1
|
Cheng C, Wang D, Yu M, Zhai Y, Pan C, Liang B, Zhang J, Wang C, Yin Y, Li L, Wu F, Shi Z, Fan X, Liu X, Wang Z, Zhao Z, Li G, Jiang T, Zhang W. Diffuse Isocitrate Dehydrogenase-Mutant Gliomas With Histone H3 Alterations Are Distinguished by Unique Clinical Characteristics, Molecular Expression Profile, and Survival Prognosis. Neurosurgery 2023; 93:802-812. [PMID: 37070826 PMCID: PMC10476769 DOI: 10.1227/neu.0000000000002495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Histopathological features and molecular biomarkers have been studied as potential prognostic factors. This study aimed to investigate the clinical features, molecular phenotypes, and survival prognosis of isocitrate dehydrogenase (IDH)-mutant (IDHmt) gliomas with histone H3 alterations (H3-alterations). METHODS A total of 236 and 657 patients with whole-exome sequencing data were separately collected from the Chinese Glioma Genome Atlas and The Cancer Genome Atlas databases. Survival analysis of patients with glioma was performed using Kaplan-Meier survival curves stratified by histone H3 status. Univariate and multivariate analyses were used to identify the associations between histone H3 status and other clinicopathological factors with survival in patients with IDH-mutant gliomas. RESULTS Diffuse gliomas with H3 alterations are more likely to be high grade in 2 cohorts ( P = .025 and P = .021, respectively). IDHmt glioma patients with H3-alteration had significantly less life expectancy than histone H3 wild-type ( P = .041 and P = .008, respectively). In the Chinese Glioma Genome Atlas cohort, Karnofsky performance scores ≤ 80 (HR 2.394, 95% CI 1.257-4.559, P = .008), extent of resection (HR 0.971, 95% CI 0.957-0.986, P < .001), high WHO grade (HR 6.938, 95% CI 2.787-17.269, P < .001), H3-alteration (HR 2.482, 95% CI 1.183-4.981, P = .016), and 1p/19q codeletion (HR 0.169, 95% CI 0.073-0.390, P < .001) were independently associated with IDHmt gliomas. In the The Cancer Genome Atlas cohort, age (HR 1.034, 95% CI 1.008-1.061, P = .010), high WHO grade (HR 2.365, 95% CI 1.263-4.427, P = .007), and H3-alteration (HR 2.501, 95% CI 1.312-4.766, P = .005) were independently associated with IDHmt gliomas. CONCLUSION Identification and assessment of histone H3 status in clinical practice might help improve prognostic prediction and develop therapeutic strategies for these patient subgroups.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Liang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Jiazheng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiyun Yin
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lianwang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhongfang Shi
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
2
|
Felix M, Friedel D, Jayavelu AK, Filipski K, Reinhardt A, Warnken U, Stichel D, Schrimpf D, Korshunov A, Wang Y, Kessler T, Etminan N, Unterberg A, Herold-Mende C, Heikaus L, Sahm F, Wick W, Harter PN, von Deimling A, Reuss DE. HIP1R and vimentin immunohistochemistry predict 1p/19q status in IDH-mutant glioma. Neuro Oncol 2022; 24:2121-2132. [PMID: 35511748 PMCID: PMC9713528 DOI: 10.1093/neuonc/noac111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND IDH-mutant gliomas are separate based on the codeletion of the chromosomal arms 1p and 19q into oligodendrogliomas IDH-mutant 1p/19q-codeleted and astrocytomas IDH-mutant. While nuclear loss of ATRX expression excludes 1p/19q codeletion, its limited sensitivity prohibits to conclude on 1p/19q status in tumors with retained nuclear ATRX expression. METHODS Employing mass spectrometry based proteomic analysis in a discovery series containing 35 fresh frozen and 72 formalin fixed and paraffin embedded tumors with established IDH and 1p/19q status, potential biomarkers were discovered. Subsequent validation immunohistochemistry was conducted on two independent series (together 77 oligodendrogliomas IDH-mutant 1p/19q-codeleted and 92 astrocytomas IDH-mutant). RESULTS We detected highly specific protein patterns distinguishing oligodendroglioma and astrocytoma. In these patterns, high HIP1R and low vimentin levels were observed in oligodendroglioma while low HIP1R and high vimentin levels occurred in astrocytoma. Immunohistochemistry for HIP1R and vimentin expression in 35 cases from the FFPE discovery series confirmed these findings. Blinded evaluation of the validation cohorts predicted the 1p/19q status with a positive and negative predictive value as well as an accuracy of 100% in the first cohort and with a positive predictive value of 83%; negative predictive value of 100% and an accuracy of 92% in the second cohort. Nuclear ATRX loss as marker for astrocytoma increased the sensitivity to 96% and the specificity to 100%. CONCLUSIONS We demonstrate that immunohistochemistry for HIP1R, vimentin, and ATRX predict 1p/19q status with 100% specificity and 95% sensitivity and therefore, constitutes a simple and inexpensive approach to the classification of IDH-mutant glioma.
Collapse
Affiliation(s)
- Marius Felix
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Dennis Friedel
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Ashok Kumar Jayavelu
- Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany,Hopp Children’s Cancer Center Heidelberg - KiTZ, Heidelberg, Germany,Molecular Medicine Partnership Unit, EMBL, Heidelberg, Germany
| | - Katharina Filipski
- Institute of Neurology, (Edinger Institute), University Hospital, Frankfurt Am Main, Germany,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,University Cancer Center (UCT), Frankfurt, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Uwe Warnken
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Yueting Wang
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Tobias Kessler
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Neurology and Neurooncology Program, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick N Harter
- Institute of Neurology, (Edinger Institute), University Hospital, Frankfurt Am Main, Germany,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Heidelberg, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,Frankfurt Cancer Institute (FCI), Frankfurt Am Main, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ) German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - David E Reuss
- Corresponding Author: David E. Reuss, MD, Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany ()
| |
Collapse
|
3
|
Szeliga M. Comprehensive analysis of the expression levels and prognostic values of PRDX family genes in glioma. Neurochem Int 2021; 153:105256. [PMID: 34968631 DOI: 10.1016/j.neuint.2021.105256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Gliomas are a histologically and molecularly heterogeneous group of neoplasms accounting for 80% of malignant primary brain tumors. Growing evidence suggests that production of reactive oxygen species (ROS) is linked to glioma pathogenesis, although it is still unclear whether it is a cause or an effect of this process. Peroxiredoxins (PRDXs), a family of six antioxidant proteins, may promote or inhibit carcinogenesis, depending on the tumor type and stage. The current knowledge on their expression, regulation and functions in glioma is scarce. In this study, a comprehensive analysis of PRDXs expression in distinct glioma subtypes and non-tumor brain tissues was conducted using gene expression data from The Cancer Genome Atlas (TCGA), REpository for Molecular BRAin NeoplasiaDaTa (REMBRANDT), The Chinese Glioma Atlas (CGGA) and Gene Expression Omnibus (GEO) datasets. The association between gene expression and patient survival was investigated. DNA methylation, mutations, copy number alterations of deregulated PRDXs as well as the correlation between gene expression and tumor-infiltrating immune cells were assessed. The analysis revealed overexpression of PRDX1, PRDX4, and PRDX6 in most histological glioma types compared to the non-tumor tissues, while PRDX2, PRDX3 and PRDX5 expression remained unaltered. The expression of PRDX4 and PRDX6 was higher in mesenchymal than proneural and classical glioma subtypes. Moreover, lower expression of PRDX1, PRDX4 and PRDX6 was observed in tumors with a glioma CpG island methylator phenotype (G-CIMP) compared to non-G-CIMP tumors, as well as in isocitrate dehydrogenase (IDH) mutant and 1p/19q co-deleted gliomas compared to the wild-type counterparts. High expression of PRDX1, PRDX4 or PRDX6 correlated with poor survival of glioma patients. PRDX1 and PRDX6 displayed a positive correlation with different immune cell population in low grade gliomas and, to a lesser extent, in glioblastoma. PRDX1 expression exhibited negative correlation with DNA methylation. These results indicate that high expression of PRDX1, PRDX4 and PRDX6 is associated with poor outcome in gliomas.
Collapse
Affiliation(s)
- Monika Szeliga
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Wang Z, Gao L, Guo X, Lian W, Deng K, Xing B. Development and Validation of a Novel DNA Methylation-Driven Gene Based Molecular Classification and Predictive Model for Overall Survival and Immunotherapy Response in Patients With Glioblastoma: A Multiomic Analysis. Front Cell Dev Biol 2020; 8:576996. [PMID: 33015072 PMCID: PMC7494802 DOI: 10.3389/fcell.2020.576996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose Glioblastoma (GBM) is the most common primary malignant tumor of the central nervous system, with a 5-year overall survival (OS) rate of only 5.6%. This study aimed to develop a novel DNA methylation-driven gene (MDG)-based molecular classification and risk model for individualized prognosis prediction for GBM patients. Methods The DNA methylation profiles (458 samples) and gene expression profiles (376 samples) of patients were enrolled to identify MDGs using the MethylMix algorithm. Unsupervised consensus clustering was performed to develop the MDG-based molecular classification. By performing the univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis, a MDG-based prognostic model was developed and validated. Then, Bisulfite Amplicon Sequencing (BSAS) and quantitative real-time polymerase chain reaction (qPCR) were performed to verify the methylation and expressions of MDGs in GBM cell lines. Results A total of 199 MDGs were identified, the expression patterns of which enabled TCGA and CGGA GBM patients to be divided into 2 clusters by unsupervised consensus clustering. Cluster 1 patients commonly exhibited a poor prognosis, were older in age, and were more sensitive to immunotherapies. Then, six MDGs (ANKRD10, BMP2, LOXL1, RPL39L, TMEM52, and VILL) were further selected to construct the prognostic risk score model, which was validated in the CGGA cohort. Kaplan-Meier survival analysis demonstrated that high-risk patients had significantly poorer OS than low-risk patients (logrank P = 3.338 × 10-6). Then, a prognostic nomogram was constructed and validated. Calibration plots, receiver operating characteristic curves, and decision curve analysis indicated excellent predictive performance for the nomogram in both the TCGA training and CGGA validation cohorts. Finally, in vitro BSAS and qPCR analysis validated that the expressions of the MDGs were negatively regulated by methylations of target genes, especially promoter region methylation. Conclusion The MDG-based prognostic model could serve as a promising prognostic indicator and potential therapeutic target to facilitate individualized survival prediction and better treatment options for GBM patients.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Gao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaopeng Guo
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Lian
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Xing
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Derouiche A, Geiger KD. Perspectives for Ezrin and Radixin in Astrocytes: Kinases, Functions and Pathology. Int J Mol Sci 2019; 20:ijms20153776. [PMID: 31382374 PMCID: PMC6695708 DOI: 10.3390/ijms20153776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are increasingly perceived as active partners in physiological brain function and behaviour. The structural correlations of the glia–synaptic interaction are the peripheral astrocyte processes (PAPs), where ezrin and radixin, the two astrocytic members of the ezrin-radixin-moesin (ERM) family of proteins are preferentially localised. While the molecular mechanisms of ERM (in)activation appear universal, at least in mammalian cells, and have been studied in great detail, the actual ezrin and radixin kinases, phosphatases and binding partners appear cell type specific and may be multiplexed within a cell. In astrocytes, ezrin is involved in process motility, which can be stimulated by the neurotransmitter glutamate, through activation of the glial metabotropic glutamate receptors (mGluRs) 3 or 5. However, it has remained open how this mGluR stimulus is transduced to ezrin activation. Knowing upstream signals of ezrin activation, ezrin kinase(s), and membrane-bound binding partners of ezrin in astrocytes might open new approaches to the glial role in brain function. Ezrin has also been implicated in invasive behaviour of astrocytomas, and glial activation. Here, we review data pertaining to potential molecular interaction partners of ezrin in astrocytes, with a focus on PKC and GRK2, and in gliomas and other diseases, to stimulate further research on their potential roles in glia-synaptic physiology and pathology.
Collapse
Affiliation(s)
- Amin Derouiche
- Institute of Anatomy II, Goethe-University Frankfurt, D-60590 Frankfurt am Main, Germany.
| | - Kathrin D Geiger
- Neuropathology, Institute for Pathology, Carl Gustav Carus University Hospital, TU Dresden, D-01307 Dresden, Germany
| |
Collapse
|
6
|
Jayaram S, Gupta MK, Shivakumar BM, Ghatge M, Sharma A, Vangala RK, Sirdeshmukh R. Insights from Chromosome-Centric Mapping of Disease-Associated Genes: Chromosome 12 Perspective. J Proteome Res 2015; 14:3432-40. [PMID: 26143930 DOI: 10.1021/acs.jproteome.5b00488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In line with the aims of the Chromosome-based Human Proteome Project and the Biology/Disease-based Human Proteome Project, we have been studying differentially expressed transcripts and proteins in gliomas—the most prevalent primary brain tumors. Here, we present a perspective on important insights from this analysis in terms of their co-expression, co-regulation/de-regulation, and co-localization on chromosome 12 (Chr. 12). We observe the following: (1) Over-expression of genes mapping onto amplicon regions of chromosomes may be considered as a biological validation of mass spectrometry data. (2) Their co-localization further suggests common determinants of co-expression and co-regulation of these clusters. (3) Co-localization of "missing" protein genes of Chr. 12 in close proximity to functionally related genes may help in predicting their functions. (4) Further, integrating differentially expressed gene-protein sets and their ontologies with medical terms associated with clinical phenotypes in a chromosome-centric manner reveals a network of genes, diseases, and pathways—a diseasome network. Thus, chromosomal mapping of disease data sets can help uncover important regulatory and functional links that may offer new insights for biomarker development.
Collapse
Affiliation(s)
- Savita Jayaram
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Manipal University , Madhav Nagar, Manipal-576104, India
| | - Manoj Kumar Gupta
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Manipal University , Madhav Nagar, Manipal-576104, India
| | | | - Madankumar Ghatge
- Manipal University , Madhav Nagar, Manipal-576104, India.,Thrombosis Research Institute, Narayana Health , Bangalore-560099, India
| | - Ankit Sharma
- Manipal University , Madhav Nagar, Manipal-576104, India.,Thrombosis Research Institute, Narayana Health , Bangalore-560099, India
| | | | - Ravi Sirdeshmukh
- Institute of Bioinformatics , International Tech Park, Bangalore-560066, India.,Mazumdar Shaw Centre for Translational Research, Mazumdar Shaw Medical Foundation, Narayana Health , Bangalore-560099, India
| |
Collapse
|
7
|
Poschmann G, Grzendowski M, Stefanski A, Bruns E, Meyer HE, Stühler K. Redox proteomics reveal stress responsive proteins linking peroxiredoxin-1 status in glioma to chemosensitivity and oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:624-31. [PMID: 25484280 DOI: 10.1016/j.bbapap.2014.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/16/2022]
Abstract
The combined deletion of chromosomal arms 1p and 19q has been described as a prognostic marker for oligodendroglial tumors. These tumors show a better response to chemotherapy and radiotherapy. Recently, we found a lower abundance of peroxiredoxin 1 (PRDX1) in oligodendroglial tumors with 1p/19q deletion, suggesting a potential role of this enzyme in the clearance of therapy induced reactive oxygen species (ROS). Here, we confirmed the importance of PRDX1 in tumor cell survival by PRDX1 knockdown and overexpression in A-172 cells treated with the alkylating agent bis-chloroethyl nitrosourea (BCNU). Overexpression of PRDX1 resulted in a higher resistance of cells to BCNU treatment. In addition, BCNU challenged cells showed higher levels of ROS in PRDX1 knockdown cells. We applied a modified version of the redox two dimensional difference gel electrophoresis approach to analyze ROS mediated effects on protein thiols after BCNU treatment by labeling protein thiols with fluorescent dyes. Altogether eleven proteins were identified showing PRDX1 dependent altered labeling, many of them have been previously linked to stress response processes. Furthermore, 30 additional potentially redox active proteins were identified. The majority of them is involved in therapy associated processes like cellular stress response, DNA damage and regulation of cell death and therewith suggests that tumor cells maintain a network of redox sensitive proteins to escape chemotherapy. This article is part of a Special Issue entitled: Medical Proteomics.
Collapse
Affiliation(s)
- Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany.
| | - Michael Grzendowski
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany; Roche Diagnostics GmbH, Mannheim, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany
| | - Eva Bruns
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany
| | - Helmut Erich Meyer
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, BMFZ, Universität Düsseldorf, Germany
| |
Collapse
|
8
|
Bentaib A, De Tullio P, Chneiweiss H, Hermans E, Junier MP, Leprince P. Metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. J Proteomics 2014; 113:292-314. [PMID: 25305589 DOI: 10.1016/j.jprot.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/02/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is thought to play a key role in sustaining the survival and proliferation of cancer cells. These changes facilitate for example the uptake and release of nutrients required for nucleotide, protein and lipid synthesis necessary for macromolecule assembly and tumor growth. We applied a 2D-DIGE (two-dimensional differential in-gel electrophoresis) quantitative proteomic analysis to characterize the proteomes of mouse astrocytes that underwent in vitro cancerous transformation, and of their normal counterparts. Metabolic reprogramming effects on enzymatic and structural protein expression as well as associated metabolites abundance were quantified. Using enzymatic activity measurements and zymography, we documented and confirmed several changes in abundance and activity of various isoenzymes likely to participate in metabolic reprogramming. We found that after transformation, the cells increase their expression of glycolytic enzymes, thus augmenting their ability to use aerobic glycolysis (Warburg effect). An increased capacity to dispose of reducing equivalents through lactate production was also documented. Major effects on carbohydrates, amino acids and nucleotides metabolic enzymes were also observed. Conversely, the transformed cells reduced their enzymatic capacity for reactions of tricarboxylic acid oxidation, for neurotransmitter (glutamate) metabolism, for oxidative stress defense and their expression of astroglial markers. BIOLOGICAL SIGNIFICANCE The use of a global approach based on a 2D DIGE analysis allows obtaining a comprehensive view of the metabolic reprogramming undergone by astrocytes upon cancerous transformation. Indeed, except for a few enzymes such as pyruvate carboxylase and glutaminase that were not detected in our initial analysis, pertinent information on the abundance of most enzymes belonging to pathways relevant to metabolic reprogramming was directly obtained. In this in vitro model, transformation causes major losses of astrocyte-specific proteins and functions and the acquisition of metabolic adaptations that favor intermediate metabolites production for increased macromolecule biosynthesis. Thus our approach appears to be readily applicable for the investigation of changes in protein abundance that determine various transformed cell phenotypes. It could similarly be applied to the evaluation of the effects of treatments aimed at correcting the consequences of cell transformation.
Collapse
Affiliation(s)
| | - Pascal De Tullio
- Pharmaceutical chemistry, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Hervé Chneiweiss
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Hermans
- Institute of Neurosciences, Group of Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Pierre Junier
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
9
|
C-terminally truncated form of αB-crystallin is associated with IDH1 R132H mutation in anaplastic astrocytoma. J Neurooncol 2014; 117:53-65. [PMID: 24473683 DOI: 10.1007/s11060-014-1371-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Malignant gliomas are the most common human primary brain tumors. Point mutation of amino acid arginine 132 to histidine (R132H) in the IDH1 protein leads to an enzymatic gain-of-function and is thought to promote gliomagenesis. Little is known about the downstream effects of the IDH1 mutation on protein expression and how and whether changes in protein expression are involved in tumor formation or propagation. In the current study, we used 2D DIGE (difference gel electrophoresis) and mass spectrometry to analyze differences in protein expression between IDH1(R132H) mutant and wild type anaplastic (grade III) astrocytoma from human brain cancer tissues. We show that expression levels of many proteins are altered in IDH1(R132H) mutant anaplastic astrocytoma. Some of the most over-expressed proteins in the mutants include several forms of αB-crystallin, a small heat-shock and anti-apoptotic protein. αB-crystallin proteins are elevated up to 22-fold in IDH1(R132H) mutant tumors, and αB-crystallin expression appears to be controlled at the post-translational level. We identified the most abundant form of αB-crystallin as a low molecular weight species that is C-terminally truncated. We also found that overexpression of αB-crystallin can be induced by transfecting U251 human glioblastoma cell lines with the IDH1(R132H) mutation. In conclusion, the association of a C-terminally truncated form of αB-crystallin protein with the IDH1(R132H) mutation is a novel finding that could impact apoptosis and stress response in IDH1 mutant glioma.
Collapse
|
10
|
Zhong J, Cui Y, Guo J, Chen Z, Yang L, He QY, Zhang G, Wang T. Resolving chromosome-centric human proteome with translating mRNA analysis: a strategic demonstration. J Proteome Res 2013; 13:50-9. [PMID: 24200226 DOI: 10.1021/pr4007409] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosome-centric human proteome project (C-HPP) aims at differentiating chromosome-based and tissue-specific protein compositions in terms of protein expression, quantification, and modification. We previously found that the analysis of translating mRNA (mRNA attached to ribosome-nascent chain complex, RNC-mRNA) can explain over 94% of mRNA-protein abundance. Therefore, we propose here to use full-length RNC-mRNA information to illustrate protein expression both qualitatively and quantitatively. We performed RNA-seq on RNC-mRNA (RNC-seq) and detected 12,758 and 14,113 translating genes in human normal bronchial epithelial (HBE) cells and human colorectal adenocarcinoma Caco-2 cells, respectively. We found that most of these genes were mapped with >80% of coding sequence coverage. In Caco-2 cells, we provided translating evidence on 4180 significant single-nucleotide variations. While using RNC-mRNA data as a standard for proteomic data integration, both translating and protein evidence of 7876 genes can be acquired from four interlaboratory data sets with different MS platforms. In addition, we detected 1397 noncoding mRNAs that were attached to ribosomes, suggesting a potential source of new protein explorations. By comparing the two cell lines, a total of 677 differentially translated genes were found to be nonevenly distributed across chromosomes. In addition, 2105 genes in Caco-2 and 750 genes in HBE cells are expressed in a cell-specific manner. These genes are significantly and specifically clustered on multiple chromosomes, such as chromosome 19. We conclude that HPP/C-HPP investigations can be considerably improved by integrating RNC-mRNA analysis with MS, bioinformatics, and antibody-based verifications.
Collapse
Affiliation(s)
- Jiayong Zhong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University , 601 Huangpu Avenue West, Guangzhou 510632, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang LS, Xu XE, Liu XP, Jin H, Chen ZQ, Liu XH, Wang Y, Huang FP, Shi Q. iTRAQ-based quantitative proteomic analysis for identification of oligodendroglioma biomarkers related with loss of heterozygosity on chromosomal arm 1p. J Proteomics 2012; 77:480-91. [DOI: 10.1016/j.jprot.2012.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/11/2012] [Accepted: 09/24/2012] [Indexed: 11/25/2022]
|
12
|
Horiuchi A, Hayashi T, Kikuchi N, Hayashi A, Fuseya C, Shiozawa T, Konishi I. Hypoxia upregulates ovarian cancer invasiveness via the binding of HIF-1α to a hypoxia-induced, methylation-free hypoxia response element of S100A4 gene. Int J Cancer 2012; 131:1755-67. [PMID: 22287060 DOI: 10.1002/ijc.27448] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 01/02/2012] [Indexed: 12/16/2022]
Abstract
Hypoxia is known to play important roles in the development and progression of tumors. We previously demonstrated that S100A4, a critical molecule for metastasis, was upregulated in ovarian cancer cells. Therefore, we examined the mechanisms of the upregulation of S100A4 expression in ovarian carcinoma cells, with particular attention paid to the effects of hypoxia. The expression levels of S100A4 were found to be correlated with the invasiveness of ovarian carcinoma cells in vitro and in vivo, and the upregulation of S100A4 expression was associated with hypomethylation of CpG sites in the first intron of S100A4 in ovarian carcinoma cell lines and tissues. The expression of S100A4 was increased under hypoxia and was associated with elevated invasiveness, which was inhibited by S100A4 small interfering RNA (siRNA). In addition, exposure to hypoxia reduced the methylation of hypoxia-response elements (HRE) of the S100A4 gene in a time-dependent fashion, in association with the increased binding of HIF-1α to a methylation-free HRE in ovarian carcinoma cells. These results indicate that hypoxia-induced hypomethylation plays an essential role in S100A4 overexpression and the epigenetic transformation of ovarian carcinoma cells into the "metastatic phenotype."
Collapse
Affiliation(s)
- Akiko Horiuchi
- Department of Obstetrics and Gynecology, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Dittmann LM, Danner A, Gronych J, Wolter M, Stühler K, Grzendowski M, Becker N, Bageritz J, Goidts V, Toedt G, Felsberg J, Sabel MC, Barbus S, Reifenberger G, Lichter P, Tews B. Downregulation of PRDX1 by promoter hypermethylation is frequent in 1p/19q-deleted oligodendroglial tumours and increases radio- and chemosensitivity of Hs683 glioma cells in vitro. Oncogene 2011; 31:3409-18. [PMID: 22158042 DOI: 10.1038/onc.2011.513] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deletions of chromosomal arms 1p and 19q are frequent in oligodendroglial tumours and linked to radio- and chemotherapy response as well as longer survival. The molecular mechanisms underlying this clinically important association are as yet unknown. Here, we studied the peroxiredoxin 1 (PRDX1) gene at 1p34.1 for promoter methylation and expression in primary gliomas and investigated its role in radio- and chemosensitivity of glioma cells in vitro. In total, we screened primary glioma tissues from 93 patients for methylation of the 5'-CpG island of PRDX1 by sodium bisulfite sequencing. PRDX1 mRNA and protein expression levels were determined in subsets of the tumours by quantitative PCR and western blot analysis, respectively. PRDX1 hypermethylation and reduced expression were frequently detected in oligodendroglial tumours and secondary glioblastomas, but not in primary glioblastomas. In oligodendroglial tumours, both PRDX1 hypermethylation and reduced mRNA expression were significantly associated with 1p/19q-deletion. Stable knockdown of PRDX1 by lentiviral transduction of short-hairpin (sh)RNA constructs significantly increased apoptosis and reduced cell viability of Hs683 glioma cells exposed to ionizing irradiation or temozolomide in vitro. Taken together, our findings indicate that epigenetic silencing of PRDX1 is frequent in 1p/19q-deleted oligodendroglial tumours and likely contributes to radio- and chemosensitivity of these tumours.
Collapse
Affiliation(s)
- L M Dittmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kalinina J, Peng J, Ritchie JC, Van Meir EG. Proteomics of gliomas: initial biomarker discovery and evolution of technology. Neuro Oncol 2011; 13:926-42. [PMID: 21852429 DOI: 10.1093/neuonc/nor078] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gliomas are a group of aggressive brain tumors that diffusely infiltrate adjacent brain tissues, rendering them largely incurable, even with multiple treatment modalities and agents. Mostly asymptomatic at early stages, they present in several subtypes with astrocytic or oligodendrocytic features and invariably progress to malignant forms. Gliomas are difficult to classify precisely because of interobserver variability during histopathologic grading. Identifying biological signatures of each glioma subtype through protein biomarker profiling of tumor or tumor-proximal fluids is therefore of high priority. Such profiling not only may provide clues regarding tumor classification but may identify clinical biomarkers and pathologic targets for the development of personalized treatments. In the past decade, differential proteomic profiling techniques have utilized tumor, cerebrospinal fluid, and plasma from glioma patients to identify the first candidate diagnostic, prognostic, predictive, and therapeutic response markers, highlighting the potential for glioma biomarker discovery. The number of markers identified, however, has been limited, their reproducibility between studies is unclear, and none have been validated for clinical use. Recent technological advancements in methodologies for high-throughput profiling, which provide easy access, rapid screening, low sample consumption, and accurate protein identification, are anticipated to accelerate brain tumor biomarker discovery. Reliable tools for biomarker verification forecast translation of the biomarkers into clinical diagnostics in the foreseeable future. Herein we update the reader on the recent trends and directions in glioma proteomics, including key findings and established and emerging technologies for analysis, together with challenges we are still facing in identifying and verifying potential glioma biomarkers.
Collapse
Affiliation(s)
- Juliya Kalinina
- Laboratory of Molecular Neuro-Oncology, Departments of Neurosurgery, Hematology and Medical Oncology, School of Medicine, and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
15
|
|
16
|
Wilms I, Voss B, Hess WR, Leichert LI, Narberhaus F. Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein. Mol Microbiol 2011; 80:492-506. [PMID: 21320185 DOI: 10.1111/j.1365-2958.2011.07589.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wounded plants activate a complex defence programme in response to Agrobacterium tumefaciens. They synthesize the non-proteinogenic amino acid γ-aminobutyric acid (GABA), which stimulates degradation of the quorum sensing signal N-(3-oxo-octanoyl) homoserine lactone. GABA is transported into A. tumefaciens via an ABC transporter dependent on the periplasmic binding protein Atu2422. We demonstrate that expression of atu2422 and two other ABC transporter genes is downregulated by the conserved small RNA (sRNA) AbcR1 (for ABC regulator). AbcR1 is encoded in tandem with another sRNA, which is similar in sequence and structure. Both sRNAs accumulate during stationary phase but only the absence of AbcR1 resulted in significant accumulation of Atu2422 and increased GABA import. AbcR1 inhibits initiation of atu2422 translation by masking its Shine-Dalgarno sequence and thereby reduces stability of the atu2422 transcript. It is the first described bacterial sRNA that controls uptake of a plant-generated signalling molecule. Given that similar sRNAs and ABC transporter genes are present in various Rhizobiaceae and in Brucella, it is likely that such sRNA-mediated control impacts a number of host-microbe interactions.
Collapse
Affiliation(s)
- Ina Wilms
- Lehrstuhl für Biologie der Mikroorganismen Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
17
|
Wiethaus J, Busch AWU, Kock K, Leichert LI, Herrmann C, Frankenberg-Dinkel N. CpeS is a lyase specific for attachment of 3Z-PEB to Cys82 of {beta}-phycoerythrin from Prochlorococcus marinus MED4. J Biol Chem 2010; 285:37561-9. [PMID: 20876568 DOI: 10.1074/jbc.m110.172619] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to the majority of cyanobacteria, the unicellular marine cyanobacterium Prochlorococcus marinus MED4 uses an intrinsic divinyl-chlorophyll-dependent light-harvesting system for photosynthesis. Despite the absence of phycobilisomes, this high-light adapted strain possesses β-phycoerythrin (CpeB), an S-type lyase (CpeS), and enzymes for the biosynthesis of phycoerythrobilin (PEB) and phycocyanobilin. Of all linear tetrapyrroles synthesized by Prochlorococcus including their 3Z- and 3E-isomers, CpeS binds both isomers of PEB and its biosynthetic precursor 15,16-dihydrobiliverdin (DHBV). However, dimerization of CpeS is independent of bilins, which are tightly bound in a complex at a ratio of 1:1. Although bilin binding by CpeS is fast, transfer to CpeB is rather slow. CpeS is able to attach 3E-PEB and 3Z-PEB to dimeric CpeB but not DHBV. CpeS transfer of 3Z-PEB exclusively yields correctly bound βCys(82)-PEB, whereas βCys(82)-DHBV is a side product of 3E-PEB transfer. Spontaneous 3E- and 3Z-PEB addition to CpeB is faulty, and products are in both cases βCys(82)-DHBV and likely a PEB bound at βCys(82) in a non-native configuration. Our data indicate that CpeS is specific for 3Z-PEB transfer to βCys(82) of phycoerythrin and essential for the correct configuration of the attachment product.
Collapse
Affiliation(s)
- Jessica Wiethaus
- Department of Physiology of Microorganisms, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|