1
|
Somrit K, Krobthong S, Yingchutrakul Y, Phueakphud N, Wongtrakoongate P, Komyod W. KHDRBS3 facilitates self-renewal and temozolomide resistance of glioblastoma cell lines. Life Sci 2024; 358:123132. [PMID: 39413902 DOI: 10.1016/j.lfs.2024.123132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/22/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Glioblastoma is a deadly tumor which possesses glioblastoma stem cell populations involved in temozolomide (TMZ) resistance. To gain insight into the mechanisms of self-renewing and therapy-resistant cancer stem cells, subcellular proteomics was utilized to identify proteins whose expression is enriched in U251-derived glioblastoma stem-like cells. The KH RNA Binding Domain Containing, Signal Transduction Associated 3, KHDRBS3, was successfully identified as a gene up-regulated in the cancer stem cell population compared with its differentiated derivatives. Depletion of KHDRBS3 by RNA silencing led to a decrease in cell proliferation, neurosphere formation, migration, and expression of genes involved in glioblastoma stemness. Importantly, TMZ sensitivity can be induced by the gene knockdown. Collectively, our results highlight KHDRBS3 as a novel factor associated with self-renewal of glioblastoma stem-like cells and TMZ resistance. As a consequence, targeting KHDRBS3 may help eradicate glioblastoma stem-like cells.
Collapse
Affiliation(s)
- Kanokkuan Somrit
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yodying Yingchutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Waraporn Komyod
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
2
|
Haase S, Carney S, Varela ML, Mukherji D, Zhu Z, Li Y, Nuñez FJ, Lowenstein PR, Castro MG. Epigenetic reprogramming in pediatric gliomas: from molecular mechanisms to therapeutic implications. Trends Cancer 2024:S2405-8033(24)00196-1. [PMID: 39394009 DOI: 10.1016/j.trecan.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Brain tumors in children and adults differ greatly in patient outcomes and responses to radiotherapy and chemotherapy. Moreover, the prevalence of recurrent mutations in histones and chromatin regulatory proteins in pediatric and young adult gliomas suggests that the chromatin landscape is rewired to support oncogenic programs. These early somatic mutations dysregulate widespread genomic loci by altering the distribution of histone post-translational modifications (PTMs) and, in consequence, causing changes in chromatin accessibility and in the histone code, leading to gene transcriptional changes. We review how distinct chromatin imbalances in glioma subtypes impact on oncogenic features such as cellular fate, proliferation, immune landscape, and radio resistance. Understanding these mechanisms of epigenetic dysregulation carries substantial implications for advancing targeted epigenetic therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devarshi Mukherji
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingxiang Li
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Felipe J Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Chen Y, Johnson JD, Jayamohan S, He Y, Venkata PP, Jamwal D, Alejo S, Zou Y, Lai Z, Viswanadhapalli S, Vadlamudi RK, Kost E, Sareddy GR. KDM1A/LSD1 inhibition enhances chemotherapy response in ovarian cancer. Mol Carcinog 2024; 63:2026-2039. [PMID: 38990091 PMCID: PMC11421967 DOI: 10.1002/mc.23792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Ovarian cancer (OCa) is the deadliest of all gynecological cancers. The standard treatment for OCa is platinum-based chemotherapy, such as carboplatin or cisplatin in combination with paclitaxel. Most patients are initially responsive to these treatments; however, nearly 90% will develop recurrence and inevitably succumb to chemotherapy-resistant disease. Recent studies have revealed that the epigenetic modifier lysine-specific histone demethylase 1A (KDM1A/LSD1) is highly overexpressed in OCa. However, the role of KDM1A in chemoresistance and whether its inhibition enhances chemotherapy response in OCa remains uncertain. Analysis of TCGA datasets revealed that KDM1A expression is high in patients who poorly respond to chemotherapy. Western blot analysis show that treatment with chemotherapy drugs cisplatin, carboplatin, and paclitaxel increased KDM1A expression in OCa cells. KDM1A knockdown (KD) or treatment with KDM1A inhibitors NCD38 and SP2509 sensitized established and patient-derived OCa cells to chemotherapy drugs in reducing cell viability and clonogenic survival and inducing apoptosis. Moreover, knockdown of KDM1A sensitized carboplatin-resistant A2780-CP70 cells to carboplatin treatment and paclitaxel-resistant SKOV3-TR cells to paclitaxel. RNA-seq analysis revealed that a combination of KDM1A-KD and cisplatin treatment resulted in the downregulation of genes related to epithelial-mesenchymal transition (EMT). Interestingly, cisplatin treatment increased a subset of NF-κB pathway genes, and KDM1A-KD or KDM1A inhibition reversed this effect. Importantly, KDM1A-KD, in combination with cisplatin, significantly reduced tumor growth compared to a single treatment in an orthotopic intrabursal OCa xenograft model. Collectively, these findings suggest that combination of KDM1A inhibitors with chemotherapy could be a promising therapeutic approach for the treatment of OCa.
Collapse
Affiliation(s)
- Yihong Chen
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jessica D Johnson
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Yi He
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Prabhakar P Venkata
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Diksha Jamwal
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas, USA
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, Texas, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, Texas, USA
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Edward Kost
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
4
|
Shen WJ, Kao HM, Wang CY, Kousar R, Lin JS, Ko CC, Lin HY, Ta HDK, Anuraga G, Xuan DTM, Kumar S, Dey S, Ly NP, Wang WJ. Multiple Comprehensive Analyses Identify Lysine Demethylase KDM as a Potential Therapeutic Target for Pancreatic Cancer. Int J Med Sci 2024; 21:2158-2169. [PMID: 39239542 PMCID: PMC11373554 DOI: 10.7150/ijms.96134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Pancreatic cancer (PC) is a challenging and heterogeneous disease with a high mortality rate. Despite advancements in treatment, the prognosis for PC patients remains poor, with a high chance of disease recurrence. Biomarkers are crucial for diagnosing cancer, predicting patient prognosis and selecting treatments. However, the current lack of effective biomarkers for PC could contribute to the insufficiency of existing treatments. These findings underscore the urgent need to develop novel strategies to fight this disease. This study utilized multiple comprehensive bioinformatic analyses to identify potential therapeutic target genes in PC, focusing on histone lysine demethylases (KDMs). We found that high expression levels of KDM family genes, particularly KDM1A, KDM5A and KDM5B, were associated with improved overall survival in the cohort. Furthermore, the infiltration of various immune cells, including B cells, neutrophils, CD8+ T cells, dendritic cells, and macrophages, was positively correlated with KDM1A, KDM5A, and KDM5B expression. Moreover, MetaCore pathway analysis revealed interesting connections between KDM1A and the cell cycle and proliferation, between KDM5A and DNA damage and double-strand break repair through homologous recombination, and between KDM5B and WNT/β-catenin signaling. These findings suggest that KDM1A, KDM5A and KDM5B may serve as promising biomarkers and therapeutic targets for PC, a disease of high importance due to its aggressive nature and urgent need for novel biomarkers to improve diagnosis and treatment.
Collapse
Affiliation(s)
- Wan-Jou Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Hsuan-Min Kao
- Department of Geriatric, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600566, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Rubina Kousar
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Jing-Shan Lin
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya, East Java 60234, Indonesia
| | - Do Thi Minh Xuan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - Sachin Kumar
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, India
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ngoc Phung Ly
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Wei-Jan Wang
- Department of Biological Science and Technology, China Medical University, Taichung 40676, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
5
|
Zhang Y, Tian T, Liang C, Wang J, Zhang J, Tian S, Xie R, Yang T, Han B. Lysine specific demethylase 1 inhibits sodium arsenite activation of HSCs by regulating SESN2/AMPK/ULK1 signaling pathway activity. ENVIRONMENTAL TOXICOLOGY 2024; 39:3563-3577. [PMID: 38477077 DOI: 10.1002/tox.24184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 02/10/2024] [Indexed: 03/14/2024]
Abstract
Lysine specific demethylase 1 (LSD1) is a histone demethylase that specifically catalyzes the demethylation of histone H3K4 (H3K4me1/2) and regulates gene expression. In addition, it can mediate the process of autophagy through its demethylase activity. Sestrin2 (SESN2) is a stress-induced protein and a positive regulator of autophagy. In NaAsO2-induced mouse fibrotic livers and activated hepatic stellate cells (HSCs), LSD1 expression is decreased, SESN2 expression is increased, and autophagy levels are also increased. Overexpression of LSD1 and silencing of SESN2 decreased the level of autophagy and attenuated the activation of HSCs induced by NaAsO2. LSD1 promoted SESN2 gene transcription by increasing H3K4me1/2 in the SESN2 promoter region. 3-methyladenine (3-MA) and chloroquine were used to inhibit autophagy of HSCs, and the degree of activation was also alleviated. Taken together, LSD1 positively regulates SESN2 by increasing H3K4me1/2 enrichment in the SESN2 promoter region, which in turn increases the level of autophagy and promotes the activation of HSCs. Our results may provide new evidence for the importance of LSD1 in the process of autophagy and activation of HSCs induced by arsenic poisoning. Increasing the expression and activity of LSD1 is expected to be an effective way to reverse the autophagy and activation of HSCs induced by arsenic poisoning.
Collapse
Affiliation(s)
- Yingwan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Tian Tian
- Department of Eugenic Genetics, Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China
| | - Cai Liang
- Southwest Hospital, Army Medical University, Chongqing, China
| | - Junli Wang
- The Second People's Hospital of Guiyang, Guizhou, China
| | - Jiayuan Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Shanshan Tian
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Rujia Xie
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ting Yang
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Han
- Department of Pathophysiology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Stitzlein LM, Adams JT, Stitzlein EN, Dudley RW, Chandra J. Current and future therapeutic strategies for high-grade gliomas leveraging the interplay between epigenetic regulators and kinase signaling networks. J Exp Clin Cancer Res 2024; 43:12. [PMID: 38183103 PMCID: PMC10768151 DOI: 10.1186/s13046-023-02923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Targeted therapies, including small molecule inhibitors directed against aberrant kinase signaling and chromatin regulators, are emerging treatment options for high-grade gliomas (HGG). However, when translating these inhibitors into the clinic, their efficacy is generally limited to partial and transient responses. Recent studies in models of high-grade gliomas reveal a convergence of epigenetic regulators and kinase signaling networks that often cooperate to promote malignant properties and drug resistance. This review examines the interplay between five well-characterized groups of chromatin regulators, including the histone deacetylase (HDAC) family, bromodomain and extraterminal (BET)-containing proteins, protein arginine methyltransferase (PRMT) family, Enhancer of zeste homolog 2 (EZH2), and lysine-specific demethylase 1 (LSD1), and various signaling pathways essential for cancer cell growth and progression. These specific epigenetic regulators were chosen for review due to their targetability via pharmacological intervention and clinical relevance. Several studies have demonstrated improved efficacy from the dual inhibition of the epigenetic regulators and signaling kinases. Overall, the interactions between epigenetic regulators and kinase signaling pathways are likely influenced by several factors, including individual glioma subtypes, preexisting mutations, and overlapping/interdependent functions of the chromatin regulators. The insights gained by understanding how the genome and epigenome cooperate in high-grade gliomas will guide the design of future therapeutic strategies that utilize dual inhibition with improved efficacy and overall survival.
Collapse
Affiliation(s)
- Lea M Stitzlein
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jack T Adams
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Richard W Dudley
- Department of Pharmaceutical Sciences, University of Findlay, Findlay, OH, USA
| | - Joya Chandra
- Department of Pediatrics Research, The MD Anderson Cancer Center, University of Texas, Box 853, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
- Department of Epigenetics and Molecular Carcinogenesis, The MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Venkata PP, Jayamohan S, He Y, Alejo S, Johnson JD, Palacios BE, Pratap UP, Chen Y, Liu Z, Zou Y, Lai Z, Suzuki T, Viswanadhapalli S, Weintraub ST, Palakurthi S, Valente PT, Tekmal RR, Kost ER, Vadlamudi RK, Sareddy GR. Pharmacological inhibition of KDM1A/LSD1 enhances estrogen receptor beta-mediated tumor suppression in ovarian cancer. Cancer Lett 2023; 575:216383. [PMID: 37714256 DOI: 10.1016/j.canlet.2023.216383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/19/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Ovarian cancer (OCa) is the most lethal gynecologic cancer. Emerging data indicates that estrogen receptor beta (ERβ) functions as a tumor suppressor in OCa. Lysine-specific histone demethylase 1A (KDM1A) is an epigenetic modifier that acts as a coregulator for steroid hormone receptors. However, it remain unknown if KDM1A interacts with ERβ and regulates its expression/functions in OCa. Analysis of TCGA data sets indicated KDM1A and ERβ expression showed an inverse relationship in OCa. Knockout (KO), knockdown (KD), or inhibition of KDM1A increased ERβ isoform 1 expression in established and patient-derived OCa cells. Further, KDM1A interacts with and functions as a corepressor of ERβ, and its inhibition enhances ERβ target gene expression via alterations of histone methylation marks at their promoters. Importantly, KDM1A-KO or -KD enhanced the efficacy of ERβ agonist LY500307, and the combination of KDM1A inhibitor (KDM1Ai) NCD38 with ERβ agonist synergistically reduced the cell viability, colony formation, and invasion of OCa cells. RNA-seq and DIA mass spectrometry analyses showed that KDM1A-KO resulted in enhanced ERβ signaling and that genes altered by KDM1A-KO and ERβ agonist were related to apoptosis, cell cycle, and EMT. Moreover, combination treatment significantly reduced the tumor growth in OCa orthotopic, syngeneic, and patient-derived xenograft models and proliferation in patient-derived explant models. Our results demonstrate that KDM1A regulates ERβ expression/functions, and its inhibition improves ERβ mediated tumor suppression. Overall, our findings suggest that KDM1Ai and ERβ agonist combination therapy is a promising strategy for OCa.
Collapse
Affiliation(s)
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Yi He
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Jessica D Johnson
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Yihong Chen
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Zexuan Liu
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX, 78229, USA; Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Japan
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Texas A&M University, Kingsville, TX 78363, USA
| | - Philip T Valente
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Edward R Kost
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Audie L. Murphy South Texas Veterans Health Care System, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA; Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
8
|
Johnson JD, Alejo S, Jayamohan S, Sareddy GR. Lysine-specific demethylase 1 as a therapeutic cancer target: observations from preclinical study. Expert Opin Ther Targets 2023; 27:1177-1188. [PMID: 37997756 PMCID: PMC10872912 DOI: 10.1080/14728222.2023.2288277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
INTRODUCTION Lysine-specific histone demethylase 1A (KDM1A/LSD1) has emerged as an important therapeutic target in various cancer types. LSD1 regulates a wide range of biological processes that influence cancer development, progression, metastasis, and therapy resistance. However, recent studies have revealed novel aspects of LSD1 biology, shedding light on its involvement in immunogenicity, antitumor immunity, and DNA damage response. These emerging findings have the potential to be leveraged in the design of effective LSD1-targeted therapies. AREAS COVERED This paper discusses the latest developments in the field of LSD1 biology, focusing on its role in regulating immunogenicity, antitumor immunity, and DNA damage response mechanisms. The newfound understanding of these mechanisms has opened possibilities for the development of novel LSD1-targeted therapies for cancer treatment. Additionally, the paper provides an overview of LSD1 inhibitor-based combination therapies for the treatment of cancer. EXPERT OPINION Exploiting LSD1 role in antitumor immunity and DNA damage response provides cues to not only understand the LSD1-resistant mechanisms but also rationally design new combination therapies that are more efficient and less toxic than monotherapy. The exploration of LSD1 biology and the development of LSD1-targeted therapies hold great promise for the future of cancer treatment.
Collapse
Affiliation(s)
- Jessica D. Johnson
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX, 78229, USA
| |
Collapse
|
9
|
He Y, Alejo S, Johnson JD, Jayamohan S, Sareddy GR. Reticulocalbin 3 Is a Novel Mediator of Glioblastoma Progression. Cancers (Basel) 2023; 15:2008. [PMID: 37046668 PMCID: PMC10093618 DOI: 10.3390/cancers15072008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Molecular mechanisms underlying the pathobiology of glioblastoma are incompletely understood, emphasizing an unmet need for the identification of new therapeutic candidates. Reticulocalbin 3 (RCN3), an ER lumen-residing Ca2+ binding protein, plays an essential role in protein biosynthesis processes via the secretory pathway. Emerging studies demonstrated that RCN3 is a target for therapeutic intervention in various diseases. However, a knowledge gap exists about whether RCN3 plays a role in glioblastoma. Publicly available datasets suggest RCN3 is overexpressed in glioblastoma and portends poor survival rates. The knockdown or knockout of RCN3 using shRNA or CRISPR/Cas9 gRNA, respectively, significantly reduced proliferation, neurosphere formation, and self-renewal of GSCs. The RNA-seq studies showed downregulation of genes related to translation, ribosome, and cytokine signaling and upregulation of genes related to immune response, stem cell differentiation, and extracellular matrix (ECM) in RCN3 knockdown cells. Mechanistic studies using qRT-PCR showed decreased expression of ribosomal and increased expression of ER stress genes. Further, in silico analysis of glioblastoma patient datasets showed RCN3 expression correlated with the ribosome, ECM, and immune response pathway genes. Importantly, the knockdown of RCN3 using shRNA significantly enhanced the survival of tumor-bearing mice in orthotopic glioblastoma models. Our study suggests that RCN3 could be a potential target for the development of a therapeutic intervention in glioblastoma.
Collapse
Affiliation(s)
- Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
| | - Jessica D. Johnson
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
| | - Gangadhara R. Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX 78229, USA (S.A.)
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|