1
|
Abstract
The field of neuro-oncology has recently experienced a renaissance in the understanding of the molecular underpinnings and pathophysiology of glioma. Genetic markers have significant implications regarding treatment responsiveness and prognosis and are now the primary basis for classification. This article gives an updated understanding of the pathogenesis and mechanisms of resistance of glioma via discussion of 4 molecular and genetic markers: MGMT, IDH, 1p/19q, and TERT.
Collapse
Affiliation(s)
- Michael W Ruff
- From the Department of Neurology (M.W.R., J.U., E.B.) and Division of Medical Oncology (M.W.R., J.U.), Mayo Clinic, Rochester, MN.
| | - Joon H Uhm
- From the Department of Neurology (M.W.R., J.U., E.B.) and Division of Medical Oncology (M.W.R., J.U.), Mayo Clinic, Rochester, MN
| | - Eduardo E Benarroch
- From the Department of Neurology (M.W.R., J.U., E.B.) and Division of Medical Oncology (M.W.R., J.U.), Mayo Clinic, Rochester, MN
| |
Collapse
|
2
|
Geletneky K, Hajda J, Angelova AL, Leuchs B, Capper D, Bartsch AJ, Neumann JO, Schöning T, Hüsing J, Beelte B, Kiprianova I, Roscher M, Bhat R, von Deimling A, Brück W, Just A, Frehtman V, Löbhard S, Terletskaia-Ladwig E, Fry J, Jochims K, Daniel V, Krebs O, Dahm M, Huber B, Unterberg A, Rommelaere J. Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial. Mol Ther 2017; 25:2620-2634. [PMID: 28967558 PMCID: PMC5768665 DOI: 10.1016/j.ymthe.2017.08.016] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Oncolytic virotherapy may be a means of improving the dismal prognosis of malignant brain tumors. The rat H-1 parvovirus (H-1PV) suppresses tumors in preclinical glioma models, through both direct oncolysis and stimulation of anticancer immune responses. This was the basis of ParvOryx01, the first phase I/IIa clinical trial of an oncolytic parvovirus in recurrent glioblastoma patients. H-1PV (escalating dose) was administered via intratumoral or intravenous injection. Tumors were resected 9 days after treatment, and virus was re-administered around the resection cavity. Primary endpoints were safety and tolerability, virus distribution, and maximum tolerated dose (MTD). Progression-free and overall survival and levels of viral and immunological markers in the tumor and peripheral blood were also investigated. H-1PV treatment was safe and well tolerated, and no MTD was reached. The virus could cross the blood-brain/tumor barrier and spread widely through the tumor. It showed favorable pharmacokinetics, induced antibody formation in a dose-dependent manner, and triggered specific T cell responses. Markers of virus replication, microglia/macrophage activation, and cytotoxic T cell infiltration were detected in infected tumors, suggesting that H-1PV may trigger an immunogenic stimulus. Median survival was extended in comparison with recent meta-analyses. Altogether, ParvOryx01 results provide an impetus for further H-1PV clinical development.
Collapse
Affiliation(s)
- Karsten Geletneky
- Department of Neurosurgery, University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jacek Hajda
- Coordination Centre for Clinical Trials, University Hospital, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Assia L Angelova
- Department of Tumor Virology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Barbara Leuchs
- Department of Tumor Virology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, University Hospital, Im Neuenheimer Feld 220, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas J Bartsch
- Department of Neuroradiology, University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jan-Oliver Neumann
- Department of Neurosurgery, University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Tilman Schöning
- University Hospital Pharmacy, Im Neuenheimer Feld 670, 69120 Heidelberg, Germany
| | - Johannes Hüsing
- Coordination Centre for Clinical Trials, University Hospital, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Birgit Beelte
- Coordination Centre for Clinical Trials, University Hospital, Marsilius-Arkaden, Tower West, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Irina Kiprianova
- Department of Tumor Virology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Mandy Roscher
- Department of Tumor Virology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Rauf Bhat
- Department of Tumor Virology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital, Im Neuenheimer Feld 220, 69120 Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Brück
- Department of Neuropathology, University Medical Center, Georg August University, 37099 Göttingen, Germany
| | - Alexandra Just
- Department of Tumor Virology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Veronika Frehtman
- Department of Tumor Virology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | - Stephanie Löbhard
- Eurofins BioPharma Product Testing, Behringstraße 6/8, 82152 Planegg, Germany
| | - Elena Terletskaia-Ladwig
- Laboratory Prof. Dr. Gisela Enders & Colleagues, MVZ and Institute of Virology, Infectious Diseases and Epidemiology e.V., Stuttgart, Germany
| | - Jeremy Fry
- ProImmune, The Magdalen Centre, Oxford Science Park, Oxford OX4 4GA, UK
| | - Karin Jochims
- IASON Consulting, Mühlenstraße 26A, 52382 Niederzier, Germany
| | - Volker Daniel
- Department of Transplantation Immunology, Institute of Immunology, University Hospital, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Ottheinz Krebs
- Oryx GmbH & Co. KG, Marktplatz 1, 85598 Baldham, Germany
| | - Michael Dahm
- Oryx GmbH & Co. KG, Marktplatz 1, 85598 Baldham, Germany
| | - Bernard Huber
- Oryx GmbH & Co. KG, Marktplatz 1, 85598 Baldham, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jean Rommelaere
- Department of Tumor Virology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Wick W, Gorlia T, Bady P, Platten M, van den Bent MJ, Taphoorn MJ, Steuve J, Brandes AA, Hamou MF, Wick A, Kosch M, Weller M, Stupp R, Roth P, Golfinopoulos V, Frenel JS, Campone M, Ricard D, Marosi C, Villa S, Weyerbrock A, Hopkins K, Homicsko K, Lhermitte B, Pesce G, Hegi ME. Phase II Study of Radiotherapy and Temsirolimus versus Radiochemotherapy with Temozolomide in Patients with Newly Diagnosed Glioblastoma without MGMT Promoter Hypermethylation (EORTC 26082). Clin Cancer Res 2016; 22:4797-4806. [DOI: 10.1158/1078-0432.ccr-15-3153] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/03/2016] [Indexed: 11/16/2022]
|
4
|
Seystahl K, Gramatzki D, Roth P, Weller M. Pharmacotherapies for the treatment of glioblastoma - current evidence and perspectives. Expert Opin Pharmacother 2016; 17:1259-70. [PMID: 27052640 DOI: 10.1080/14656566.2016.1176146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Glioblastoma, the most common malignant brain tumor, exhibits a poor prognosis with little therapeutic progress in the last decade. Novel treatment strategies beyond the established standard of care with temozolomide-based radiotherapy are urgently needed. AREAS COVERED We reviewed the literature on glioblastoma with a focus on phase III trials for pharmacotherapies and/or innovative concepts until December 2015. EXPERT OPINION In the last decade, phase III trials on novel compounds largely failed to introduce efficacious pharmacotherapies beyond temozolomide in glioblastoma. So far, inhibition of angiogenesis by compounds such as bevacizumab, cediranib, enzastaurin or cilengitide as well as alternative dosing schedules of temozolomide did not prolong survival, neither at primary diagnosis nor at recurrent disease. Promising strategies of pharmacotherapy currently under evaluation represent targeting epidermal growth factor receptor (EGFR) with biomarker-stratified patient populations and immunotherapeutic concepts including checkpoint inhibition and vaccination. The clinical role of the medical device delivering 'tumor-treating fields' in newly diagnosed glioblastoma which prolonged overall survival in a phase III study has remained controversial. After failure of several phase III trials with previously promising agents, improvement of concepts and novel compounds are urgently needed to expand the still limited therapeutic options for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Katharina Seystahl
- a Department of Neurology and Brain Tumor Center , University Hospital and University of Zurich , Zurich , Switzerland
| | - Dorothee Gramatzki
- a Department of Neurology and Brain Tumor Center , University Hospital and University of Zurich , Zurich , Switzerland
| | - Patrick Roth
- a Department of Neurology and Brain Tumor Center , University Hospital and University of Zurich , Zurich , Switzerland
| | - Michael Weller
- a Department of Neurology and Brain Tumor Center , University Hospital and University of Zurich , Zurich , Switzerland
| |
Collapse
|
5
|
Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: the GENOM 009 randomized phase II trial. J Neurooncol 2016; 127:569-79. [PMID: 26847813 DOI: 10.1007/s11060-016-2065-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
We sought to determine the impact of bevacizumab on reduction of tumor size prior to chemoradiotherapy in unresected glioblastoma patients. Patients were randomized 1:1 to receive temozolomide (TMZ arm) or temozolomide plus bevacizumab (TMZ + BEV arm). In both arms, neoadjuvant treatment was temozolomide (85 mg/m(2), days 1-21, two 28-day cycles), concurrent radiation plus temozolomide, and six cycles of adjuvant temozolomide. In the TMZ + BEV arm, bevacizumab (10 mg/kg) was added on days 1 and 15 of each neoadjuvant cycle and on days 1, 15 and 30 of concurrent treatment. The primary endpoint was investigator-assessed response to neoadjuvant treatment. Secondary endpoints included progression-free survival (PFS), overall survival (OS), and the impact on outcome of MGMT methylation in tumor and serum. One hundred and two patients were included; 43 in the TMZ arm and 44 in the TMZ + BEV arm were evaluable for response. Results favored the TMZ + BEV arm in terms of objective response (3 [6.7 %] vs. 11 [22.9 %]; odds ratio 4.2; P = 0.04). PFS and OS were longer in the TMZ + BEV arm, though the difference did not reach statistical significance. MGMT methylation in tumor, but not in serum, was associated with outcome. More patients experienced toxicities in the TMZ + BEV than in the TMZ arm (P = 0.06). The combination of bevacizumab plus temozolomide is more active than temozolomide alone and may well confer benefit in terms of tumor shrinkage in unresected patients albeit at the expense of greater toxicity.
Collapse
|
6
|
Wick W, Platten M, Wick A, Hertenstein A, Radbruch A, Bendszus M, Winkler F. Current status and future directions of anti-angiogenic therapy for gliomas. Neuro Oncol 2015; 18:315-28. [PMID: 26459812 DOI: 10.1093/neuonc/nov180] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/03/2015] [Indexed: 12/24/2022] Open
Abstract
Molecular targets for the pathological vasculature are the vascular endothelial growth factor (VEGF)/VEGF receptor axis, integrins, angiopoietins, and platelet-derived growth factor receptor (PDGFR), as well as several intracellular or downstream effectors like protein kinase C beta and mammalian target of rapamycin (mTOR). Besides hypoxic damage or tumor cell starvation, preclinical models imply vessel independent tumor regression and suggest differential effects of anti-angiogenic treatments on tumorous and nontumorous precursor cells or the immune system. Despite compelling preclinical data and positive data in other cancers, the outcomes of clinical trials with anti-angiogenic agents in gliomas by and large have been disappointing and include VEGF blockage with bevacizumab, integrin inhibition with cilengitide, VEGF receptor inhibition with sunitinib or cediranib, PDGFR inhibition with imatinib or dasatinib, protein kinase C inhibition with enzastaurin, and mTOR inhibition with sirolimus, everolimus, or temsirolimus. Importantly, there is a lack of real understanding for this negative data. Anti-angiogenic therapies have stimulated the development of standardized imaging assessment and the integration of functional MRI sequences into daily practice. Here, we delineate directions in the identification of molecularly or image-based defined subgroups, anti-angiogenic cotreatment for immunotherapy, and the potential of ongoing trials or modified targets to change the game.
Collapse
Affiliation(s)
- Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany (W.W., M.P., A.W., A.H., F.W.); Department of Neuroradiology, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (A.R., M.B.)
| | - Michael Platten
- Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany (W.W., M.P., A.W., A.H., F.W.); Department of Neuroradiology, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (A.R., M.B.)
| | - Antje Wick
- Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany (W.W., M.P., A.W., A.H., F.W.); Department of Neuroradiology, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (A.R., M.B.)
| | - Anne Hertenstein
- Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany (W.W., M.P., A.W., A.H., F.W.); Department of Neuroradiology, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (A.R., M.B.)
| | - Alexander Radbruch
- Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany (W.W., M.P., A.W., A.H., F.W.); Department of Neuroradiology, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (A.R., M.B.)
| | - Martin Bendszus
- Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany (W.W., M.P., A.W., A.H., F.W.); Department of Neuroradiology, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (A.R., M.B.)
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany (W.W., M.P., A.W., A.H., F.W.); Department of Neuroradiology, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany (A.R., M.B.)
| |
Collapse
|
7
|
Hegi ME, Stupp R. Withholding temozolomide in glioblastoma patients with unmethylated MGMT promoter--still a dilemma? Neuro Oncol 2015; 17:1425-7. [PMID: 26374690 DOI: 10.1093/neuonc/nov198] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Monika E Hegi
- Neuroscience Research Center, and Service of Neurosurgery, Lausanne University Hospital, Lausanne (CHUV) (M.E.H); Department of Oncology, University Hospital Zurich, Zurich, Switzerland (R.S)
| | - Roger Stupp
- Neuroscience Research Center, and Service of Neurosurgery, Lausanne University Hospital, Lausanne (CHUV) (M.E.H); Department of Oncology, University Hospital Zurich, Zurich, Switzerland (R.S)
| |
Collapse
|
8
|
Chamberlain MC. A selected review of abstracts from the 11th Congress of the European Association of Neuro-Oncology (EANO). CNS Oncol 2015; 4:5-9. [PMID: 25586421 PMCID: PMC6093032 DOI: 10.2217/cns.14.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The European Association of Neuro-Oncology (EANO) is the largest neuro-oncology meeting in Europe that meets biannually and reproducibly provides an exciting forum to present new brain cancer clinical trials and research data. The EANO 2014 meeting in Turin, Italy (9-12 October 2014) was comprised of 3 days of presentation, nearly 50 oral presentations and nearly 350 abstracts provides a contemporary overview of neuro-oncology that includes both metastatic diseases of the CNS as well as primary brain tumors. This summary attempts to highlight select abstracts presented at the meeting of EANO 2014 in a short review that provides a portrait of a large and multifaceted meeting.
Collapse
Affiliation(s)
- Marc C Chamberlain
- University of Washington, Department of Neurology/Division of Neuro-Oncology, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, 825 Eastlake Avenue E, POB 19023, MS G4940, Seattle, WA 98109-1023, USA
| |
Collapse
|