1
|
Yang L, Niu Z, Ma Z, Wu X, Vong CT, Li G, Feng Y. Exploring the clinical implications and applications of exosomal miRNAs in gliomas: a comprehensive study. Cancer Cell Int 2024; 24:323. [PMID: 39334350 PMCID: PMC11437892 DOI: 10.1186/s12935-024-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas are aggressive brain tumors associated with poor prognosis and limited treatment options due to their invasive nature and resistance to current therapeutic modalities. Research suggests that exosomal microRNAs have emerged as key players in intercellular communication within the tumor microenvironment, influencing tumor progression and therapeutic responses. Exosomal microRNAs (miRNAs), small non-coding RNAs, are crucial in glioma development, invasion, metastasis, angiogenesis, and immune evasion by binding to target genes. This comprehensive review examines the clinical relevance and implications of exosomal miRNAs in gliomas, highlighting their potential as diagnostic biomarkers, therapeutic targets and prognosis biomarker. Additionally, we also discuss the limitations of current exsomal miRNA treatments and address challenges and propose future directions for leveraging exosomal miRNAs in precision oncology for glioma management.
Collapse
Affiliation(s)
- Liang Yang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhen Niu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhixuan Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaojie Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
| | - Ying Feng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Nie J, Li Q, Yin H, Yang J, Li M, Li Q, Fan X, Zhao Q, Wen Z. NPS-2143 inhibit glioma progression by suppressing autophagy through mediating AKT-mTOR pathway. J Cell Mol Med 2024; 28:e18221. [PMID: 38509759 PMCID: PMC10955153 DOI: 10.1111/jcmm.18221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Gliomas are the most common tumours in the central nervous system. In the present study, we aimed to find a promising anti-glioma compound and investigate the underlying molecular mechanism. Glioma cells were subjected to the 50 candidate compounds at a final concentration of 10 μM for 72 h, and CCK-8 was used to evaluate their cytotoxicity. NPS-2143, an antagonist of calcium-sensing receptor (CASR), was selected for further study due to its potent cytotoxicity to glioma cells. Our results showed that NPS-2143 could inhibit the proliferation of glioma cells and induce G1 phase cell cycle arrest. Meanwhile, NPS-2143 could induce glioma cell apoptosis by increasing the caspase-3/6/9 activity. NPS-2143 impaired the immigration and invasion ability of glioma cells by regulating the epithelial-mesenchymal transition process. Mechanically, NPS-2143 could inhibit autophagy by mediating the AKT-mTOR pathway. Bioinformatic analysis showed that the prognosis of glioma patients with low expression of CASR mRNA was better than those with high expression of CASR mRNA. Gene set enrichment analysis showed that CASR was associated with cell adhesion molecules and lysosomes in glioma. The nude mice xenograft model showed NPS-2143 could suppress glioma growth in vivo. In conclusion, NPS-2143 can suppress the glioma progression by inhibiting autophagy.
Collapse
Affiliation(s)
- Jia‐Li Nie
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Qi Li
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Hai‐Tang Yin
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Ji‐Hong Yang
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Ming Li
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Qin Li
- Centre of Clinical TrialsAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
| | - Xing‐Hua Fan
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| | - Qing‐Qing Zhao
- Clinical Research CenterAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
| | - Zhi‐Peng Wen
- Department of PharmacyAffiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- College of PharmacyGuizhou Medical UniversityGuiyangP.R. China
| |
Collapse
|
3
|
Isa AI. Exploring signaling pathway crosstalk in glioma by mapping miRNA and WNT pathways: A review. Int J Biol Macromol 2024; 257:128722. [PMID: 38092099 DOI: 10.1016/j.ijbiomac.2023.128722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Glioma is a significant healthcare burden; nevertheless, the particular genetic regulatory mechanism underpinning its onset and progression is still unknown. Recent research has focused in large part on trying to determine the underlying molecular pathways that contribute to the malignancy of this disease because of the difficulties in treating it. Many tumors have been linked to changes in the expression of microRNAs (miRNAs). miRNAs play a critical role in cancer development by controlling a wide variety of targets and signaling cascades. A rising body of evidence emphasizes WNT pathway dysregulation in glioma, despite the fact that it is dysregulated in many malignancies. Here, we give a detailed analysis of the roles played by miRNAs in the WNT pathway by glioma. We also demonstrate how the WNT pathway cooperates with miRNAs to control a variety of functions, including cell proliferation, invasion, migration, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Adamu Imam Isa
- Department of Physiology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| |
Collapse
|
4
|
Ghafouri-Fard S, Safarzadeh A, Hassani Fard Katiraei S, Hussen BM, Hajiesmaeili M. Diverse functions of miR-328 in the carcinogenesis. Pathol Res Pract 2023; 251:154896. [PMID: 37852016 DOI: 10.1016/j.prp.2023.154896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
MicroRNA-328 (miR-328) is an RNA gene that is primarily associated with lung cancer, and its encoding gene is located on 16q22.1. Expression of miR-328 has been observed in lung and esophagus tissues based on RNAseq data. Although several studies have aimed at the detection of miR-328 levels in tumor tissues, there is an obvious discrepancy between the results of these studies. Even in a certain type of cancer, some studies have reported up-regulation of miR-328 in cancerous tissues versus control tissues, while others have reported its down-regulation. This discrepancy might be attributed to different stages/grades of tumor tissues or other clinical characteristics. This review article focuses on the available literature to explore the functions of miR-328 in the development of human carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Safarzadeh
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammadreza Hajiesmaeili
- Anesthesia and Critical Care Department, Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
6
|
Liu T, Ma J, Hou D, Wang W, Cao H. Haplotype-GGGT in long non-coding RNA MALAT1 inhibits brain metastatic lung cancer and lymph nodes of lung cancer via the MALAT1/miR-328/KATNB1. Aging (Albany NY) 2023; 15:1918-1930. [PMID: 36934373 PMCID: PMC10085600 DOI: 10.18632/aging.204563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/15/2023] [Indexed: 03/20/2023]
Abstract
The up-regulation of Katanin P8 has been reported to be correlated with a larger tumor size and lymph node metastasis in non-small-cell lung cancer (NSCLC) patients. And lncRNA MALAT1 was demonstrated to promote the proliferation of chronic myeloid leukemia cells via modulating miR-328. 135 lung cancer patients were divided into 6 groups according to their genotypes of MALAT1. The expression of KATNB1 was negatively correlated with the GGGT genotype of MALAT1. Decreased lymph node size and tumor size of brain metastatic lung were observed in patients with GGGT genotype of MALAT1. The luciferase activities of MALAT1 and KATNB1 were remarkably suppressed by miR-328 in A549 and H460. And the down-regulation of MALAT1 or up-regulation of miR-328 significantly repressed the KATNB1 expression in A549 and H460 cells. MALAT1 expression was reduced in patients carrying haplotype GGGT. A signaling pathway of MALAT1/miR-328/KATNB1 was established to explain the down-regulation of KATNB1 mRNA in patients carrying haplotype GGGT and reduced lymph node size in lung cancer and tumor size in brain metastatic lung cancer.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianpeng Ma
- Department of Magnetic Resonance Imaging, Dingbian County People’s Hospital, Dingbian, Yulin, Shaanxi 718600, China
| | - Dongmei Hou
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Hetao Cao
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
7
|
Chen L, Gong X, Huang M. Marsdenia tenacissima extract prevents the malignant progression of glioma through upregulating lncRNA MEG3 and SFRP1-dependent inhibition of Wnt/β-catenin pathway. CNS Neurosci Ther 2023; 29:1272-1289. [PMID: 36756719 PMCID: PMC10068475 DOI: 10.1111/cns.14100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND/AIM Recent studies have highlighted the tumor-suppressive effect of Marsdenia tenacissima extract (MTE) on human cancers. This research unveils the potential impact of MTE on glioma and ascertains the relevant molecular mechanisms. METHODS Glioma cells were treated with MTE, with normal human astrocytes (NHAs) as controls. A battery of function experiments, including the CCK-8 viability test, colony formation assay, scratch migration assay, and Transwell invasion assay, was executed to address the responses of glioma cells to MTE treatment and gain or loss of function of lncMEG3, miR-542-3p, and SFRP1. FISH, RIP, and dual-luciferase reporter assays were adopted for assessing gene interactions. U251-GFP-Luc cells were delivered into nude mice through intracranial injection to develop an orthotopic glioma model for in vivo validation. RESULTS 200 mg/mL MTE could suppress the proliferating, migrating, and invading properties of glioma cells but not affect those of NHAs. MTE treatment enhanced the expression of lncMEG3, which competes with SFRP1 for binding miR-542-3p. SFRP1 could inactivate the Wnt/β-catenin pathway. Animal experimentation substantiated the antitumor activity and mechanism of MTE in nude mice. CONCLUSIONS MTE suppresses glioma via the lncMEG3/miR-542-3p/SFRP1/Wnt/β-catenin axis. These findings contribute to a theoretical basis for the use of MTE for glioma patients.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Mengyi Huang
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
8
|
Wang Z, Xie W, Guan H. The diagnostic, prognostic role and molecular mechanism of miR-328 in human cancer. Biomed Pharmacother 2023; 157:114031. [PMID: 36413837 DOI: 10.1016/j.biopha.2022.114031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022] Open
Abstract
MicroRNA are non-coding small RNAs that bind to their target mRNA and cause mRNA degradation or translation inhibition. MiRNA dysregulation is linked to a variety of human cancers and has a role in the genesis and development of cancer pathology. MiR-328 has been reported to be involved in various human cancers. And miR-328 is considered a key regulator in human cancer. It participates in biological processes such as proliferation, apoptosis, invasion, migration, and EMT. The present review will combine the basic and clinical studies to find that miR-328 promotes tumorigenesis and metastasis in human cancer. And we will describe the diagnostic, prognostic, and therapeutic value of miR-328 in various human cancers.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Hongzai Guan
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| |
Collapse
|
9
|
Jiang P, Wei K, Chang C, Zhao J, Zhang R, Xu L, Jin Y, Xu L, Shi Y, Guo S, Schrodi SJ, He D. SFRP1 Negatively Modulates Pyroptosis of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis: A Review. Front Immunol 2022; 13:903475. [PMID: 35795672 PMCID: PMC9251540 DOI: 10.3389/fimmu.2022.903475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022] Open
Abstract
Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP family. As a primitive gene regulating cell growth, development and transformation, SFRP1 is widely expressed in human cells, including various cancer cells and fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves epigenetic and other mechanisms, and participates in biological behaviors such as cell proliferation, migration and cell pyroptosis, which leads to disease progression and poor prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and summarize different experimental platforms and recent research results. These are helpful for understanding the biological characteristics of SFRP1 in RA, especially the mechanism by which SFRP1 regulates RA-FLS pyroptosis through Wnt/β-catenin and Notch signaling pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which may be considered as a promising biomarker and therapeutic target of RA.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yehua Jin
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Sun Y, Lv Y, Li Y, Li J, Liu J, Luo L, Zhang C, Zhang W. Maternal genetic effect on apoptosis of ovarian granulosa cells induced by cadmium. Food Chem Toxicol 2022; 165:113079. [PMID: 35525383 DOI: 10.1016/j.fct.2022.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
To investigate the maternal genetic effects of cadmium (Cd) -induced apoptotic in ovarian granulosa cells (OGCs). Herein, pregnant Sprague-Dawley (SD) rats were treated with CdCl2 from day 1 to day 20, F1 and F2 female rats were mated with untreated males to produce F2 and F3 generations. Under this model, significant apoptotic changes were observed in F1 OGCs induced by Cd (Liu et al., 2021). In this study, no apoptotic bodies were found in F2 while the mitochondrial membrane potential level decreased significantly but not in F3. Moreover, significant changes in bcl-xl and Cle-CASPASE-9/Pro-CASPASE-9 ratio were observed in F2 which disappears in F3. The DNA methylation sequencing and microRNAs (miRNAs) microarray reveals different gene methylation and miRNAs changes in F2 and F3. Notably, miR-132-3p, miR-199a-5p, and miR-1949 were upregulated in F1 while downregulated in F2 and F3 in which apoptosis gradually disappeared. Further, miRNA maturation-related genes and transcription factors have different expression patterns in F1-F3. These results indicate that maternal genetic intergenerational/transgenerational effect of Cd-induced OGCs apoptotic was significantly attenuated and disappeared, which was related to self-repair regulation of apoptosis-related genes. The changes in apoptosis-related miRNAs and DNA methylation may be important, and the role of transcription factors deserve attention.
Collapse
Affiliation(s)
- Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yake Lv
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jingwen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingfeng Luo
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chenyun Zhang
- Department of Health Law and Policy, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
11
|
Liu G, Rong X, Lin X, Wang H, He L, Peng Y. Construction of a novel microRNA-based signature for predicting the prognosis of glioma. Int J Neurosci 2022:1-11. [PMID: 35353669 DOI: 10.1080/00207454.2021.1993848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Background and purpose: Glioma is a frequent primary brain tumor. MicroRNAs (miRNA) have been shown to potentially play a crucial part in tumor development. Based on miRNAs and clinical factors, a model was constructed to predict the glioma prognosis. Methods: The miRNA expression profiles of glioma come from The Cancer Genome Atlas (TCGA, training group) and Chinese Glioma Genome Atlas (CGGA, validation group). Regression analyses of Cox and Lasso were applied to identity miRNAs associated with glioma prognosis in the TCGA database. The miRNAs were combined with clinical factors to construct individualized prognostic prediction models, whose performance was validated in the CGGA database. The role of miRNA in glioma development was investigated by in vitro experiments.Results: We identified five key miRNAs associated with glioma prognosis and constructed a prediction model. The area under ROC curve for predicting 3-year survival of glioma patients in the TCGA and CGGA groups was 0.844 and 0.770, respectively. The nomogram constructed using the miRNA risk scores and clinical factors showed high accuracy of prediction in the TCGA group (C-index of 0.820) and the CGGA group (C-index of 0.722). The miR-196b-5p altered the migration, proliferation, invasion, and apoptosis of glioma cells by regulating target genes, according to in vitro experiments.Conclusions: A miRNA-based individualized prognostic prediction model was constructed for glioma and miR-196b-5p was identified as a potential biomarker of glioma development.
Collapse
Affiliation(s)
- Gaoxin Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinrou Lin
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
12
|
Holzgreve A, Pötter D, Brendel M, Orth M, Weidner L, Gold L, Kirchner MA, Bartos LM, Unterrainer LM, Unterrainer M, Steiger K, von Baumgarten L, Niyazi M, Belka C, Bartenstein P, Riemenschneider MJ, Lauber K, Albert NL. Longitudinal [ 18F]GE-180 PET Imaging Facilitates In Vivo Monitoring of TSPO Expression in the GL261 Glioblastoma Mouse Model. Biomedicines 2022; 10:biomedicines10040738. [PMID: 35453488 PMCID: PMC9030822 DOI: 10.3390/biomedicines10040738] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
The 18 kDa translocator protein (TSPO) is increasingly recognized as an interesting target for the imaging of glioblastoma (GBM). Here, we investigated TSPO PET imaging and autoradiography in the frequently used GL261 glioblastoma mouse model and aimed to generate insights into the temporal evolution of TSPO radioligand uptake in glioblastoma in a preclinical setting. We performed a longitudinal [18F]GE-180 PET imaging study from day 4 to 14 post inoculation in the orthotopic syngeneic GL261 GBM mouse model (n = 21 GBM mice, n = 3 sham mice). Contrast-enhanced computed tomography (CT) was performed at the day of the final PET scan (±1 day). [18F]GE-180 autoradiography was performed on day 7, 11 and 14 (ex vivo: n = 13 GBM mice, n = 1 sham mouse; in vitro: n = 21 GBM mice; n = 2 sham mice). Brain sections were also used for hematoxylin and eosin (H&E) staining and TSPO immunohistochemistry. [18F]GE-180 uptake in PET was elevated at the site of inoculation in GBM mice as compared to sham mice at day 11 and later (at day 14, TBRmax +27% compared to sham mice, p = 0.001). In GBM mice, [18F]GE-180 uptake continuously increased over time, e.g., at day 11, mean TBRmax +16% compared to day 4, p = 0.011. [18F]GE-180 uptake as depicted by PET was in all mice co-localized with contrast-enhancement in CT and tissue-based findings. [18F]GE-180 ex vivo and in vitro autoradiography showed highly congruent tracer distribution (r = 0.99, n = 13, p < 0.001). In conclusion, [18F]GE-180 PET imaging facilitates non-invasive in vivo monitoring of TSPO expression in the GL261 GBM mouse model. [18F]GE-180 in vitro autoradiography is a convenient surrogate for ex vivo autoradiography, allowing for straightforward identification of suitable models and scan time-points on previously generated tissue sections.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Dennis Pötter
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
| | - Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (L.W.); (M.J.R.)
| | - Lukas Gold
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Maximilian A. Kirchner
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Laura M. Bartos
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Lena M. Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
| | - Marcus Unterrainer
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Katja Steiger
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Louisa von Baumgarten
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
- Department of Neurosurgery, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Markus J. Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany; (L.W.); (M.J.R.)
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (M.O.); (M.N.); (C.B.); (K.L.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; (A.H.); (D.P.); (M.B.); (L.G.); (M.A.K.); (L.M.B.); (L.M.U.); (P.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (K.S.); (L.v.B.)
- Correspondence:
| |
Collapse
|
13
|
Huang H, Chen H, Liang X, Chen X, Chen X, Chen C. Upregulated miR-328-3p and its high risk in atrial fibrillation: A systematic review and meta-analysis with meta-regression. Medicine (Baltimore) 2022; 101:e28980. [PMID: 35244069 PMCID: PMC8896476 DOI: 10.1097/md.0000000000028980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/11/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Several studies have shown miR-328-3p increased in atrial fibrillation (AF), but some researches indicated no difference or even decreased. This inconsistent result confuses researchers, and it is urgent to know the truth. This study is to assess the association between miR-328-3p levels in plasma/atrial tissue and patients with AF. METHODS PubMed, EMBASE, Scopus, Web of Science, and ProQuest were searched from inception to February 1, 2021. The standardized mean differences (SMD) with their 95% confidence interval (CI) were calculated to evaluate the association between miR-328-3p levels and AF. RESULTS Twelve studies met the inclusion criteria and were used for our meta-analysis. Overall, the levels of miR-328-3p were higher in patients with AF than in the control group (SMD = 0.69, 95% CI [0.10, 1.28], P = .022). After adjustment, the overall SMD was 0.82 (95% CI [0.22, 1.42], P = .007). Sensitivity analysis indicated that the results were stable, and the trim-fill analysis showed that the results were credible. Subgroup analyses showed that AF patients, n ≥ 30, various of comorbidity, articles published earlier, and Asia groups had higher levels of expression of miR-328-3p. CONCLUSIONS High levels of miR-328-3p are significantly associated with an increased risk of AF. It implies that miR-328-3p played an important role in diagnosis and may serve as a potential momentous, and useful biomarker to identify AF.
Collapse
Affiliation(s)
- Haitao Huang
- Department of Cardiology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hao Chen
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiao Liang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiuting Chen
- Department of Cardiology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaoxin Chen
- Department of Cardiology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Can Chen
- Department of Cardiology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
14
|
Ji Y, You Y, Wu Y, Wang M, He Q, Zhou X, Chen L, Sun X, Liu Y, Fu X, Kwan HY, Zuo Q, Luo R, Zhao X. Overexpression of miR-328-5p influences cell growth and migration to promote NSCLC progression by targeting LOXL4. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:301. [PMID: 35433959 PMCID: PMC9011230 DOI: 10.21037/atm-22-345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
Background Lung cancer is the leading cause of cancer-associated mortality worldwide, and most lung cancers are classified as non-small cell lung cancer (NSCLC). MiR-328 influence the progression of multiple tumors, but the role of miR-328-5p in NSCLC has not been elucidated. The aim of this study was to illuminate the oncogenic role and potential molecular mechanisms of the miR-328-5p and lysyl oxidase like 4 (LOXL4) in NSCLC. Methods Expression of miR-328-5p was detected by real-time quantitative polymerase chain reaction (qRT-PCR) in tumor and non-tumor adjacent tissues. After Lentivirus-miR-328-5p was employed to intervene this miRNA in NSCLC cell lines, RT-qPCR was used to detect the expression levels of miR-328-5p. Cell Counting Kit-8 (CCK-8), cell colony formation, flow cytometry, wound healing, Transwell assays were used to determine the malignant phenotypes of NSCLC cells. Nude mice models of subcutaneous tumors were established to observe the effect of miR-328-5p on tumorigenesis. Targeting the 3'UTR of LOXL4 by miR-328-5p was verified by integrated analysis including transcriptome sequencing, dual-luciferase and western-blot assays. Results High miR-328-5p level was observed in NSCLC cells from The Cancer Genome Atlas (TCGA) database and tumor tissues collected from NSCLC patients. Overexpressed miR-328-5p promoted NSCLC cell proliferation, survival, and migration, and promoted tumor growth in vivo. Knockdown of miR-328-5p suppressed tumorigenic activities. Transcriptome sequencing analysis revealed that LOXL4 was downregulated by miR-328-5p, which was confirmed by dual-luciferase reporter and western-blot assays. Conclusions miR-328-5p showed targeted regulation of LOXL4 to promote cell proliferation and migration in NSCLC.
Collapse
Affiliation(s)
- Yanzhao Ji
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China.,Department of Nephrology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Taiyuan, China
| | - Yanting You
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yifen Wu
- Department of Oncology, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Min Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuxing He
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liqian Chen
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Sun
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanyan Liu
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Luo
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoshan Zhao
- Syndrome Laboratory of Integrated of Chinese and Western Medicine, School of Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Spectrum of microRNAs and their target genes in cancer: intervention in diagnosis and therapy. Mol Biol Rep 2022; 49:6827-6846. [PMID: 35031927 DOI: 10.1007/s11033-021-07040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022]
Abstract
Till date, several groups have studied the mechanism of microRNA (miRNA) biogenesis, processing, stability, silencing, and their dysregulation in cancer. The miRNA coding genes recurrently go through abnormal amplification, deletion, transcription, and epigenetic regulation in cancer. Some miRNAs function as tumor promoters while few others are tumor suppressors based on the transcriptional regulation of target genes. A review of miRNAs and their target genes in a wide range of cancers is attempted in this article, which may help in the development of new diagnostic tools and intervention therapies. The contribution of miRNAs for drug sensitivity or resistance in cancer therapy and opportunities of miRNAs in cancer prognosis or diagnosis and therapy is also presented in detail.
Collapse
|
16
|
Regulatory interplay between microRNAs and WNT pathway in glioma. Biomed Pharmacother 2021; 143:112187. [PMID: 34560532 DOI: 10.1016/j.biopha.2021.112187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Glioma is one of the most common neoplasms of the central nervous system with a poor survival. Due to the obstacles in treating this disease, a part of recent studies mainly focuses on identifying the underlying molecular mechanisms that contribute to its malignancy. Altering microRNAs (miRNAs) expression pattern has been identified obviously in many cancers. Through regulating various targets and signaling pathways, miRNAs play a pivotal role in cancer progression. As one of the essential signaling pathways, WNT pathway is dysregulated in many cancers, and a growing body of evidence emphasis its dysregulation in glioma. Herein, we provide a comprehensive review of miRNAs involved in WNT pathway in glioma. Moreover, we show the interplay between miRNAs and WNT pathway in regulating different processes such as proliferation, invasion, migration, radio/chemotherapy resistance, and epithelial-mesenchymal-transition. Then, we introduce several drugs and treatments against glioma, which their effects are mediated through the interplay of WNT pathway and miRNAs.
Collapse
|
17
|
Zhang Y, Zhang X, Lu M, Zou X. Ceramide-1-phosphate and its transfer proteins in eukaryotes. Chem Phys Lipids 2021; 240:105135. [PMID: 34499882 DOI: 10.1016/j.chemphyslip.2021.105135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Ceramide-1-phosphate (C1P) is a bioactive phosphorylated sphingolipid (SL), produced through the direct phosphorylation of ceramide by ceramide kinase. It plays important roles in regulating cell survival, migration, apoptosis and autophagy and is involved in inflammasome assembly/activation, which can stimulate group IVA cytosolic phospholipase A2α and subsequently increase the levels of arachidonic acid and pro-inflammatory cytokines. Human C1P transfer protein (CPTP) can selectively transport C1P from the Golgi apparatus to specific cellular sites through a non-vesicular mechanism. Human CPTP also affects specific SL levels, thus regulating cell SL homeostasis. In addition, human CPTP plays a crucial role in the regulation of autophagy, inflammation and cell death; thus, human CPTP is closely associated with autophagy and inflammation-related diseases such as cardiovascular and neurodegenerative diseases, and cancers. Therefore, illustrating the functions and mechanisms of human CPTP is important for providing the research foundations for targeted therapy. The key human CPTP residues for C1P recognition and binding are highly conserved in eukaryotic orthologs, while the human CPTP homolog in Arabidopsis (accelerated cell death 11) also exhibits selective inter-membrane transfer of phyto-C1P. These results demonstrate that C1P transporters play fundamental roles in SL metabolism in cells. The present review summarized novel findings of C1P and its TPs in eukaryotes.
Collapse
Affiliation(s)
- Yanqun Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xiangyu Zhang
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China
| | - Mengyun Lu
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China
| | - Xianqiong Zou
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China; College of Biotechnology, Guilin Medical University, Guilin, 541100, PR China.
| |
Collapse
|
18
|
Vallée A, Lecarpentier Y, Vallée JN. Opposed Interplay between IDH1 Mutations and the WNT/β-Catenin Pathway: Added Information for Glioma Classification. Biomedicines 2021; 9:biomedicines9060619. [PMID: 34070746 PMCID: PMC8229353 DOI: 10.3390/biomedicines9060619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022] Open
Abstract
Gliomas are the main common primary intraparenchymal brain tumor in the central nervous system (CNS), with approximately 7% of the death caused by cancers. In the WHO 2016 classification, molecular dysregulations are part of the definition of particular brain tumor entities for the first time. Nevertheless, the underlying molecular mechanisms remain unclear. Several studies have shown that 75% to 80% of secondary glioblastoma (GBM) showed IDH1 mutations, whereas only 5% of primary GBM have IDH1 mutations. IDH1 mutations lead to better overall survival in gliomas patients. IDH1 mutations are associated with lower stimulation of the HIF-1α a, aerobic glycolysis and angiogenesis. The stimulation of HIF-1α and the process of angiogenesis appears to be activated only when hypoxia occurs in IDH1-mutated gliomas. In contrast, the observed upregulation of the canonical WNT/β-catenin pathway in gliomas is associated with proliferation, invasion, aggressive-ness and angiogenesis.. Molecular pathways of the malignancy process are involved in early stages of WNT/β-catenin pathway-activated-gliomas, and this even under normoxic conditions. IDH1 mutations lead to decreased activity of the WNT/β-catenin pathway and its enzymatic targets. The opposed interplay between IDH1 mutations and the canonical WNT/β-catenin pathway in gliomas could participate in better understanding of the observed evolution of different tumors and could reinforce the glioma classification.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Clinical Research and Innovation, Foch Hospital, 92150 Suresnes, France
- Correspondence:
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l’Est Francilien (GHEF), 77100 Meaux, France;
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80000 Amiens, France;
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
19
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
20
|
Salem NA, Mahnke AH, Tseng AM, Garcia CR, Jahromi HK, Geoffroy CG, Miranda RC. A novel Oct4/Pou5f1-like non-coding RNA controls neural maturation and mediates developmental effects of ethanol. Neurotoxicol Teratol 2021; 83:106943. [PMID: 33221301 PMCID: PMC7856281 DOI: 10.1016/j.ntt.2020.106943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/28/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023]
Abstract
Prenatal ethanol exposure can result in loss of neural stem cells (NSCs) and decreased brain growth. Here, we assessed whether a noncoding RNA (ncRNA) related to the NSC self-renewal factor Oct4/Pou5f1, and transcribed from a processed pseudogene locus on mouse chromosome 9 (mOct4pg9), contributed to the loss of NSCs due to ethanol. Mouse fetal cortical-derived NSCs, cultured ex vivo to mimic the early neurogenic environment of the fetal telencephalon, expressed mOct4pg9 ncRNA at significantly higher levels than the parent Oct4/Pou5f1 mRNA. Ethanol exposure increased expression of mOct4pg9 ncRNA, but decreased expression of Oct4/Pou5f1. Gain- and loss-of-function analyses indicated that mOct4pg9 overexpression generally mimicked effects of ethanol exposure, resulting in increased proliferation and expression of transcripts associated with neural maturation. Moreover, mOct4pg9 associated with Ago2 and with miRNAs, including the anti-proliferative miR-328-3p, whose levels were reduced following mOct4pg9 overexpression. Finally, mOct4pg9 inhibited Oct4/Pou5f1-3'UTR-dependent protein translation. Consistent with these observations, data from single-cell transcriptome analysis showed that mOct4pg9-expressing progenitors lack Oct4/Pou5f1, but instead overexpress transcripts for increased mitosis, suggesting initiation of transit amplification. Collectively, these data suggest that the inhibitory effects of ethanol on brain development are explained, in part, by a novel ncRNA which promotes loss of NSC identity and maturation.
Collapse
Affiliation(s)
- Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cadianna R Garcia
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Hooman K Jahromi
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA; Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
21
|
Narayan V, Shivapurkar N, Baraniuk JN. Informatics Inference of Exercise-Induced Modulation of Brain Pathways Based on Cerebrospinal Fluid Micro-RNAs in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. NETWORK AND SYSTEMS MEDICINE 2020; 3:142-158. [PMID: 33274349 PMCID: PMC7703497 DOI: 10.1089/nsm.2019.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction: The post-exertional malaise of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) was modeled by comparing micro-RNA (miRNA) in cerebrospinal fluid from subjects who had no exercise versus submaximal exercise. Materials and Methods: Differentially expressed miRNAs were examined by informatics methods to predict potential targets and regulatory pathways affected by exercise. Results: miR-608, miR-328, miR-200a-5p, miR-93-3p, and miR-92a-3p had higher levels in subjects who rested overnight (nonexercise n=45) compared to subjects who had exercised before their lumbar punctures (n=15). The combination was examined in DIANA MiRpath v3.0, TarBase, Cytoscape, and Ingenuity software® to select the intersection of target mRNAs. DIANA found 33 targets that may be elevated after exercise, including TGFBR1, IGFR1, and CDC42. Adhesion and adherens junctions were the most frequent pathways. Ingenuity selected seven targets that had complementary mechanistic pathways involving GNAQ, ADCY3, RAP1B, and PIK3R3. Potential target cells expressing high levels of these genes included choroid plexus, neurons, and microglia. Conclusion: The reduction of this combination of miRNAs in cerebrospinal fluid after exercise suggested upregulation of phosphoinositol signaling pathways and altered adhesion during the post-exertional malaise of ME/CFS. Clinical Trial Registration Nos.: NCT01291758 and NCT00810225.
Collapse
Affiliation(s)
- Vaishnavi Narayan
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Narayan Shivapurkar
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - James N. Baraniuk
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
22
|
Tzaridis T, Reiners KS, Weller J, Bachurski D, Schäfer N, Schaub C, Hallek M, Scheffler B, Glas M, Herrlinger U, Wild S, Coch C, Hartmann G. Analysis of Serum miRNA in Glioblastoma Patients: CD44-Based Enrichment of Extracellular Vesicles Enhances Specificity for the Prognostic Signature. Int J Mol Sci 2020; 21:ijms21197211. [PMID: 33003586 PMCID: PMC7583802 DOI: 10.3390/ijms21197211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is a devastating disease, for which biomarkers allowing a prediction of prognosis are urgently needed. microRNAs have been described as potentially valuable biomarkers in cancer. Here, we studied a panel of microRNAs in extracellular vesicles (EVs) from the serum of glioblastoma patients and evaluated their correlation with the prognosis of these patients. The levels of 15 microRNAs in EVs that were separated by size-exclusion chromatography were studied by quantitative real-time PCR, followed by CD44 immunoprecipitation (SEC + CD44), and compared with those from the total serum of glioblastoma patients (n = 55) and healthy volunteers (n = 10). Compared to total serum, we found evidence for the enrichment of miR-21-3p and miR-106a-5p and, conversely, lower levels of miR-15b-3p, in SEC + CD44 EVs. miR-15b-3p and miR-21-3p were upregulated in glioblastoma patients compared to healthy subjects. A significant correlation with survival of the patients was found for levels of miR-15b-3p in total serum and miR-15b-3p, miR-21-3p, miR-106a-5p, and miR-328-3p in SEC + CD44 EVs. Combining miR-15b-3p in serum or miR-106a-5p in SEC + CD44 EVs with any one of the other three microRNAs in SEC + CD44 EVs allowed for a prognostic stratification of glioblastoma patients. We have thus identified four microRNAs in glioblastoma patients whose levels, in combination, can predict the prognosis for these patients.
Collapse
Affiliation(s)
- Theophilos Tzaridis
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53127 Bonn, Germany; (T.T.); (C.C.); (G.H.)
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, Partner Site Bonn, University Hospital Bonn, 53127 Bonn, Germany; (J.W.); (N.S.); (C.S.); (U.H.)
- Tumor Initiation & Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Katrin S Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53127 Bonn, Germany; (T.T.); (C.C.); (G.H.)
- Correspondence:
| | - Johannes Weller
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, Partner Site Bonn, University Hospital Bonn, 53127 Bonn, Germany; (J.W.); (N.S.); (C.S.); (U.H.)
| | - Daniel Bachurski
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, Partner Site Cologne, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany; (D.B.); (M.H.)
| | - Niklas Schäfer
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, Partner Site Bonn, University Hospital Bonn, 53127 Bonn, Germany; (J.W.); (N.S.); (C.S.); (U.H.)
| | - Christina Schaub
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, Partner Site Bonn, University Hospital Bonn, 53127 Bonn, Germany; (J.W.); (N.S.); (C.S.); (U.H.)
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, Partner Site Cologne, CECAD Center of Excellence on ‘‘Cellular Stress Responses in Aging-Associated Diseases’’, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany; (D.B.); (M.H.)
| | - Björn Scheffler
- DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), German Cancer Consortium (DKTK), DKFZ Heidelberg & Partner Site Univ Hospital Essen, 45147 Essen, Germany;
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology and West German Cancer Center (WTZ), German Cancer Consortium, University Hospital Essen, 45147 Essen, Germany;
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology, Center of Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf, Partner Site Bonn, University Hospital Bonn, 53127 Bonn, Germany; (J.W.); (N.S.); (C.S.); (U.H.)
| | - Stefan Wild
- Miltenyi Biotec & Biomedicine GmbH, 51429 Bergisch Gladbach, Germany;
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53127 Bonn, Germany; (T.T.); (C.C.); (G.H.)
- Miltenyi Biotec & Biomedicine GmbH, 51429 Bergisch Gladbach, Germany;
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 53127 Bonn, Germany; (T.T.); (C.C.); (G.H.)
| |
Collapse
|
23
|
Therapeutically Significant MicroRNAs in Primary and Metastatic Brain Malignancies. Cancers (Basel) 2020; 12:cancers12092534. [PMID: 32906592 PMCID: PMC7564168 DOI: 10.3390/cancers12092534] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The overall survival of brain cancer patients remains grim, with conventional therapies such as chemotherapy and radiotherapy only providing marginal benefits to patient survival. Cancers are complex, with multiple pathways being dysregulated simultaneously. Non-coding RNAs such as microRNA (miRNAs) are gaining importance due to their potential in regulating a variety of targets implicated in the pathology of cancers. This could be leveraged for the development of targeted and personalized therapies for cancers. Since miRNAs can upregulate and/or downregulate proteins, this review aims to understand the role of these miRNAs in primary and metastatic brain cancers. Here, we discuss the regulatory mechanisms of ten miRNAs that are highly dysregulated in glioblastoma and metastatic brain tumors. This will enable researchers to develop miRNA-based targeted cancer therapies and identify potential prognostic biomarkers. Abstract Brain cancer is one among the rare cancers with high mortality rate that affects both children and adults. The most aggressive form of primary brain tumor is glioblastoma. Secondary brain tumors most commonly metastasize from primary cancers of lung, breast, or melanoma. The five-year survival of primary and secondary brain tumors is 34% and 2.4%, respectively. Owing to poor prognosis, tumor heterogeneity, increased tumor relapse, and resistance to therapies, brain cancers have high mortality and poor survival rates compared to other cancers. Early diagnosis, effective targeted treatments, and improved prognosis have the potential to increase the survival rate of patients with primary and secondary brain malignancies. MicroRNAs (miRNAs) are short noncoding RNAs of approximately 18–22 nucleotides that play a significant role in the regulation of multiple genes. With growing interest in the development of miRNA-based therapeutics, it is crucial to understand the differential role of these miRNAs in the given cancer scenario. This review focuses on the differential expression of ten miRNAs (miR-145, miR-31, miR-451, miR-19a, miR-143, miR-125b, miR-328, miR-210, miR-146a, and miR-126) in glioblastoma and brain metastasis. These miRNAs are highly dysregulated in both primary and metastatic brain tumors, which necessitates a better understanding of their role in these cancers. In the context of the tumor microenvironment and the expression of different genes, these miRNAs possess both oncogenic and/or tumor-suppressive roles within the same cancer.
Collapse
|
24
|
Lu F, Li C, Sun Y, Jia T, Li N, Li H. Upregulation of miR-1825 inhibits the progression of glioblastoma by suppressing CDK14 though Wnt/β-catenin signaling pathway. World J Surg Oncol 2020; 18:147. [PMID: 32605563 PMCID: PMC7325653 DOI: 10.1186/s12957-020-01927-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mounting evidences displayed that miRNAs play crucial roles in tumor initiation and development. However, the regulation and relevant mechanism of miR-1825 in glioblastoma (GBM) remain unclear. METHODS qRT-PCR was used to detect miR-1825 and CDK14 mRNA expression. Western blot was applied for testing protein levels (VEGF, E-cadherin, N-cadherin, vimentin, β-catenin, c-myc, p-c-Jun). MTT and transwell assays were used for detecting GBM cell progression, including cell viability, migration, and invasion. RESULTS The results showed that miR-1825 was decreased in GBM tissue specimens by qRT-PCR and it was confirmed as a prognostic marker of GBM by Kaplan-Meier survival analysis. Moreover, we also found that miR-1825 upregulation suppressed GBM cell viability, tumor growth, invasion, and migration. Furthermore, CDK14 was first identified as the direct target of miR-1825 by Luciferase reporter assay. CDK14 acted as an oncogene in GBM development by immunohistochemistry. In addition, Western blot analysis demonstrated that miR-1825 regulated Wnt/β-catenin signaling pathway in GBM development. CONCLUSION In conclusion, miR-1825 upregulation suppressed GBM progression by targeting CDK14 through Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Fengqin Lu
- Department of Geriatrics, Jinan Zhangqiu District Hospital of TCM, Jinan, 250200, China
| | - Chunhong Li
- Department of Public Health, Jinan Zhangqiu District Hospital of TCM, Jinan, 250200, China
| | - Yuping Sun
- Department of Neurology, the People's Hospital of Zhangqiu Area, Jinan, 250200, China
| | - Ting Jia
- Department of Gynaecology, the People's Hospital of Zhangqiu Area, Jinan, 250200, China
| | - Na Li
- Department of Radiology, the People's Hospital of Zhangqiu Area, Jinan, 250200, China
| | - Haiyan Li
- Department of Neurology, Qingdao Central Hospital, Qingdao University, No.127 Siliunan Road, Qingdao, 266042, China.
| |
Collapse
|
25
|
Lin J, Ding S, Xie C, Yi R, Wu Z, Luo J, Huang T, Zeng Y, Wang X, Xu A, Xiao J, Song Y, Zhang X. MicroRNA-4476 promotes glioma progression through a miR-4476/APC/β-catenin/c-Jun positive feedback loop. Cell Death Dis 2020; 11:269. [PMID: 32327666 PMCID: PMC7181615 DOI: 10.1038/s41419-020-2474-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Glioma has been a major healthcare burden; however, the specific molecular regulatory mechanism underlying its initiation and progression remains to be elucidated. Although it is known that many miRNAs are involved in the regulation of malignant phenotypes of glioma, the role of miR-4476 has not been reported yet. In the present study, we identify miR-4476 as an upregulated microRNA, which promotes cell proliferation, migration, and invasion in glioma. Further mechanistic analyses indicate that the adenomatous polyposis coli (APC), a negative regulator of the Wnt/β-catenin signaling pathway, is a direct target of miR-4476 and mediates the oncogenic effects of miR-4476 in glioma. C-Jun, a downstream effector of the Wnt/β-catenin signaling, is upregulated by miR-4476 overexpression. In turn, c-Jun could positively regulate miR-4476 expression by binding to the upstream of its transcription start site (TSS). Furthermore, in our clinical samples, increased miR-4476 is an unfavorable prognostic factor, and its expression positively correlates with c-Jun expression but negatively correlates with that of APC. In conclusion, our study demonstrates that miR-4476 acts as a tumor enhancer, directly targeting APC to stimulate its own expression and promoting the malignant phenotypes of glioma.
Collapse
Affiliation(s)
- Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Shengfeng Ding
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Cheng Xie
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Renhui Yi
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, Jiangxi, PR China
| | - Zhiyong Wu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Jie Luo
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Tengyue Huang
- Department of Neurosurgery, The First Affiliated Hospital of Gannan Medical University, 341000, Ganzhou, Jiangxi, PR China
| | - Yu Zeng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China.,Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 200072, Shanghai, PR China
| | - Xizhao Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China.,Department of Neurosurgery, The First Hospital of Quanzhou Affiliated to Fujian Medical University, 362000, Quanzhou, Fujian Province, PR China
| | - Anqi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China
| | - Jianqi Xiao
- Department of Neurosurgery, The First Hospital of Qiqihar City, 161005, Qiqihar, PR China.
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China.
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, PR China.
| |
Collapse
|
26
|
Silencing of p53 reduces cell migration in human Tenon's fibroblasts induced by TGF-β. Int Ophthalmol 2020; 40:1509-1516. [PMID: 32124130 DOI: 10.1007/s10792-020-01320-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Growth factors are considered as key molecules that participating in fibrosis formation. This research aimed to clarify potential effects of p53 on regulation of transforming growth factor β (TGF-β) and fibrosis formation and investigate the associated mechanisms. METHODS Vimentin was examined to identify human Tenon's fibroblasts (HTFs). p53-targeting small interfere RNA (siRNA) was synthesis and transfected into HTFs. Real-time PCR assay was utilized to evaluate p53 and microRNA-29b (miR-29b) expression. Immunocytochemical assay was used to observe TGF-β expression. The wound healing assay was conducted to evaluate migration of HTFs. Dual-luciferase assay was employed to identify interaction between p53 and miR-29b in HTFs. RESULTS Vimentin was extensively distributed in HTFs cells. HTFs at density of 5 × 104 cells/ml and 6 days exhibited the best growth. The p53 level in TGF-β treatment group was significantly higher compared to that in blank group (p < 0.01). miR-29b level in siRNA targeting p53 group was significantly increased compared to that in blank group (p < 0.01). siRNA targeting p53 could significantly inhibit HTFs migration compared to that in single TGF-β treating HTFs group (p < 0.01). Relative luciferase activity was significantly increased in p53 overexpressed HTFs compared to that in cells transfected with empty pcDNA3.0 plasmid (p < 0.01). CONCLUSIONS p53 inhibited expression of TGF-β, suppressed HTFs migration and inhibited HTFs growth, by reducing miR-29b expression and interacting with miR29b gene in HTFs.
Collapse
|
27
|
Role of Secreted Frizzled-Related Protein 1 in Early Mammary Gland Tumorigenesis and Its Regulation in Breast Microenvironment. Cells 2020; 9:cells9010208. [PMID: 31947616 PMCID: PMC7017175 DOI: 10.3390/cells9010208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mice, the lack of secreted frizzled-related protein 1 (SFRP1) is responsible for mammogenesis and hyperplasia, while, in bovines, its overexpression is associated with post-lactational mammary gland involution. Interestingly, there are no reports dealing with the role of SFRP1 in female involution. However, SFRP1 dysregulation is largely associated with human tumorigenesis in the literature. Indeed, the lack of SFRP1 is associated with both tumor development and patient prognosis. Considering the increased risk of breast tumor development associated with incomplete mammary gland involution, it is crucial to demystify the "grey zone" between physiological age-related involution and tumorigenesis. In this review, we explore the functions of SFRP1 involved in the breast involution processes to understand the perturbations driven by the disappearance of SFRP1 in mammary tissue. Moreover, we question the presence of recurrent microcalcifications identified by mammography. In bone metastases from prostate primary tumor, overexpression of SFRP1 results in an osteolytic response of the tumor cells. Hence, we explore the hypothesis of an osteoblastic differentiation of mammary cells induced by the lack of SFRP1 during lobular involution, resulting in a new accumulation of hydroxyapatite crystals in the breast tissue.
Collapse
|
28
|
Hu X, Tang J, Hu X, Bao P, Deng W, Wu J, Liang Y, Chen Z, Gao L, Tang Y. Silencing of Long Non-coding RNA HOTTIP Reduces Inflammation in Rheumatoid Arthritis by Demethylation of SFRP1. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 19:468-481. [PMID: 31902746 PMCID: PMC6948255 DOI: 10.1016/j.omtn.2019.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Abstract
Accumulating evidence suggests long non-coding RNAs (lncRNAs) play crucial roles in the pathogenesis of rheumatoid arthritis (RA). Here, we aimed to define the role of HOXA transcript at the distal tip (HOTTIP) in RA pathogenesis in relation to SFRP1 methylation and Wnt signaling pathway. HOTTIP was found highly expressed, and SFRP1 was hypermethylated in RA synovial fibroblasts (RASFs). Next, gain- or loss-of-function experiments were conducted in RASFs to explore the effects of HOTTIP on the biological behaviors of RASFs. Silencing of HOTTIP or overexpression of SFRP1 inhibited RASF proliferation, invasion, and migration, while enhancing apoptosis. The relationship among HOTTIP, SFRP1, and Dnmt3b was determined using methylation-specific PCR (MSP), bisulfite sequencing PCR (BSP), RNA pull-down, RNA immunoprecipitation (RIP), and chromatin immunoprecipitation (ChIP) assays. The regulatory mechanisms of HOTTIP/Dnmt3b/SFRP1 were explored by altering their expression in RASFs. It was noted that HOTTIP could induce SFRP1 promoter methylation through recruitment of Dnmt3b and activate the Wnt signaling pathway. Finally, a rat RA model was established in order to evaluate the in vivo effects of HOTTIP and SFRP1, which suggested that HOTTIP silencing or SFRP1 elevation inhibited the progression of RA in vivo. Our key findings demonstrate the anti-inflammatory ability of HOTTIP silencing in RA through SFRP1 promoter demethylation. These findings support HOTTIP as a candidate anti-arthritis target.
Collapse
Affiliation(s)
- Xumin Hu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Jianhua Tang
- Department of Spinal Surgery, Meizhou People's Hospital, Meizhou 514031, P.R. China
| | - Xuyun Hu
- Center for Medical Genetics, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, P.R. China
| | - Peng Bao
- Medical Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Weixi Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Jionglin Wu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Yuwei Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Zhipeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Liangbin Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China.
| | - Yong Tang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China.
| |
Collapse
|
29
|
Hillman Y, Mardamshina M, Pasmanik-Chor M, Ziporen L, Geiger T, Shomron N, Fishelson Z. MicroRNAs Affect Complement Regulator Expression and Mitochondrial Activity to Modulate Cell Resistance to Complement-Dependent Cytotoxicity. Cancer Immunol Res 2019; 7:1970-1983. [PMID: 31537542 DOI: 10.1158/2326-6066.cir-18-0818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/09/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miR) are small RNA molecules that shape the cell transcriptome and proteome through regulation of mRNA stability and translation. Here, we examined their function as determinants of cell resistance to complement-dependent cytotoxicity (CDC). To achieve this goal, we compared the expression of microRNAs between complement-resistant and -sensitive K562 leukemia, Raji lymphoma, and HCT-116 colorectal carcinoma cells. Global microRNA array analysis identified miR-150, miR-328, and miR-616 as regulators of CDC resistance. Inhibition of miR-150 reduced resistance, whereas inhibition of miR-328 or miR-616 enhanced cell resistance. Treatment of K562 cells with a sublytic dose of complement was shown to rapidly increase miR-150, miR-328, and miR-616 expression. Protein targets of these microRNAs were analyzed in K562 cells by mass spectrometry-based proteomics. Expression of the complement membrane regulatory proteins CD46 and CD59 was significantly enhanced after inhibition of miR-328 and miR-616. Enrichment of proteins of mitochondria, known target organelles in CDC, was observed after miR-150, miR-328, and miR-616 inhibition. In conclusion, miR-150, miR-328, and miR-616 regulate cell resistance to CDC by modifying the expression of the membrane complement regulators CD46 and CD59 and the response of the mitochondria to complement lytic attack. These microRNAs may be considered targets for intervention in complement-associated diseases and in anticancer, complement-based therapy.
Collapse
Affiliation(s)
- Yaron Hillman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mariya Mardamshina
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- The Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lea Ziporen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
30
|
Yang C, Wang Y, Yang W, Gao Y, Zhao B, Yang X. MiR-509-5p improves the proliferative and invasive abilities of papillary thyroid carcinoma cells by inhibiting SFRP1. Arch Med Sci 2019; 15:968-978. [PMID: 31360191 PMCID: PMC6657240 DOI: 10.5114/aoms.2019.85904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/02/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Our study was conducted to prove that miR-509-5p improved the proliferative and invasive abilities of papillary thyroid carcinoma (PTC) cells through inhibiting SFRP1 expression. MATERIAL AND METHODS QRT-PCR was conducted in order to detect the miR-509-5p expression levels in PTC and normal tissues. The miR-509-5p and SFRP1 mRNA expression levels in PTC cell lines K1, TPC-1, BCPAP and the human normal thyroid cell line HT-ori3 were also detected by qRT-PCR. The transfection was performed using Lipofectamine and lentiviral vectors. Pgcsil-008 was used as the SFRP1 gene vector. Western blot and dual luciferase reporter gene assay were conducted to investigate miR-509-5p's direct regulation on SFRP1. MTT, clone formation, and Transwell assays were adopted to investigate the biological behaviors of PTC cells. TCF/LEF luciferase assays were used to prove that miR-509-5p influenced the Wnt/β-catenin signaling pathway by regulating SFRP1. RESULTS MiR-509-5p was overexpressed in PTC cells and tissues in which SFRP1 was down-regulated. MiR-509-5p bound to the 3'-UTR of SFRP1 and therefore partially weakened the proliferative, migrating and invasive activities of PTC cells. MiR-509-5p promoted activation of the Wnt/β-catenin signaling pathway through down-regulating SFRP1. CONCLUSIONS MiR-509-5p improved the proliferative, migrating and invasive abilities of PTC cells through inhibiting SFRP1 expression.
Collapse
Affiliation(s)
- Chunxiao Yang
- Department of General Surgery Fifth Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Yingluan Wang
- Department of Ultrasonography, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Wenyi Yang
- Department of General Surgery First Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Yujun Gao
- Department of General Surgery Fifth Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Bo Zhao
- Department of General Surgery Fifth Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| | - Xingwang Yang
- Department of General Surgery Fifth Ward, Linzi District People’s Hospital, Zibo, Shandong, China
| |
Collapse
|
31
|
microRNA-328 in exosomes derived from M2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via FAM13A in a rat model. Exp Mol Med 2019; 51:1-16. [PMID: 31164635 PMCID: PMC6547742 DOI: 10.1038/s12276-019-0255-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 01/30/2023] Open
Abstract
Currently, exosome-enclosed microRNAs (miRs) in exhaled breath have potential for biomarker discovery in patients with pulmonary diseases. This study was performed to investigate the roles of M2 macrophage-derived exosomes expressing miR-328 in pulmonary fibrosis (PF). Microarray-based analysis was used to screen differentially expressed genes (DEGs) and regulatory miRs in PF. The miR-target relationship between FAM13A and miR-328 was confirmed. The expression of FAM13A and miR-328 was measured in PF rats, and gain- and loss-of-function assays were conducted to determine the regulatory effects of FAM13A and miR-328 on PF. In addition, exosomes derived from M2 macrophages were isolated and then cocultured with pulmonary interstitial fibroblasts to identify the role of these exosomes in PF. Furthermore, the effects of M2 macrophage-derived exosomes overexpressing miR-328 on pulmonary fibroblast proliferation and the progression of PF were assessed in vivo. miR-328 might perform a vital function in PF by regulating FAM13A. FAM13A expression was downregulated while miR-328 expression was upregulated in rats with PF, and a miR-target relationship between miR-328 and FAM13A was observed. Additionally, miR-328 overexpression and FAM13A silencing each were suggested to promote pulmonary interstitial fibroblast proliferation and the expression of Collagen 1A, Collagen 3A and α-SMA. Then, in vitro experiments demonstrated that M2 macrophage-derived exosomes overexpressing miR-328 contributed to enhanced pulmonary interstitial fibroblast proliferation and promoted PF. Furthermore, in vivo experiments confirmed the promotive effects of M2 macrophage-derived exosomes overexpressing miR-328 on the progression of PF. Collectively, the results showed that M2 macrophage-derived exosomes overexpressing miR-328 aggravate PF through the regulation of FAM13A. Studies in rats suggest that microRNAs, small molecules of ribonucleic acid, released by macrophage cells of the immune system can promote pulmonary fibrosis (PF), the formation of scar tissue in lungs. Gao-Feng Zhao, Li-Hua Xing and colleagues at The First Affiliated Hospital of Zhengzhou University in China investigated the role of microRNAs in rats with a form of PF that serves as a model for the disease in humans. Their findings confirm that specific microRNAs released in tiny membrane-bound sacs called exosomes interact with and inhibit a gene whose activity is known to be disrupted in PF. The protein encoded by this gene mediates crucial molecular signaling events in lung cells. Developing drugs that interfere with the activity of the microRNAs is a potential new treatment approach for PF.
Collapse
|
32
|
Deng T, Gong YZ, Wang XK, Liao XW, Huang KT, Zhu GZ, Chen HN, Guo FZ, Mo LG, Li LQ. Use of Genome-Scale Integrated Analysis to Identify Key Genes and Potential Molecular Mechanisms in Recurrence of Lower-Grade Brain Glioma. Med Sci Monit 2019; 25:3716-3727. [PMID: 31104065 PMCID: PMC6537664 DOI: 10.12659/msm.913602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of this study was to identify gene signals for lower-grade glioma (LGG) and to assess their potential as recurrence biomarkers. MATERIAL AND METHODS An LGG-related mRNA sequencing dataset was downloaded from The Cancer Genome Atlas (TCGA) Informix. Multiple bioinformatics analysis methods were used to identify key genes and potential molecular mechanisms in recurrence of LGG. RESULTS A total of 326 differentially-expressed genes (DEGs), were identified from 511 primary LGG tumor and 18 recurrent samples. Gene ontology (GO) analysis revealed that the DEGs were implicated in cell differentiation, neuron differentiation, negative regulation of neuron differentiation, and cell proliferation in the forebrain. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database suggests that DEGs are associated with proteoglycans in cancer, the Wnt signaling pathway, ECM-receptor interaction, the PI3K-Akt signaling pathway, transcriptional deregulation in cancer, and the Hippo signaling pathway. The hub DEGs in the protein-protein interaction network are apolipoprotein A2 (APOA2), collagen type III alpha 1 chain (COL3A1), collagen type I alpha 1 chain (COL1A1), tyrosinase (TYR), collagen type I alpha 2 chain (COL1A2), neurotensin (NTS), collagen type V alpha 1 chain (COL5A1), poly(A) polymerase beta (PAPOLB), insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and anomalous homeobox (ANHX). GSEA revealed that the following biological processes may associated with LGG recurrence: cell cycle, DNA replication and repair, regulation of apoptosis, neuronal differentiation, and Wnt signaling pathway. CONCLUSIONS Our study demonstrated that hub DEGs may assist in the molecular understanding of LGG recurrence. These findings still need further molecular studies to identify the assignment of DEGs in LGG.
Collapse
Affiliation(s)
- Teng Deng
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Yi-Zhen Gong
- Department of Evidence-Based Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Ke-Tuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Hai-Nan Chen
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Fang-Zhou Guo
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Li-Gen Mo
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| |
Collapse
|
33
|
Pan S, Zhao X, Wang X, Tian X, Wang Y, Fan R, Feng N, Zhang S, Gu X, Jia M, Li J, Yang L, Wang K, Guo H, Pei J. Sfrp1 attenuates TAC-induced cardiac dysfunction by inhibiting Wnt signaling pathway- mediated myocardial apoptosis in mice. Lipids Health Dis 2018; 17:202. [PMID: 30153824 PMCID: PMC6114876 DOI: 10.1186/s12944-018-0832-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/19/2018] [Indexed: 01/12/2023] Open
Abstract
Background Hemodynamic overload causes cardiac hypertrophy leading to heart failure. Wnt signaling pathway was reported activated in heart failure. Secreted frizzled related protein 1 (Sfrp1) is a suppressor of Wnt signaling activation. The aim of the present study was to investigate the protective effect of Sfrp1 on hemodynamic overload- induced cardiac dysfunction. Methods A mice transverse aortic constriction (TAC)- induced heart failure model was established. A recombinant adeno-associated virus 9 (AAV9) vector was used to deliver Sfrp1 gene into myocardium. Fluorescence and immunohistochemistry staining was used to evaluate the effectiveness of viral vector delivery. Invasive hemodynamic examination was used to evaluate cardiac systolic and diastolic functions. Myocardium apoptosis was detected by TUNEL assay. The expression levels of Sfrp1, β-catenin, caspase3, Bax, Bcl-2 and c-Myc were measured by Western blotting. Results Increased mean arterial pressure and impaired cardiac function confirmed the establishment of TAC model. Sfrp1 protein expression was effectively increased in myocardium of mice treated with AAV9-Sfrp1 viral vector. The viral vector administration improved both systolic and diastolic cardiac functions by reducing myocardial apoptosis in TAC mice. The expression levels of β-catenin, caspase3 and Bax were significantly reduced while the expression levels of Bcl-2 and c-Myc were dramatically increased in myocardium by the viral vector treatment in TAC mice. Conclusions AAV9 viral vector delivered sfrp1 expression gene into myocardium, which attenuated TAC-induced cardiac dysfunction by inhibiting Wnt signaling pathway activation- mediated apoptosis.
Collapse
Affiliation(s)
- Shuo Pan
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.,1st Department of Cardiology, People's Hospital of Shaanxi Province, Xi'an, Shaanxi Province, China
| | - Xiujuan Zhao
- Ultrasonic Center, Northwest Women and Children's Hospital, Xi'an, Shaanxi Province, China
| | - Xu Wang
- Student Brigade, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xin Tian
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yuanbo Wang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Rong Fan
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Na Feng
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Shumiao Zhang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaoming Gu
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Min Jia
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Juan Li
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lu Yang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Kaiyan Wang
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Haitao Guo
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| | - Jianming Pei
- Department of Physiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
34
|
Hoja S, Schulze M, Rehli M, Proescholdt M, Herold-Mende C, Hau P, Riemenschneider MJ. Molecular dissection of the valproic acid effects on glioma cells. Oncotarget 2018; 7:62989-63002. [PMID: 27556305 PMCID: PMC5325342 DOI: 10.18632/oncotarget.11379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/12/2016] [Indexed: 11/25/2022] Open
Abstract
Many glioblastoma patients suffer from seizures why they are treated with antiepileptic agents. Valproic acid (VPA) is a histone deacetylase inhibitor that apart from its anticonvulsive effects in some retrospective studies has been suggested to lead to a superior outcome of glioblastoma patients. However, the exact molecular effects of VPA treatment on glioblastoma cells have not yet been deciphered. We treated glioblastoma cells with VPA, recorded the functional effects of this treatment and performed a global and unbiased next generation sequencing study on the chromatin (ChIP) and RNA level. 1) VPA treatment clearly sensitized glioma cells to temozolomide: A protruding VPA-induced molecular feature in this context was the transcriptional upregulation/reexpression of numerous solute carrier (SLC) transporters that was also reflected by euchromatinization on the histone level and a reexpression of SLC transporters in human biopsy samples after VPA treatment. DNA repair genes were adversely reduced. 2) VPA treatment, however, also reduced cell proliferation in temozolomide-naive cells: On the molecular level in this context we observed a transcriptional upregulation/reexpression and euchromatinization of several glioblastoma relevant tumor suppressor genes and a reduction of stemness markers, while transcriptional subtype classification (mesenchymal/proneural) remained unaltered. Taken together, these findings argue for both temozolomide-dependent and -independent effects of VPA. VPA might increase the uptake of temozolomide and simultaneously lead to a less malignant glioblastoma phenotype. From a mere molecular perspective these findings might indicate a surplus value of VPA in glioblastoma therapy and could therefore contribute an additional ratio for clinical decision making.
Collapse
Affiliation(s)
- Sabine Hoja
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Michael Rehli
- Department of Internal Medicine III, Regensburg University Hospital, Regensburg, Germany.,RCI Regensburg Centre for Interventional Immunology, Regensburg University Hospital, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, Regensburg University Hospital, Regensburg, Germany.,Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Christel Herold-Mende
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Hau
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany.,Department of Neurology, Regensburg University, Regensburg, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.,Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| |
Collapse
|
35
|
Wang Y, Wang M, Wei W, Han D, Chen X, Hu Q, Yu T, Liu N, You Y, Zhang J. Disruption of the EZH2/miRNA/β-catenin signaling suppresses aerobic glycolysis in glioma. Oncotarget 2018; 7:49450-49458. [PMID: 27385092 PMCID: PMC5226520 DOI: 10.18632/oncotarget.10370] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/12/2016] [Indexed: 12/20/2022] Open
Abstract
EZH2 is up-regulated in various cancer types, implicating its role in tumorigenesis. Our recent data have shown that repression of EZH2 inhibited glioma growth by inhibition β-catenin signaling. Here, we identified several miRNAs that were repressed by EZH2, which in turn regulate β-catenin expression by its 3′UTR, such as miR-1224-3p, miR-328 and miR-214. Further, EZH2 silenced miR-328 expression by binding to miR-328 promoter and promoting methylation of miR-328 promoter. Finally, miR-328 largely abrogated EZH2 effects on β-catenin expression and glucose metabolism in glioma cells. Taken together, we propose a model for a coordinated EZH2-β-catenin oncoprotein axis, and epigenetic link between histone modification and DNA methylation, mediated by EZH2-scilenced miRNAs.
Collapse
Affiliation(s)
- Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjin Wei
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dongfeng Han
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xincheng Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Hu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F, Ciccarelli R. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel) 2018; 9:genes9020105. [PMID: 29462960 PMCID: PMC5852601 DOI: 10.3390/genes9020105] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely “cancer stem cells”, are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| |
Collapse
|
37
|
Liu J, Zhu H, Wang H, Li J, Han F, Liu Y, Zhang W, He T, Li N, Zheng Z, Hu D. Methylation of secreted frizzled-related protein 1 (SFRP1) promoter downregulates Wnt/β-catenin activity in keloids. J Mol Histol 2018; 49:185-193. [DOI: 10.1007/s10735-018-9758-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/05/2018] [Indexed: 01/13/2023]
|
38
|
Santasusagna S, Moreno I, Navarro A, Muñoz C, Martinez F, Hernández R, Castellano JJ, Monzo M. miR-328 mediates a metabolic shift in colon cancer cells by targeting SLC2A1/GLUT1. Clin Transl Oncol 2018; 20:1161-1167. [PMID: 29374351 PMCID: PMC6105238 DOI: 10.1007/s12094-018-1836-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022]
Abstract
Purpose Increasing evidence shows that altered metabolism is a critical hallmark in colon cancer. There is a strong need to explore the molecular mechanisms underlying cancer metabolism. Whether the aberrant expression of microRNAs contributes to cancer metabolism is not fully understood. miR-328 is a putative potential target of SLC2A1, but the regulating mechanism between them remains unknown. We have examined whether miR-328 directly regulates SLC2A1/GLUT1 expression in colon cancer cells. Methods We performed in silico bioinformatic analyses to identify miR-328-mediated molecular pathways and targets. We also performed luciferase assays and western blot analyses in LOVO and SW480 colon cancer cell lines. In addition, we assessed miR-328 expression in 47 paired tumor and normal tissue specimens from resected colon cancer patients. Results Luciferase reporter assays showed that miR-328 directly targeted SLC2A1 3′-untranslated region (UTR), with a significant decrease in luciferase activity in both LOVO and SW480 cell lines. These results were validated by western blot. miR-328 expression was significantly downregulated in tumor tissue compared with paired normal tissue. Conclusions Our results show that miR-328 targets SLC2A1/GLUT1. We suggest that miR-328 may be involved in the orchestration of the Warburg effect in colon cancer cells. Furthermore, miR‐328 expression is reduced in colon cancer patients and thus inversely correlates with the classically reported upregulated SLC2A1/GLUT1 expression in tumors.
Collapse
Affiliation(s)
- S Santasusagna
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - I Moreno
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, Badalona, Spain
| | - A Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - C Muñoz
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - F Martinez
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, Badalona, Spain
| | - R Hernández
- Department of Medical Oncology and Surgery, Hospital Municipal de Badalona, Badalona, Spain
| | - J J Castellano
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - M Monzo
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, School of Medicine, University of Barcelona, IDIBAPS, Barcelona, Spain. .,Unit of Human Anatomy and Embryology, School of Medicine, Hospital Clinic, University of Barcelona, Casanova 143, 08036, Barcelona, Spain.
| |
Collapse
|
39
|
Expression Levels and Localizations of DVL3 and sFRP3 in Glioblastoma. DISEASE MARKERS 2017; 2017:9253495. [PMID: 29200599 PMCID: PMC5671711 DOI: 10.1155/2017/9253495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
The expression patterns of critical molecular components of Wnt signaling, sFRP3 and DVL3, were investigated in glioblastoma, the most aggressive form of primary brain tumors, with the aim to offer potential biomarkers. The protein expression levels and localizations in tumor tissue were revealed by immunohistochemistry and evaluated by the semiquantitative method and immunoreactivity score. Majority of glioblastomas had moderate expression levels for both DVL3 (52.4%) and sFRP3 (52.3%). Strong expression levels were observed in 23.1% and 36.0% of samples, respectively. DVL3 was localized in cytoplasm in 97% of glioblastomas, of which 44% coexpressed the protein in the nucleus. sFRP3 subcellular distribution showed that it was localized in the cytoplasm in 94% of cases. Colocalization in the cytoplasm and nucleus was observed in 50% of samples. Wilcox test indicated that the domination of the strong signal is in connection with simultaneous localization of DVL3 protein in the cytoplasm and the nucleus. Patients with strong expression of DVL3 will significantly more often have the protein in the nucleus (P = 6.33 × 10−5). No significant correlation between the two proteins was established, nor were their signal strengths correlated with epidemiological parameters. Our study contributes to better understanding of glioblastoma molecular profile.
Collapse
|
40
|
Peng Y, Zhang X, Feng X, Fan X, Jin Z. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 2017; 8:14089-14106. [PMID: 27793042 PMCID: PMC5355165 DOI: 10.18632/oncotarget.12923] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence has indicated microRNA (miR) dysregulation and the Wnt/β-catenin signaling pathway jointly drive carcinogenesis, cancer metastasis, and drug-resistance. The current review will focus on the role of the crosstalk between miRs and the Wnt/β-catenin signaling pathway in cancer development. MiRs were found to activate or inhibit the canonical Wnt pathway at various steps. On the other hand, Wnt activation increases expression of miR by directly binding to its promoter and activating transcription. Moreover, there are mutual feedback loops between some miRs and the Wnt/β-catenin signaling pathway. Clinical trials of miR-based therapeutic agents are investigated for solid and hematological tumors, however, challenges concerning low bioavailability and possible side effects must be overcome before the final clinical application. This review will describe current understanding of miR crosstalk with the Wnt/β-catenin signaling cascade. Better understanding of the regulatory network will provide insight into miR-based therapeutic development.
Collapse
Affiliation(s)
- Yin Peng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Department of Pathology, Wuhan University School of Basic Medical Sciences, Hubei, People's Republic of China
| | - Xiaojing Zhang
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmim Fan
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Zhe Jin
- Department of Pathology, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Micromolecule Innovatal Drugs, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.,Shenzhen Key Laboratory of Translational Medicine in Tumors, The Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
41
|
Zhang J, Wu W, Xu S, Zhang J, Zhang J, Yu Q, Jiao Y, Wang Y, Lu A, You Y, Zhang J, Lu X. MicroRNA-105 inhibits human glioma cell malignancy by directly targeting SUZ12. Tumour Biol 2017; 39:1010428317705766. [PMID: 28618952 DOI: 10.1177/1010428317705766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Glioma accounts for the majority of primary malignant brain tumors in adults and is highly aggressive. Although various therapeutic approaches have been applied, outcomes of glioma treatment remain poor. MicroRNAs are a class of small noncoding RNAs that function as regulators of gene expression. Accumulating evidence shows that microRNAs are associated with tumorigenesis and tumor progression. In this study, we found that miR-105 is significantly downregulated in glioma tissues and glioma cell lines. We identified suppressor of Zeste 12 homolog as a novel direct target of miR-105 and showed that suppressor of Zeste 12 homolog protein levels were inversely correlated with the levels of miR-105 expression in clinical specimens. Overexpression of miR-105 inhibited cell proliferation, tumorigenesis, migration, invasion, and drug sensitivity, whereas overexpression of suppressor of Zeste 12 homolog antagonized the tumor-suppressive functions of miR-105. Taken together, our results indicate that miR-105 plays a significant role in tumor behavior and malignant progression, which may provide a novel therapeutic strategy for the treatment of glioma and other cancers.
Collapse
Affiliation(s)
- Jie Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Weining Wu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuo Xu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiale Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qun Yu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuanyuan Jiao
- 2 Department of Hematology, Shengjing Hospital Affiliated to China Medical University, Shenyang, People's Republic of China
| | - Yingyi Wang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Ailin Lu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yongping You
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Junxia Zhang
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoming Lu
- 1 Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
42
|
Xing Z, Ni Y, Zhao J, Ma X. Hydrogen Peroxide-Induced Secreted Frizzled-Related Protein 1 Gene Demethylation Contributes to Hydrogen Peroxide-Induced Apoptosis in Human U251 Glioma Cells. DNA Cell Biol 2017; 36:347-353. [PMID: 28398872 DOI: 10.1089/dna.2016.3594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Zhiguo Xing
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yaping Ni
- Department of General Medicine and Geriatrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Junjie Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xudong Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
Pantazi E, Gemenetzidis E, Teh MT, Reddy SV, Warnes G, Evagora C, Trigiante G, Philpott MP. GLI2 Is a Regulator of β-Catenin and Is Associated with Loss of E-Cadherin, Cell Invasiveness, and Long-Term Epidermal Regeneration. J Invest Dermatol 2017; 137:1719-1730. [PMID: 28300597 DOI: 10.1016/j.jid.2016.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/31/2016] [Accepted: 11/26/2016] [Indexed: 12/31/2022]
Abstract
Uncontrolled hedgehog (HH)/glioma-associated oncogene (GLI) and WNT/β-catenin signaling are important events in the genesis of many cancers including skin cancer and are often implicated in tumor progression, invasion, and metastasis. However, because of the complexity and context dependency of both pathways, little is known about HH and WNT interactions in human carcinogenesis. In the current study, we provide evidence of HH/glioma-associated oncogene family zinc finger 2 (GLI2)-WNT/β-catenin signaling crosstalk in human keratinocytes. Overexpression of GLI2ΔN in human keratinocytes resulted in cytoplasmic accumulation and nuclear relocalization of β-catenin in vitro and in 3D organotypic cultures, accompanied by upregulation of WNT genes. Induction of GLI2ΔN enhanced the β-catenin-dependent transcriptional activation and the subsequent activation of β-catenin target genes including cyclin-D1. Additionally, GLI2 overexpression was associated with decreased E-cadherin protein levels; increased expression of SNAIL, matrix metalloproteinase 2, and integrin β1; and increased cell invasion in 3D organotypic cultures. Invasion was reduced by WNT inhibition, thus unveiling the direct role of GLI2/WNT crosstalk in cell invasion. We show that GLI2 overexpression supported long-term epidermal regeneration in 3D organotypic cultures, and resulted in the manifestation of an undifferentiated basal/stem cell-associated phenotype in human keratinocytes. Both these observations are consistent with the role of β-catenin and SNAIL in epidermal stem cell maintenance. This work suggests that GLI2 is a regulator of β-catenin and provides insights into its role in tumorigenesis.
Collapse
Affiliation(s)
- Eleni Pantazi
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emilios Gemenetzidis
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Muy-Teck Teh
- Department of Diagnostic and Oral Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sreekanth Vootukuri Reddy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gary Warnes
- Imaging and Flow Cytometry Core facilities, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Chris Evagora
- Pathology Core facilities, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giuseppe Trigiante
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael P Philpott
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
44
|
Wang Y, Wu S, Yang Y, Peng F, Li Q, Tian P, Xiang E, Liang H, Wang B, Zhou X, Huang H, Zhou X. Differentially expressed miRNAs in oxygen‑induced retinopathy newborn mouse models. Mol Med Rep 2016; 15:146-152. [PMID: 27922698 PMCID: PMC5355681 DOI: 10.3892/mmr.2016.5993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 09/08/2016] [Indexed: 12/26/2022] Open
Abstract
The present study aimed to identify microRNAs (miRNAs) involved in regulating retinal neovascularization and retinopathy of prematurity (ROP). A total of 80 healthy C57BL/6 neonatal mice were randomly divided into the oxygen-induced retinopathy (OIR) group (n=40), in which 7-day-old mice were maintained in 75% oxygen conditions for 5 days, or the control group (n=40). Following collection of retinal tissue, retinal angiography and hematoxylin and eosin (H&E) staining were performed. Total RNA was also extracted from retinal tissue, and miRNA microarrays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to identify differentially expressed miRNAs in the two groups. Retinal angiography and H&E staining revealed damage to retinas in the OIR group. Compared with the control group, 67 miRNAs were differentially expressed in the OIR group, of which 34 were upregulated and 33 were downregulated. Of these differentially expressed miRNAs, 32 exhibited a fold change ≥2, of which 21 were upregulated and 11 were downregulated. The results of RT-qPCR for miR-130a-3p and miR-5107-5p were in accordance with those of the miRNA microarray. The newly identified miRNAs may be important in the development of ROP, and may provide a basis for future research into the mechanisms of ROP.
Collapse
Affiliation(s)
- Yunpeng Wang
- Department of Neonatology, Nanshan People's Hospital, Affiliated to Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Suying Wu
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Yang Yang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Fen Peng
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Qintao Li
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Peng Tian
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Erying Xiang
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Honglu Liang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Beibei Wang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoyu Zhou
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Hua Huang
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Xiaoguang Zhou
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
45
|
Liu X, Wang H, Zhu Z, Ye Y, Mao H, Zhang S. MicroRNA-105 targets SOX9 and inhibits human glioma cell progression. FEBS Lett 2016; 590:4329-4342. [PMID: 27736002 DOI: 10.1002/1873-3468.12458] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/30/2016] [Accepted: 09/18/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Xiyao Liu
- Department of Neurosurgery; Institute of Neurosurgery; Zhujiang Hospital of Southern Medical University; Guangzhou China
| | - Huiqing Wang
- Department of Neurosurgery; Institute of Neurosurgery; Zhujiang Hospital of Southern Medical University; Guangzhou China
| | - Zhiyun Zhu
- Department of Neurosurgery; Institute of Neurosurgery; Zhujiang Hospital of Southern Medical University; Guangzhou China
| | - Yongyi Ye
- Department of Neurosurgery; Institute of Neurosurgery; Zhujiang Hospital of Southern Medical University; Guangzhou China
| | - Hengxu Mao
- Department of Neurosurgery; Institute of Neurosurgery; Zhujiang Hospital of Southern Medical University; Guangzhou China
| | - Shizhong Zhang
- Department of Neurosurgery; Institute of Neurosurgery; Zhujiang Hospital of Southern Medical University; Guangzhou China
| |
Collapse
|
46
|
Saadatpour L, Fadaee E, Fadaei S, Nassiri Mansour R, Mohammadi M, Mousavi SM, Goodarzi M, Verdi J, Mirzaei H. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 2016; 23:415-418. [PMID: 27834360 DOI: 10.1038/cgt.2016.48] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is known as a tumor type, which arises from astrocytes. Several studies indicated that GBM tumor cells are malignant. This is because of the fact that they consist of different cell types, which are reproducing very quickly and are also supported by a large network of blood vessels. The correct identification of various stages of GBM could help to better treat the patients with this disease. Therefore, new biomarkers such as exosomes and microRNAs (miRNAs) may help us to learn more about GBM and they may also lead to a more effective treatment for patients with GBM. Exosomes have emerged as biological vehicles, which can perform various tasks in carcinogenesis pathways such as PI3K/AKT, SOX2, PTEN, ERK, and STAT3. The miRNAs are known as small noncoding RNAs that are involved in several GBM pathogenic events. These molecules have key roles in various biological processes such as angiogenesis, metastasis and tumor growth. In this study, we highlighted various exosomes and miRNAs that could be used for diagnosis and/or prognosis biomarkers in patients with GBM.
Collapse
Affiliation(s)
- L Saadatpour
- Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - E Fadaee
- Faculty of Medicine, Islamic Azad University of Najafabad, Najafabad, Iran
| | - S Fadaei
- Student Research Committee, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - R Nassiri Mansour
- Department of Clinical Biochemistry, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - M Mohammadi
- Hepatitis Research Center and Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - S M Mousavi
- Department of Neuroscience, School of Advanced Technologies in Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - M Goodarzi
- Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - J Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - H Mirzaei
- Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
47
|
Identification of suitable reference gene and biomarkers of serum miRNAs for osteoporosis. Sci Rep 2016; 6:36347. [PMID: 27821865 PMCID: PMC5099566 DOI: 10.1038/srep36347] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/14/2016] [Indexed: 12/30/2022] Open
Abstract
Our objective was to identify suitable reference genes in serum miRNA for normalization and screen potential new biomarkers for osteoporosis diagnosis by a systematic study. Two types of osteoporosis models were used like as mechanical unloading and estrogen deficiency. Through a large-scale screening using microarray, qPCR validation and statistical algorithms, we first identified miR-25-3p as a suitable reference gene for both type of osteoporosis, which also showed stability during the differentiation processes of osteoblast and osteoclast. Then 15 serum miRNAs with differential expression in OVX rats were identified by microarray and qPCR validation. We further detected these 15 miRNAs in postmenopausal women and bedrest rhesus monkeys and evaluated their diagnostic value by ROC analysis. Among these miRNAs, miR-30b-5p was significantly down-regulated in postmenopausal women with osteopenia or osteoporosis; miR-103-3p, miR-142-3p, miR-328-3p were only significantly decreased in osteoporosis. They all showed positive correlations with BMD. Except miR328-3p, the other three miRNAs were also declined in the rhesus monkeys after long-duration bedrest. Their AUC values (all >0.75) proved the diagnostic potential. Our results provided a reliable normalization reference gene and verified a group of circulating miRNAs as non-invasive biomarkers in the detection of postmenopausal- and mechanical unloading- osteoporosis.
Collapse
|
48
|
Liu HT, Gao P. The roles of microRNAs related with progression and metastasis in human cancers. Tumour Biol 2016; 37:10.1007/s13277-016-5436-9. [PMID: 27714675 DOI: 10.1007/s13277-016-5436-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023] Open
Abstract
Metastasis is an important factor in predicting the prognosis of the patients with cancers and contributes to high cancer-related mortality. Recent studies indicated that microRNAs (miRNAs) played a functional role in the initiation and progression of human malignancies. MicroRNAs are small non-coding RNAs of about 22 nucleotides in length that can induce messenger RNA (mRNA) degradation or repress mRNA translation by binding to the 3' untranslated region (3'-UTR) of their target genes. Overwhelming reports indicated that miRNAs could regulate cancer invasion and metastasis via epithelial-to-mesenchymal transition (EMT)-related and/or non-EMT-related mechanisms. In this review, we concentrate on the underlying mechanisms of miRNAs in regulating cancer progression and metastasis.
Collapse
Affiliation(s)
- Hai-Ting Liu
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, People's Republic of China
- Department of Pathology, School of Basic Medicine, Shandong University, Jinan, People's Republic of China
| | - Peng Gao
- Department of Pathology, Qilu Hospital, Shandong University, Jinan, People's Republic of China.
- Department of Pathology, School of Basic Medicine, Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
49
|
Riemenschneider MJ, Hirblinger M, Vollmann-Zwerenz A, Hau P, Proescholdt MA, Jaschinski F, Rothhammer-Hampl T, Wosikowski K, Janicot M, Leo E. TGF-ß isoforms in cancer: Immunohistochemical expression and Smad-pathway-activity-analysis in thirteen major tumor types with a critical appraisal of antibody specificity and immunohistochemistry assay validity. Oncotarget 2016; 6:26770-81. [PMID: 26450853 PMCID: PMC4694951 DOI: 10.18632/oncotarget.5780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/31/2015] [Indexed: 11/25/2022] Open
Abstract
The literature on TGF-Δ in cancer including data on the expression or activation of TGF-Δ pathway components in specific tumors types is steadily growing. However, no systematic and uniform analysis exists reporting expression levels of the main TGF-Δ pathway components across the most frequent tumor types. We used a standardized immunohistochemical assay investigating TGF-Δ isoform expression and pathway activation across 13 different tumor types and corresponding non-neoplastic tissues. The study was performed on tissue microarrays allowing for the parallel analysis of a total of 1638 human tumor samples. TGF-Δ1, TGF-Δ2 and p-Smad2/3 were substantially expressed in multiple cancers widening the options for TGF-Δ isoform directed therapies. Of note, TGF-Δ antigens appear to be expressed in an individual manner pointing towards a need for patient preselection for TGF-β isoform specific treatment. Yet, a thorough investigation of antibody specificity and assay validity revealed that immunohistochemistry did not correlate with other detection methods on mRNA or protein level in all instances. As such, with the currently available means (i.e. antibodies tested) a stratification of patients within clinical trials for TGF-Δ directed antisense therapies based upon TGF-β immunohistochemistry alone has to be interpreted with caution and should be carefully evaluated in combination with other parameters.
Collapse
Affiliation(s)
- Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.,Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Maria Hirblinger
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.,Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany
| | - Arabel Vollmann-Zwerenz
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany.,Department of Neurology, Regensburg University, Regensburg, Germany
| | - Peter Hau
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany.,Department of Neurology, Regensburg University, Regensburg, Germany
| | - Martin A Proescholdt
- Wilhelm Sander Neuro-Oncology Unit, Regensburg University Hospital, Regensburg, Germany.,Department of Neurosurgery, Regensburg University Hospital, Regensburg, Germany
| | | | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany.,Isarna Therapeutics GmbH, Munich, Germany
| | | | | | - Eugen Leo
- Isarna Therapeutics GmbH, Munich, Germany
| |
Collapse
|
50
|
Shea A, Harish V, Afzal Z, Chijioke J, Kedir H, Dusmatova S, Roy A, Ramalinga M, Harris B, Blancato J, Verma M, Kumar D. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 2016; 5:1917-46. [PMID: 27282910 PMCID: PMC4971921 DOI: 10.1002/cam4.775] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal cancer of the adult brain, remaining incurable with a median survival time of only 15 months. In an effort to identify new targets for GBM diagnostics and therapeutics, recent studies have focused on molecular phenotyping of GBM subtypes. This has resulted in mounting interest in microRNAs (miRNAs) due to their regulatory capacities in both normal development and in pathological conditions such as cancer. miRNAs have a wide range of targets, allowing them to modulate many pathways critical to cancer progression, including proliferation, cell death, metastasis, angiogenesis, and drug resistance. This review explores our current understanding of miRNAs that are differentially modulated and pathologically involved in GBM as well as the current state of miRNA-based therapeutics. As the role of miRNAs in GBM becomes more well understood and novel delivery methods are developed and optimized, miRNA-based therapies could provide a critical step forward in cancer treatment.
Collapse
Affiliation(s)
- Amanda Shea
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | | | - Zainab Afzal
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Juliet Chijioke
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Habib Kedir
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Shahnoza Dusmatova
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Arpita Roy
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Malathi Ramalinga
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
| | - Brent Harris
- Department of Neurology and PathologyGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Jan Blancato
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| | - Mukesh Verma
- Division of Cancer Control and Population SciencesNational Cancer Institute (NCI)National Institutes of Health (NIH)RockvilleMaryland20850
| | - Deepak Kumar
- Division of Science and MathematicsCancer Research LaboratoryUniversity of the District of ColumbiaWashingtonDistrict of Columbia20008
- Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of Columbia20057
| |
Collapse
|