMID: 38639669 DOI: 10.1016/j.jcyt.2024.03.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
CAR-T cell therapies have been successful in treating numerous hematologic malignancies as the T cell can be engineered to target a specific antigen associated with the disease. However, translating CAR-T cell therapies for solid cancers is proving more challenging due to the lack of truly tumor-associated antigens and the high risk of off-target toxicities. To combat this, numerous synthetic biology mechanisms are being incorporated to create safer and more specific CAR-T cells that can be spatiotemporally controlled with increased precision. Here, we seek to summarize and analyze the advancements for CAR-T cell therapies with respect to clinical implementation, from the perspective of synthetic biology and immunology. This review should serve as a resource for further investigation and growth within the field of personalized cellular therapies.
Collapse
Affiliation(s)
- Grace C Russell
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Yassin Hamzaoui
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Daniel Rho
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gaurav Sutrave
- The University of Sydney, Sydney, Australia; Department of Haematology, Westmead Hospital, Sydney, Australia; Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada
| | - Joseph S Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Dara S Missan
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Gabrielle A Reckard
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| | - Michael P Gustafson
- Immuno & Gene Therapy Committee, International Society for Cell and Gene Therapy, Vancouver, Canada; Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Gloria B Kim
- Department of Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona, USA; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.
| |
Collapse
|
4
|
Sheng H, Li H, Zeng H, Zhang B, Lu Y, Liu X, Xu Z, Zhang J, Zhang L. Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene 2024; 43:839-850. [PMID: 38355808 PMCID: PMC10942862 DOI: 10.1038/s41388-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Medulloblastoma is one of the most common malignant pediatric brain tumors derived from posterior fossa. The current treatment includes maximal safe surgical resection, radiotherapy, whole cranio-spinal radiation and adjuvant with chemotherapy. However, it can only limitedly prolong the survival time with severe side effects and relapse. Defining the intratumoral heterogeneity, cellular origin and identifying the interaction network within tumor microenvironment are helpful for understanding the mechanisms of medulloblastoma tumorigenesis and relapse. Due to technological limitations, the mechanisms of cellular heterogeneity and tumor origin have not been fully understood. Recently, the emergence of single-cell technology has provided a powerful tool for achieving the goal of understanding the mechanisms of tumorigenesis. Several studies have demonstrated the intratumoral heterogeneity and tumor origin for each subtype of medulloblastoma utilizing the single-cell RNA-seq, which has not been uncovered before using conventional technologies. In this review, we present an overview of the current progress in understanding of cellular heterogeneity and tumor origin of medulloblastoma and discuss novel findings in the age of single-cell technologies.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haotai Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Han Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Lu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xixi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhongwen Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liguo Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Sokolov D, Sharda N, Banerjee A, Denisenko K, Basalious EB, Shukla H, Waddell J, Hamdy NM, Banerjee A. Differential Signaling Pathways in Medulloblastoma: Nano-biomedicine Targeting Non-coding Epigenetics to Improve Current and Future Therapeutics. Curr Pharm Des 2024; 30:31-47. [PMID: 38151840 DOI: 10.2174/0113816128277350231219062154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Medulloblastomas (MDB) are malignant, aggressive brain tumors that primarily affect children. The survival rate for children under 14 is approximately 72%, while for ages 15 to 39, it is around 78%. A growing body of evidence suggests that dysregulation of signaling mechanisms and noncoding RNA epigenetics play a pivotal role in this disease. METHODOLOGY This study conducted an electronic search of articles on websites like PubMed and Google. The current review also used an in silico databases search and bioinformatics analysis and an extensive comprehensive literature search for original research articles and review articles as well as retrieval of current and future medications in clinical trials. RESULTS This study indicates that several signaling pathways, such as sonic hedgehog, WNT/β-catenin, unfolded protein response mediated ER stress, notch, neurotrophins and TGF-β and ERK, MAPK, and ERK play a crucial role in the pathogenesis of MDB. Gene and ncRNA/protein are also involved as an axis long ncRNA to sponge micro-RNAs that affect downstream signal proteins expression and translation affection disease pathophysiology, prognosis and present potential target hit for drug repurposing. Current treatment options include surgery, radiation, and chemotherapy; unfortunately, the disease often relapses, and the survival rate is less than 5%. Therefore, there is a need to develop more effective treatments to combat recurrence and improve survival rates. CONCLUSION This review describes various MDB disease hallmarks, including the signaling mechanisms involved in pathophysiology, related-causal genes, epigenetics, downstream genes/epigenes, and possibly the causal disease genes/non-protein coding (nc)RNA/protein axis. Additionally, the challenges associated with MDB treatment are discussed, along with how they are being addressed using nano-technology and nano-biomedicine, with a listing of possible treatment options and future potential treatment modalities.
Collapse
Affiliation(s)
- Daniil Sokolov
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Neha Sharda
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Aindrila Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kseniia Denisenko
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr Al Aini 11562, Cairo, Egypt
| | - Hem Shukla
- Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
| |
Collapse
|
6
|
Sun J, Xi L, Zhang D, Gao F, Wang L, Yang G. A novel tumor immunotherapy-related signature for risk stratification, prognosis prediction, and immune status in hepatocellular carcinoma. Sci Rep 2023; 13:18709. [PMID: 37907783 PMCID: PMC10618198 DOI: 10.1038/s41598-023-46252-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023] Open
Abstract
Immunotherapy as a strategy to deal with cancer is increasingly being used clinically, especially in hepatocellular carcinoma (HCC). We aim to create an immunotherapy-related signature that can play a role in predicting HCC patients' survival and therapeutic outcomes. Immunotherapy-related genes were discovered first. Clinical information and gene expression data were extracted from GSE140901. By a series of bioinformatics methods to analyze, overlapping genes were used to build an immunotherapy-related signature that could contribute to predict both the prognosis of people with hepatocellular carcinoma and responder to immune checkpoint blockade therapy of them in TCGA database. Differences of the two groups in immune cell subpopulations were then compared. Furthermore, A nomogram was constructed, based on the immunotherapy-related signature and clinicopathological features, and proved to be highly predictive. Finally, immunohistochemistry assays were performed in HCC tissue and normal tissue adjacent tumors to verify the differences of the four genes expression. As a result of this study, a prognostic protein profile associated with immunotherapy had been created, which could be applied to predict patients' response to immunotherapy and may provide a new perspective as clinicians focus on non-apoptotic treatment for patients with HCC.
Collapse
Affiliation(s)
- Jianping Sun
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Lefeng Xi
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Dechen Zhang
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Feipei Gao
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Liqin Wang
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China
| | - Guangying Yang
- Department of Pathology, Zhengzhou YIHE Hospital, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
7
|
Yang W, Ma W, Huang J, Cai Y, Peng X, Zhao F, Zhang D, Zou Z, Sun H, Qi X, Ge M. Beijing Children's Hospital guidelines on the design and conduction of the first standardized database for medulloblastoma. Metab Brain Dis 2023; 38:2393-2400. [PMID: 37261631 DOI: 10.1007/s11011-023-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023]
Abstract
Medulloblastoma (MB) is one of the most common malignant childhood brain tumors (WHO grade IV). Its high degree of malignancy leads to an unsatisfactory prognosis, requiring more precise and personalized treatment in the near future. Multi-omics and artificial intelligence have been playing a significant role in precise medical research, but their implementation needs a large amount of clinical information and biomaterials. For these reasons, it is urgent for current MB researchers to establish a large sample-size database of MB that contains complete clinical data and sufficient biomaterials such as blood, cerebrospinal fluid (CSF), cancer tissue, and urine. Unfortunately, there are few biobanks of pediatric central nervous system (CNS) tumors throughout the world for limited specimens, scarce funds, different standards collecting methods and et cl. Even though, China falls behind western countries in this area. The present research set up a standard workflow to construct the Beijing Children's Hospital Medulloblastoma (BCH-MB) biobank. Clinical data from children with MB and for collecting and storing biomaterials, along with regular follow-up has been collected and recorded in this database. In the future, the BCH-MB biobank could make it possible to validate the promising biomarkers already identified, discover unrevealed MB biomarkers, develop novel therapies, and establish personalized prognostic models for children with MB upon the support of its sufficient data and biomaterials, laying the foundation for individualized therapies of children with MB.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wenping Ma
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jiansong Huang
- Department of Neurosurgery, Peking University International Hospital, Peking University Health Science Center, Peking University, Beijing, 102200, China
| | - Yingjie Cai
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xiaojiao Peng
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Fengmao Zhao
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Zhang
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Zhewei Zou
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hailang Sun
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Xiang Qi
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Ming Ge
- Department of Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
8
|
Rechberger JS, Toll SA, Vanbilloen WJF, Daniels DJ, Khatua S. Exploring the Molecular Complexity of Medulloblastoma: Implications for Diagnosis and Treatment. Diagnostics (Basel) 2023; 13:2398. [PMID: 37510143 PMCID: PMC10378552 DOI: 10.3390/diagnostics13142398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Medulloblastoma is the most common malignant brain tumor in children. Over the last few decades, significant progress has been made in revealing the key molecular underpinnings of this disease, leading to the identification of distinct molecular subgroups with different clinical outcomes. In this review, we provide an update on the molecular landscape of medulloblastoma and treatment strategies. We discuss the four main molecular subgroups (WNT-activated, SHH-activated, and non-WNT/non-SHH groups 3 and 4), highlighting the key genetic alterations and signaling pathways associated with each entity. Furthermore, we explore the emerging role of epigenetic regulation in medulloblastoma and the mechanism of resistance to therapy. We also delve into the latest developments in targeted therapies and immunotherapies. Continuing collaborative efforts are needed to further unravel the complex molecular mechanisms and profile optimal treatment for this devastating disease.
Collapse
Affiliation(s)
- Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI 48201, USA
| | - Wouter J F Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 Tilburg, The Netherlands
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Ligon J, Sayour E. Spotlighting cellular therapies to advance the treatment of medulloblastoma. Neuro Oncol 2023; 25:628-630. [PMID: 36629263 PMCID: PMC10076934 DOI: 10.1093/neuonc/noad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Indexed: 01/12/2023] Open
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology/Oncology, University of
Florida, Gainesville, FL, USA
| | - Elias J Sayour
- Department of Neurosurgery, University of Florida, Preston A. Wells, Jr.
Center for Brain Tumor Therapy, Gainesville, FL,
USA
| |
Collapse
|