1
|
Rafii S, Kandoussi S, Ghouzlani A, Naji O, Reddy KP, Ullah Sadiqi R, Badou A. Deciphering immune microenvironment and cell evasion mechanisms in human gliomas. Front Oncol 2023; 13:1135430. [PMID: 37274252 PMCID: PMC10235598 DOI: 10.3389/fonc.2023.1135430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are considered one of the most malignant cancers in the body. Despite current therapies, including surgery, chemotherapy, and radiotherapy, these tumors usually recur with more aggressive and resistant phenotypes. Indeed, the survival following these conventional therapies is very poor, which makes immunotherapy the subject of active research at present. The anti-tumor immune response could also be considered a prognostic factor since each stage of cancer development is regulated by immune cells. However, glioma microenvironment contains malignant cells that secrete numerous chemokines, cytokines and growth factors, promoting the infiltration of immunosuppressive cells into the tumor, which limit the functioning of the immune system against glioma cells. Recently, researchers have been able to reverse the immune resistance of cancer cells and thus activate the anti-tumor immune response through different immunotherapy strategies. Here, we review the general concept of glioma's immune microenvironment and report the impact of its distinct components on the anti-tumor immune response. We also discuss the mechanisms of glioma cell evasion from the immune response and pinpoint some potential therapeutic pathways, which could alleviate such resistance.
Collapse
Affiliation(s)
- Soumaya Rafii
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Sarah Kandoussi
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Amina Ghouzlani
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Oumayma Naji
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | | | - Rizwan Ullah Sadiqi
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | - Abdallah Badou
- Immuno-Genetics and Human Pathologies Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco and Mohammed VI University of Sciences and Health, Casablanca, Morocco
| |
Collapse
|
2
|
Kaffes I, Szulzewsky F, Chen Z, Herting CJ, Gabanic B, Velázquez Vega JE, Shelton J, Switchenko JM, Ross JL, McSwain LF, Huse JT, Westermark B, Nelander S, Forsberg-Nilsson K, Uhrbom L, Maturi NP, Cimino PJ, Holland EC, Kettenmann H, Brennan CW, Brat DJ, Hambardzumyan D. Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncoimmunology 2019; 8:e1655360. [PMID: 31646100 PMCID: PMC6791439 DOI: 10.1080/2162402x.2019.1655360] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/15/2019] [Accepted: 08/09/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults, with a median survival of 14.6 months. Recent efforts have focused on identifying clinically relevant subgroups to improve our understanding of pathogenetic mechanisms and patient stratification. Concurrently, the role of immune cells in the tumor microenvironment has received increasing attention, especially T cells and tumor-associated macrophages (TAM). The latter are a mixed population of activated brain-resident microglia and infiltrating monocytes/monocyte-derived macrophages, both of which express ionized calcium-binding adapter molecule 1 (IBA1). This study investigated differences in immune cell subpopulations among distinct transcriptional subtypes of GBM. Human GBM samples were molecularly characterized and assigned to Proneural, Mesenchymal or Classical subtypes as defined by NanoString nCounter Technology. Subsequently, we performed and analyzed automated immunohistochemical stainings for TAM as well as specific T cell populations. The Mesenchymal subtype of GBM showed the highest presence of TAM, CD8+, CD3+ and FOXP3+ T cells, as compared to Proneural and Classical subtypes. High expression levels of the TAM-related gene AIF1, which encodes the TAM-specific protein IBA1, correlated with a worse prognosis in Proneural GBM, but conferred a survival benefit in Mesenchymal tumors. We used our data to construct a mathematical model that could reliably identify Mesenchymal GBM with high sensitivity using a combination of the aforementioned cell-specific IHC markers. In conclusion, we demonstrated that molecularly distinct GBM subtypes are characterized by profound differences in the composition of their immune microenvironment, which could potentially help to identify tumors amenable to immunotherapy.
Collapse
Affiliation(s)
- Ioannis Kaffes
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.,Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Zhihong Chen
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.,Discovery and Developmental Therapeutics Program, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Cameron J Herting
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Ben Gabanic
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Jennifer Shelton
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - James L Ross
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Leon F McSwain
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Naga Prathyusha Maturi
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Patrick J Cimino
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Eric C Holland
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Helmut Kettenmann
- Department of Cellular Neurosciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Dolores Hambardzumyan
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.,Discovery and Developmental Therapeutics Program, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Gabriely G, Wheeler MA, Takenaka MC, Quintana FJ. Role of AHR and HIF-1α in Glioblastoma Metabolism. Trends Endocrinol Metab 2017; 28:428-436. [PMID: 28318896 PMCID: PMC5438779 DOI: 10.1016/j.tem.2017.02.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/10/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
Abstract
Glioblastoma (GBM) progression is associated with metabolic remodeling in both glioma and immune cells, resulting in the use of aerobic glycolysis as the main source of energy and biosynthetic molecules. The transcription factor hypoxia-inducible factor (HIF)-1α drives this metabolic reorganization. Oxygen levels, as well as other factors, control the activity of HIF-1α. In addition, the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) modulates tumor-specific immunity and can also participate in metabolic remodeling. AHR activity is regulated by tryptophan derivatives present in the tumor microenvironment. Thus, the tumor microenvironment and signaling via HIF-1α and AHR regulate the metabolism of gliomas and immune cells, modulating tumor-specific immunity and, consequently, tumor growth. Here, we review the roles of HIF-1α and AHR in cancer and immune cell metabolism in GBM.
Collapse
Affiliation(s)
- Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maisa C Takenaka
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|