1
|
Liu J, Wang P, Zhang H, Guo Y, Tang M, Wang J, Wu N. Current research status of Raman spectroscopy in glioma detection. Photodiagnosis Photodyn Ther 2024; 50:104388. [PMID: 39461488 DOI: 10.1016/j.pdpdt.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/05/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Glioma is the most common primary tumor of the nervous system. Conventional diagnostic methods for glioma often involve time-consuming or reliance on externally introduced materials. Consequently, there is an urgent need for rapid and reliable diagnostic techniques. Raman spectroscopy has emerged as a promising tool, offering rapid, accurate, and label-free analysis with high sensitivity and specificity in biomedical applications. In this review, the fundamental principles of Raman spectroscopy have been introduced, and then the progress of applying Raman spectroscopy in biomedical studies has been summarized, including the identification and typing of glioma. The challenges encountered in the clinical application of Raman spectroscopy for glioma have been discussed, and the prospects have also been envisioned.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Pan Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Hua Zhang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Yuansen Guo
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chongqing University, Chongqing 400714, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China
| | - Nan Wu
- Department of Neurosurgery, Chongqing General Hospital, Chongqing University, Chongqing 401147, China; Chongqing Research Center for Glioma Precision Medicine, Chongqing University, Chongqing 401147, China.
| |
Collapse
|
2
|
Brem S, Hoch MJ. Commentary: Resting State Functional Networks in Gliomas: Validation With Direct Electric Stimulation Using a New Tool for Planning Brain Resections. Neurosurgery 2024; 95:e156-e158. [PMID: 38869302 DOI: 10.1227/neu.0000000000003065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Affiliation(s)
- Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia , Pennsylvania , USA
- Glioblastoma Translational Center of Excellence (TCE), Abramson Cancer Center, University of Pennsylvania, Philadelphia , Pennsylvania , USA
| | - Michael J Hoch
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia , Pennsylvania , USA
| |
Collapse
|
3
|
Lucas CHG, Al-Adli NN, Young JS, Gupta R, Morshed RA, Wu J, Ravindranathan A, Shai A, Oberheim Bush NA, Taylor JW, de Groot J, Villanueva-Meyer JE, Pekmezci M, Perry A, Bollen AW, Theodosopoulos PV, Aghi MK, Chang EF, Hervey-Jumper SL, Raleigh DR, Molinaro AM, Costello JF, Diaz AA, Clarke JL, Butowski NA, Phillips JJ, Chang SM, Berger MS, Solomon DA. Longitudinal multimodal profiling of IDH-wildtype glioblastoma reveals the molecular evolution and cellular phenotypes underlying prognostically different treatment responses. Neuro Oncol 2024:noae214. [PMID: 39560080 DOI: 10.1093/neuonc/noae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Despite recent advances in the biology of IDH-wildtype glioblastoma, it remains a devastating disease with median survival of less than 2 years. However, the molecular underpinnings of the heterogeneous response to the current standard-of-care treatment regimen consisting of maximal safe resection, adjuvant radiation, and chemotherapy with temozolomide remain unknown. METHODS Comprehensive histopathologic, genomic, and epigenomic evaluation of paired initial and recurrent glioblastoma specimens from 106 patients was performed to investigate the molecular evolution and cellular phenotypes underlying differential treatment responses. RESULTS While TERT promoter mutation and CDKN2A homozygous deletion were early events during gliomagenesis shared by initial and recurrent tumors, most other recurrent genetic alterations (eg, EGFR, PTEN, and NF1) were commonly private to initial or recurrent tumors indicating acquisition later during clonal evolution. Furthermore, glioblastomas exhibited heterogeneous epigenomic evolution with subsets becoming more globally hypermethylated, hypomethylated, or remaining stable. Glioblastoma that underwent sarcomatous transformation had shorter interval to recurrence and were significantly enriched in NF1, TP53, and RB1 alterations and the mesenchymal epigenetic class. Patients who developed somatic hypermutation following temozolomide treatment had significantly longer interval to disease recurrence and prolonged overall survival, and increased methylation at 4 specific CpG sites in the promoter region of MGMT was significantly associated with this development of hypermutation. Finally, an epigenomic evolution signature incorporating change in DNA methylation levels across 347 critical CpG sites was developed that significantly correlated with clinical outcomes. CONCLUSIONS Glioblastoma undergoes heterogeneous genetic, epigenetic, and cellular evolution that underlies prognostically different treatment responses.
Collapse
Affiliation(s)
- Calixto-Hope G Lucas
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nadeem N Al-Adli
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jacob S Young
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Rohit Gupta
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Ramin A Morshed
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jasper Wu
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Ajay Ravindranathan
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Anny Shai
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA
| | - Jennie W Taylor
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA
| | - John de Groot
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA
| | - Javier E Villanueva-Meyer
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Melike Pekmezci
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Arie Perry
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Andrew W Bollen
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Philip V Theodosopoulos
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Manish K Aghi
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Edward F Chang
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Shawn L Hervey-Jumper
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - David R Raleigh
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Radiation Oncology, University of California, San Francisco, California, USA
| | - Annette M Molinaro
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joseph F Costello
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Aaron A Diaz
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jennifer L Clarke
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Neurology, University of California, San Francisco, California, USA
| | - Nicholas A Butowski
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Susan M Chang
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Division of Neuro-Oncology, Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Mitchel S Berger
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - David A Solomon
- UCSF Brain Tumor Center, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Kalluri AL, Lee JH, Lucas CHG, Rincon-Torroella J, Bettegowda C. Implications of molecular classifications in glioma surgery. J Neurooncol 2024:10.1007/s11060-024-04883-0. [PMID: 39532825 DOI: 10.1007/s11060-024-04883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The incorporation of molecular markers into neuro-oncology has transformed our understanding of adult diffuse gliomas. While surgical resection is the mainstay of treatment for many patients with gliomas, surgical management strategies warrant re-exploration in the context of characteristic molecular profiles. METHODS We reviewed the neurosurgical and neuro-oncological literature for studies investigating surgery in molecularly defined cohorts of adult diffuse gliomas. RESULTS We discuss key molecular markers associated with the three subtypes of adult diffuse glioma: glioblastoma IDH-wildtype, astrocytoma IDH-mutant, and oligodendroglioma IDH-mutant and 1p/19q codeleted. We additionally discuss surgical strategies and extent of resection in these tumors, framing them in the context of key molecular alterations. Finally, we briefly discuss the practical utility of molecular markers in guiding surgical decision making. CONCLUSION Molecular markers in gliomas are of growing relevance to surgical intervention. Advancements in preoperative and intraoperative molecular diagnostics will increase the utility of molecular biomarkers in informing surgical decision-making for patients with gliomas.
Collapse
Affiliation(s)
- Anita L Kalluri
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joyce H Lee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Park YW, Choi KS, Foltyn-Dumitru M, Brugnara G, Banan R, Kim S, Han K, Park JE, Kessler T, Bendszus M, Krieg S, Wick W, Sahm F, Choi SH, Kim HS, Chang JH, Kim SH, Wongsawaeng D, Pollock JM, Lee SK, Barajas RF, Vollmuth P, Ahn SS. Incorporating Supramaximal Resection into Survival Stratification of IDH-wildtype Glioblastoma: A Refined Multi-institutional Recursive Partitioning Analysis. Clin Cancer Res 2024; 30:4866-4875. [PMID: 38829906 DOI: 10.1158/1078-0432.ccr-23-3845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE To propose a novel recursive partitioning analysis (RPA) classification model in patients with IDH-wildtype glioblastomas that incorporates the recently expanded conception of the extent of resection (EOR) in terms of both supramaximal and total resections. EXPERIMENTAL DESIGN This multicenter cohort study included a developmental cohort of 622 patients with IDH-wildtype glioblastomas from a single institution (Severance Hospital) and validation cohorts of 536 patients from three institutions (Seoul National University Hospital, Asan Medical Center, and Heidelberg University Hospital). All patients completed standard treatment including concurrent chemoradiotherapy and underwent testing to determine their IDH mutation and MGMTp methylation status. EORs were categorized into either supramaximal, total, or non-total resections. A novel RPA model was then developed and compared with a previous Radiation Therapy Oncology Group (RTOG) RPA model. RESULTS In the developmental cohort, the RPA model included age, MGMTp methylation status, Karnofsky performance status, and EOR. Younger patients with MGMTp methylation and supramaximal resections showed a more favorable prognosis [class I: median overall survival (OS) 57.3 months], whereas low-performing patients with non-total resections and without MGMTp methylation showed the worst prognosis (class IV: median OS 14.3 months). The prognostic significance of the RPA was subsequently confirmed in the validation cohorts, which revealed a greater separation between prognostic classes for all cohorts compared with the previous RTOG RPA model. CONCLUSIONS The proposed RPA model highlights the impact of supramaximal versus total resections and incorporates clinical and molecular factors into survival stratification. The RPA model may improve the accuracy of assessing prognostic groups. See related commentary by Karschnia et al., p. 4811.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Sung Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | | | - Gianluca Brugnara
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rouzbeh Banan
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sooyon Kim
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Tobias Kessler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sandro Krieg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Doonyaporn Wongsawaeng
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Radiology, Neuroradiology Section, Oregon Health & Science University, Portland, Oregon
| | - Jeffrey Michael Pollock
- Department of Radiology, Neuroradiology Section, Oregon Health & Science University, Portland, Oregon
| | - Seung-Koo Lee
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ramon Francisco Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Science University, Portland, Oregon
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Philipp Vollmuth
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
- Division for Computational Radiology and Clinical AI (CCIBonn.ai), Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
- Medical Faculty Bonn, University of Bonn, Bonn, Germany
| | - Sung Soo Ahn
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Park YW, Jang G, Kim SB, Choi K, Han K, Shin NY, Ahn SS, Chang JH, Kim SH, Lee SK, Jain R. Leptomeningeal metastases in isocitrate dehydrogenase-wildtype glioblastomas revisited: Comprehensive analysis of incidence, risk factors, and prognosis based on post-contrast fluid-attenuated inversion recovery. Neuro Oncol 2024; 26:1921-1932. [PMID: 38822538 PMCID: PMC11449090 DOI: 10.1093/neuonc/noae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND The incidence of leptomeningeal metastases (LM) has been reported diversely. This study aimed to investigate the incidence, risk factors, and prognosis of LM in patients with isocitrate dehydrogenase (IDH)-wildtype glioblastoma. METHODS A total of 828 patients with IDH-wildtype glioblastoma were enrolled between 2005 and 2022. Baseline preoperative MRI including post-contrast fluid-attenuated inversion recovery (FLAIR) was used for LM diagnosis. Qualitative and quantitative features, including distance between tumor and subventricular zone (SVZ) and tumor volume by automatic segmentation of the lateral ventricles and tumor, were assessed. Logistic analysis of LM development was performed using clinical, molecular, and imaging data. Survival analysis was performed. RESULTS The incidence of LM was 11.4%. MGMTp unmethylation (odds ratio [OR] = 1.92, P = .014), shorter distance between tumor and SVZ (OR = 0.94, P = .010), and larger contrast-enhancing tumor volume (OR = 1.02, P < .001) were significantly associated with LM. The overall survival (OS) was significantly shorter in patients with LM than in those without (log-rank test; P < .001), with median OS of 12.2 and 18.5 months, respectively. The presence of LM remained an independent prognostic factor for OS in IDH-wildtype glioblastoma (hazard ratio = 1.42, P = .011), along with other clinical, molecular, imaging, and surgical prognostic factors. CONCLUSIONS The incidence of LM is high in patients with IDH-wildtype glioblastoma, and aggressive molecular and imaging factors are correlated with LM development. The prognostic significance of LM based on post-contrast FLAIR imaging suggests the acknowledgment of post-contrast FLAIR as a reliable diagnostic tool for clinicians.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Geon Jang
- Department of Industrial Engineering, Yonsei University, Seoul, Korea
| | - Si Been Kim
- Undergraduate School of Biomedical Engineering, Korea University College of Health Science, Seoul, Korea
| | - Kaeum Choi
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Na-Young Shin
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Rajan Jain
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Karschnia P, Gerritsen JKW, Teske N, Cahill DP, Jakola AS, van den Bent M, Weller M, Schnell O, Vik-Mo EO, Thon N, Vincent AJPE, Kim MM, Reifenberger G, Chang SM, Hervey-Jumper SL, Berger MS, Tonn JC. The oncological role of resection in newly diagnosed diffuse adult-type glioma defined by the WHO 2021 classification: a Review by the RANO resect group. Lancet Oncol 2024; 25:e404-e419. [PMID: 39214112 DOI: 10.1016/s1470-2045(24)00130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 09/04/2024]
Abstract
Glioma resection is associated with prolonged survival, but neuro-oncological trials have frequently refrained from quantifying the extent of resection. The Response Assessment in Neuro-Oncology (RANO) resect group is an international, multidisciplinary group that aims to standardise research practice by delineating the oncological role of surgery in diffuse adult-type gliomas as defined per WHO 2021 classification. Favourable survival effects of more extensive resection unfold over months to decades depending on the molecular tumour profile. In tumours with a more aggressive natural history, supramaximal resection might correlate with additional survival benefit. Weighing the expected survival benefits of resection as dictated by molecular tumour profiles against clinical factors, including the introduction of neurological deficits, we propose an algorithm to estimate the oncological effects of surgery for newly diagnosed gliomas. The algorithm serves to select patients who might benefit most from extensive resection and to emphasise the relevance of quantifying the extent of resection in clinical trials.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Jasper K W Gerritsen
- Department of Neurosurgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands; Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Nico Teske
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Asgeir S Jakola
- Department of Neurosurgery, University of Gothenburg, Gothenburg, Sweden; Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Oliver Schnell
- Department of Neurosurgery, Universitaetsklinikum Erlangen, Friedrich-Alexander-Universitaet, Erlangen-Nuernberg, Germany
| | - Einar O Vik-Mo
- Department of Neurosurgery, Oslo University Hospital and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Niklas Thon
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
8
|
Ius T, Somma T, Pasqualetti F, Berardinelli J, Vitulli F, Caccese M, Cella E, Cenciarelli C, Pozzoli G, Sconocchia G, Zeppieri M, Gerardo C, Caffo M, Lombardi G. Local therapy in glioma: An evolving paradigm from history to horizons (Review). Oncol Lett 2024; 28:440. [PMID: 39081966 PMCID: PMC11287108 DOI: 10.3892/ol.2024.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Ius
- Unit of Neurosurgery, Head-Neck and Neurosciences Department, University Hospital of Udine, I-33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | | | - Jacopo Berardinelli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Francesca Vitulli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Mario Caccese
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| | - Eugenia Cella
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
- Medical Oncology 2, San Martino Hospital-IRCCS, I-16131 Genoa Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Giacomo Pozzoli
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, I-33100 Udine, Italy
| | - Caruso Gerardo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Giuseppe Lombardi
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| |
Collapse
|
9
|
Demetz M, Krigers A, Uribe-Pacheco R, Pinggera D, Klingenschmid J, Thomé C, Freyschlag CF, Kerschbaumer J. The role of postoperative blood pressure management in early postoperative hemorrhage in awake craniotomy glioma patients. Neurosurg Rev 2024; 47:452. [PMID: 39168945 PMCID: PMC11339099 DOI: 10.1007/s10143-024-02661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Postoperative hemorrhage can severely affect the patients' neurological outcome after awake craniotomy. Higher postoperative blood pressure can increase the risk of postoperative hemorrhage. The aim of this study was to investigate the role of postoperative blood pressure and other common radiological and epidemiological features with the incidence of postoperative hemorrhage. In this retrospective analysis, we included patients who underwent awake surgery at our institution. We assessed the blood pressure both intra- and postoperatively as well as the heart rate for the first 12 h. We compared a cohort with postoperative hemorrhage, who required further treatment (surgical revision or intravenous antihypertensive therapy), with a cohort with no postoperative hemorrhage. We included 48 patients with a median age of 39 years. 9 patients (19%) required further treatment due to postoperative hemorrhage, which was surgery in 2 cases and intensive blood pressure measurements in 7 cases. However, with early treatment, no significant difference in Performance scores at follow-up could be found. Patients with postoperative hemorrhage showed significantly higher postoperative systolic blood pressure during the hours 3-12 (p < 0.05) as well as intraoperatively throughout the procedure (p < 0.05). In ROC and Youden Test, a strong impact of systolic blood pressure over 140mmHg during the early postoperative course could be shown. Postoperative hemorrhage is a rare but possible complication in awake surgery glioma patients. To avoid postoperative hemorrhage, treating physicians should aim strictly on systolic blood pressure of under 140mmHg for the postoperative course.
Collapse
Affiliation(s)
- Matthias Demetz
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Aleksandrs Krigers
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Rodrigo Uribe-Pacheco
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Julia Klingenschmid
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| | - Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria.
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, Anichstr. 35, Innsbruck, AT-6020, Austria
| |
Collapse
|
10
|
Shin I, Sim Y, Choi SH, Park YW, Lee N, Ahn SS, Chang JH, Kim SH, Lee SK. Revisiting prognostic factors of gliomatosis cerebri in adult-type diffuse gliomas. J Neurooncol 2024; 168:239-247. [PMID: 38700610 DOI: 10.1007/s11060-024-04656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE There is lack of comprehensive analysis evaluating the impact of clinical, molecular, imaging, and surgical data on survival of patients with gliomatosis cerebri (GC). This study aimed to investigate prognostic factors of GC in adult-type diffuse glioma patients. METHODS Retrospective chart and imaging review was performed in 99 GC patients from adult-type diffuse glioma (among 1,211 patients; 6 oligodendroglioma, 16 IDH-mutant astrocytoma, and 77 IDH-wildtype glioblastoma) from a single institution between 2005 and 2021. Predictors of overall survival (OS) of entire patients and IDH-wildtype glioblastoma patients were determined. RESULTS The median OS was 16.7 months (95% confidence interval [CI] 14.2-22.2) in entire patients and 14.3 months (95% CI 12.2-61.9) in IDH-wildtype glioblastoma patients. In entire patients, KPS (hazard ratio [HR] = 0.98, P = 0.004), no 1p/19q codeletion (HR = 10.75, P = 0.019), MGMTp methylation (HR = 0.54, P = 0.028), and hemorrhage (HR = 3.45, P = 0.001) were independent prognostic factors on multivariable analysis. In IDH-wildtype glioblastoma patients, KPS (HR = 2.24, P = 0.075) was the only independent prognostic factor on multivariable analysis. In subgroup of IDH-wildtype glioblastoma with CE tumors, total resection of CE tumor did not remain as a significant prognostic factor (HR = 1.13, P = 0.685). CONCLUSIONS The prognosis of GC patients is determined by its underlying molecular type and patient performance status. Compared with diffuse glioma without GC, aggressive surgery of CE tumor in GC patients does not improve survival.
Collapse
Affiliation(s)
- Ilah Shin
- Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yongsik Sim
- Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyungkwan University School of Medicine, Seoul, Korea
| | - Seo Hee Choi
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, Korea.
| | - Narae Lee
- Department of Nuclear Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-752, Korea
| |
Collapse
|
11
|
Park YW, Kim S, Han K, Ahn SS, Moon JH, Kim EH, Kim J, Kang SG, Kim SH, Lee SK, Chang JH. Rethinking extent of resection of contrast-enhancing and non-enhancing tumor: different survival impacts on adult-type diffuse gliomas in 2021 World Health Organization classification. Eur Radiol 2024; 34:1376-1387. [PMID: 37608093 DOI: 10.1007/s00330-023-10125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVES Extent of resection (EOR) of contrast-enhancing (CE) and non-enhancing (NE) tumors may have different impacts on survival according to types of adult-type diffuse gliomas in the molecular era. This study aimed to evaluate the impact of EOR of CE and NE tumors in glioma according to the 2021 World Health Organization classification. METHODS This retrospective study included 1193 adult-type diffuse glioma patients diagnosed between 2001 and 2021 (183 oligodendroglioma, 211 isocitrate dehydrogenase [IDH]-mutant astrocytoma, and 799 IDH-wildtype glioblastoma patients) from a single institution. Patients had complete information on IDH mutation, 1p/19q codeletion, and O6-methylguanine-methyltransferase (MGMT) status. Cox survival analyses were performed within each glioma type to assess predictors of overall survival, including clinical, imaging data, histological grade, MGMT status, adjuvant treatment, and EOR of CE and NE tumors. Subgroup analyses were performed in patients with CE tumor. RESULTS Among 1193 patients, 935 (78.4%) patients had CE tumors. In entire oligodendrogliomas, gross total resection (GTR) of NE tumor was not associated with survival (HR = 0.56, p = 0.223). In 86 (47.0%) oligodendroglioma patients with CE tumor, GTR of CE tumor was the only independent predictor of survival (HR = 0.16, p = 0.004) in multivariable analysis. GTR of CE and NE tumors was independently associated with better survival in IDH-mutant astrocytoma and IDH-wildtype glioblastoma (all ps < 0.05). CONCLUSIONS GTR of both CE and NE tumors may significantly improve survival within IDH-mutant astrocytomas and IDH-wildtype glioblastomas. In oligodendrogliomas, the EOR of CE tumor may be crucial in survival; aggressive GTR of NE tumor may be unnecessary, whereas GTR of the CE tumor is recommended. CLINICAL RELEVANCE STATEMENT Surgical strategies on contrast-enhancing (CE) and non-enhancing (NE) tumors should be reassessed considering the different survival outcomes after gross total resection depending on CE and NE tumors in the 2021 World Health Organization classification of adult-type diffuse gliomas. KEY POINTS The survival impact of extent of resection of contrast-enhancing (CE) and non-enhancing (NE) tumors was evaluated in adult-type diffuse gliomas. Gross total resection of both CE and NE tumors may improve survival in isocitrate dehydrogenase (IDH)-mutant astrocytomas and IDH-wildtype glioblastomas, while only gross total resection of the CE tumor improves survival in oligodendrogliomas. Surgical strategies should be reconsidered according to types in adult-type diffuse gliomas.
Collapse
Affiliation(s)
- Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sooyon Kim
- Department of Statistics and Data Science, Yonsei University, Seoul, Korea
| | - Kyunghwa Han
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| | - Ju Hyung Moon
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jinna Kim
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, Korea.
| |
Collapse
|
12
|
Cahill DP, Dunn GP. Considering the extent of resection in diffuse glioma. Neuro Oncol 2023; 25:2134-2135. [PMID: 37675941 PMCID: PMC10708926 DOI: 10.1093/neuonc/noad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Al-Adli NN, Young JS, Scotford K, Sibih YE, Payne J, Berger MS. Advances in Intraoperative Glioma Tissue Sampling and Infiltration Assessment. Brain Sci 2023; 13:1637. [PMID: 38137085 PMCID: PMC10741454 DOI: 10.3390/brainsci13121637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Gliomas are infiltrative brain tumors that often involve functional tissue. While maximal safe resection is critical for maximizing survival, this is challenged by the difficult intraoperative discrimination between tumor-infiltrated and normal structures. Surgical expertise is essential for identifying safe margins, and while the intraoperative pathological review of frozen tissue is possible, this is a time-consuming task. Advances in intraoperative stimulation mapping have aided surgeons in identifying functional structures and, as such, has become the gold standard for this purpose. However, intraoperative margin assessment lacks a similar consensus. Nonetheless, recent advances in intraoperative imaging techniques and tissue examination methods have demonstrated promise for the accurate and efficient assessment of tumor infiltration and margin delineation within the operating room, respectively. In this review, we describe these innovative technologies that neurosurgeons should be aware of.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| | - Katie Scotford
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| | - Youssef E. Sibih
- School of Medicine, University of California San Francisco, San Francisco, CA 94131, USA;
| | - Jessica Payne
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| | - Mitchel S. Berger
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94131, USA; (N.N.A.-A.); (J.S.Y.); (K.S.); (J.P.)
| |
Collapse
|