1
|
Bodensohn R, Fleischmann DF, Maier SH, Anagnostatou V, Garny S, Nitschmann A, Büttner M, Mücke J, Schönecker S, Unger K, Hoffmann E, Paulsen F, Thorwarth D, Holzgreve A, Albert NL, Corradini S, Tabatabai G, Belka C, Niyazi M. Dosimetric feasibility analysis and presentation of an isotoxic dose-escalated radiation therapy concept for glioblastoma used in the PRIDE trial (NOA-28; ARO-2022-12). Clin Transl Radiat Oncol 2024; 45:100706. [PMID: 38116137 PMCID: PMC10726217 DOI: 10.1016/j.ctro.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Background and purpose The PRIDE trial (NOA-28; ARO-2022-12; NCT05871021) is scheduled to start recruitment in October 2023. Its primary objective is to enhance median overall survival (OS), compared to historical median OS rates, in patients with methylguanine methlyltransferase (MGMT) promotor unmethylated glioblastoma by incorporating isotoxic dose escalation to 75 Gy in 30 fractions. To achieve isotoxicity and counteract the elevated risk of radiation necrosis (RN) associated with dose-escalated regimens, the addition of protective concurrent bevacizumab (BEV) serves as an innovative approach. The current study aims to assess the dosimetric feasibility of the proposed concept. Materials and methods A total of ten patients diagnosed with glioblastoma were included in this dosimetric analysis. Delineation of target volumes for the reference plans adhered to the ESTRO-EANO 2023 guideline. The experimental plans included an additional volume for the integrated boost. Additionally, the 60 Gy-volume was reduced by using a margin of 1.0 cm instead of 1.5 cm. To assess the risk of symptomatic RN, the Normal Tissue Complication Probability (NTCP) was calculated and compared between the reference and experimental plans. Results Median NTCP of the reference plan (NTCPref) and of the experimental plan (NTCPex) were 0.24 (range 0.11-0.29) and 0.42 (range 0.18-0.54), respectively. NTCPex was a median of 1.77 (range 1.60-1.99) times as high as the NTXPref. In a logarithmic comparison, the risk of RN is enhanced by a factor of median 2.00 (range 1.66-2.35). The defined constraints for the organs at risk were feasible. Conclusion When considering the potential protective effect of BEV, which we hypothesized might reduce the risk of RN by approximately two-fold, achieving isotoxicity with the proposed dose-escalated experimental plan for the PRIDE trial seems feasible.
Collapse
Affiliation(s)
- Raphael Bodensohn
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Daniel F. Fleischmann
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian H. Maier
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Vasiliki Anagnostatou
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sylvia Garny
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Alexander Nitschmann
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Marcel Büttner
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Mücke
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Kristian Unger
- Helmholtz Zentrum Munich, Neuherberg, Germany
- Faculty of Medicine, LMU Munich, Munich Germany
| | - Elgin Hoffmann
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital, Tübingen, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Neurology and Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital, Tübingen, Germany
| | - Claus Belka
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, a partnership between DKFZ and University Hospital, Tübingen, Germany
| |
Collapse
|