1
|
Hajikarimloo B, Kavousi S, Jahromi GG, Mehmandoost M, Oraee-Yazdani S, Fahim F. Hyperbaric Oxygen Therapy as an Alternative Therapeutic Option for Radiation-Induced Necrosis Following Radiotherapy for Intracranial Pathologies. World Neurosurg 2024; 186:51-61. [PMID: 38325705 DOI: 10.1016/j.wneu.2024.01.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Radiotherapy (RT) is a feasible adjuvant therapeutic option for managing intracranial pathologies. One of the late complications of RT that frequently develops within months following RT is radiation necrosis (RN). Corticosteroids are the first-line therapeutic option for RNs; however, in case of unfavorable outcomes or intolerability, several other options, including bevacizumab, laser interstitial thermal therapy, surgery, and hyperbaric oxygen therapy (HBOT). Our goal was to investigate the feasibility and efficacy of the application of HBOT in RNs following RT and help physicians make decisions based on the latest data in the literature. METHODS We provide a comprehensive review of the literature on the current issues of utilization of HBOT in RNs. RESULTS We included 11 studies with a total of 46 patients who underwent HBOT. Most of the cases were diagnosed with brain tumors or arteriovenous malformations. Improvement was achieved in most of the cases. DISCUSSION HBOT is a noninvasive therapeutic intervention that can play a role in adjuvant therapy concurrent with RT and chemotherapy and treating RNs. HBOT resolves the RN through 3 mechanisms, including angiogenesis, anti-inflammatory modulation, and cellular repair. Previous studies demonstrated that HBOT is a feasible and well-tolerated therapeutic option that has shown promising results in improving clinical and radiological outcomes in intracranial RNs. Complications of HBOT are usually mild and reversible. CONCLUSIONS HBOT is a feasible and effective therapeutic option in steroid-refractory RNs and is associated with favorable outcomes and a low rate of side effects.
Collapse
Affiliation(s)
- Bardia Hajikarimloo
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Shohada Tajrish Hospital, Tehran, Iran
| | - Shahin Kavousi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Ghaffaripour Jahromi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Mehmandoost
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Oraee-Yazdani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Shohada Tajrish Hospital, Tehran, Iran
| | - Farzan Fahim
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neurosurgery, Shohada Tajrish Hospital, Tehran, Iran.
| |
Collapse
|
2
|
Guo X, Osouli S, Shahripour RB. Review of Cerebral Radiotherapy-Induced Vasculopathy in Pediatric and Adult Patients. Adv Biol (Weinh) 2023; 7:e2300179. [PMID: 37401794 DOI: 10.1002/adbi.202300179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/04/2023] [Indexed: 07/05/2023]
Abstract
Radiation therapy (RT) causes radiation-induced vasculopathy, which requires clinicians to identify and manage this side effect in pediatric and adult patients. This article reviews previous findings about the pathophysiology of RT-induced vascular injury, including endothelial cell injury, oxidative stress, inflammatory cytokines, angiogenic pathways, and remodeling. The vasculopathy is categorized into ischemic vasculopathy, hemorrhagic vasculopathy, carotid artery injury, and other malformations (cavernous malformations and aneurysms) in populations of pediatric and adult patients separately. The prevention and management of this RT-induced side effect are also discussed. The article summarizes the distribution and risk factors of different types of RT-induced vasculopathy. This will help clinicians identify high-risk patients with corresponding vasculopathy subtypes to deduce prevention and treatment strategies accordingly.
Collapse
Affiliation(s)
- Xiaofan Guo
- Department of Neurology, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Sima Osouli
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1516745811, Iran
| | - Reza Bavarsad Shahripour
- Department of Neurology, Loma Linda University, Loma Linda, CA, 92354, USA
- Comprehensive Stroke Center, Department of Neurology, University of California San Diego, San Diego, CA, 92103, USA
| |
Collapse
|
3
|
Martínez Camblor L, Peña Suárez JM, Martínez-Cachero García M, Santamarta Liébana E, Rodríguez Castro J, Saiz Ayala A. Cerebral microbleeds. Utility of SWI sequences. RADIOLOGIA 2023; 65:362-375. [PMID: 37516489 DOI: 10.1016/j.rxeng.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/12/2022] [Indexed: 07/31/2023]
Abstract
OBJECTIVES Define the concept of cerebral microbleeds (CMBs) and describe the most useful MRI sequences for detecting this finding. Review the entities that most frequently present with CMBs and that may benefit from the use of susceptibility-weighted imaging (SWI) sequences. CONCLUSIONS SWI is a useful MRI sequence for the detection and characterization of microhemorrhages, venous structures and other sources of susceptibility in imaging. SWI is particularly sensitive to local magnetic field inhomogeneities generated by certain substances and is superior to T2* GRE sequences for this assessment. CMBs may be seen in different neurologic conditions, in certain infrequent clinical contexts and have a key role as a biomarker status in gliomas (ITTS) and as a marker of inflammatory activity in multiple sclerosis.
Collapse
Affiliation(s)
- L Martínez Camblor
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain.
| | - J M Peña Suárez
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - E Santamarta Liébana
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - J Rodríguez Castro
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - A Saiz Ayala
- Servicio de Radiodiagnóstico, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
4
|
Xiao M, Li X, Wang L, Lin B, Zhai M, Hull L, Zizzo A, Cui W, Kiang JG. Skin Wound following Irradiation Aggravates Radiation-Induced Brain Injury in a Mouse Model. Int J Mol Sci 2023; 24:10701. [PMID: 37445879 DOI: 10.3390/ijms241310701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Radiation injury- and radiation combined with skin injury-induced inflammatory responses in the mouse brain were evaluated in this study. Female B6D2F1/J mice were subjected to a sham, a skin wound (SW), 9.5 Gy 60Co total-body gamma irradiation (RI), or 9.5 Gy RI combined with a skin puncture wound (RCI). Survival, body weight, and wound healing were tracked for 30 days, and mouse brain samples were collected on day 30 after SW, RI, RCI, and the sham control. Our results showed that RCI caused more severe animal death and body weight loss compared with RI, and skin wound healing was significantly delayed by RCI compared to SW. RCI and RI increased the chemokines Eotaxin, IP-10, MIG, 6Ckine/Exodus2, MCP-5, and TIMP-1 in the brain compared to SW and the sham control mice, and the Western blot results showed that IP-10 and p21 were significantly upregulated in brain cells post-RI or -RCI. RI and RCI activated both astrocytes and endothelial cells in the mouse brain, subsequently inducing blood-brain barrier (BBB) leakage, as shown by the increased ICAM1 and GFAP proteins in the brain and GFAP in the serum. The Doublecortin (DCX) protein, the "gold standard" for measuring neurogenesis, was significantly downregulated by RI and RCI compared with the sham group. Furthermore, RI and RCI decreased the expression of the neural stem cell marker E-cadherin, the intermediate progenitor marker MASH1, the immature neuron cell marker NeuroD1, and the mature neuron cell marker NeuN, indicating neural cell damage in all development stages after RI and RCI. Immunohistochemistry (IHC) staining further confirmed the significant loss of neural cells in RCI. Our data demonstrated that RI and RCI induced brain injury through inflammatory pathways, and RCI exacerbated neural cell damage more than RI.
Collapse
Affiliation(s)
- Mang Xiao
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Xianghong Li
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Li Wang
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Bin Lin
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Min Zhai
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lisa Hull
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Alex Zizzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Wanchang Cui
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol 2023; 99:119-137. [PMID: 35511499 DOI: 10.1080/09553002.2022.2074167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation-induced brain injury is a common long-term side effect for brain cancer survivors, leading to a reduced quality of life. Although there is growing research pertaining to this topic, the relationship between cognitive and radiologically detected lesions of radiation-induced brain injury in humans remains unclear. Furthermore, clinically translatable similarities between rodent models and human findings are also undefined. The objective of this review is to then identify the current evidence of radiation-induced brain injury in humans and to compare these findings to current rodent models of radiation-induced brain injury. METHODS This review includes an examination of the current literature on cognitive and radiological characteristics of radiation-induced brain injury in humans and rodents. A thorough search was conducted on PubMed, Web of Science, and Scopus to identify studies that performed cognitive assessments and magnetic resonance imaging techniques on either humans or rodents after cranial radiation therapy. A qualitative synthesis of the data is herein reported. RESULTS A total of 153 studies pertaining to cognitively or radiologically detected radiation injury of the brain are included in this systematic review; 106 studies provided data on humans while 47 studies provided data on rodents. Cognitive deficits in humans manifest across multiple domains after brain irradiation. Radiological evidence in humans highlight various neuroimaging-detectable changes post-irradiation. It is unclear, however, whether these findings reflect ground truth or research interests. Additionally, rodent models do not comprehensively reproduce characteristics of cognitive and radiological injury currently identified in humans. CONCLUSION This systematic review demonstrates that associations between and within cognitive and radiological radiation-induced brain injuries often rely on the type of assessment. Well-designed studies that evaluate the spectrum of potential injury are required for a precise understanding of not only the clinical significance of radiation-induced brain injury in humans, but also how to replicate injury development in pre-clinical models.
Collapse
Affiliation(s)
- Whitney D Perez
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
6
|
Martínez Camblor L, Peña Suárez J, Martínez-Cachero García M, Santamarta Liébana E, Rodríguez Castro J, Saiz Ayala A. Microhemorragias cerebrales. Utilidad de las secuencias de susceptibilidad magnética (SWI). RADIOLOGIA 2023. [DOI: 10.1016/j.rx.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Kline C, Stoller S, Byer L, Samuel D, Lupo JM, Morrison MA, Rauschecker AM, Nedelec P, Faig W, Dubal DB, Fullerton HJ, Mueller S. An Integrated Analysis of Clinical, Genomic, and Imaging Features Reveals Predictors of Neurocognitive Outcomes in a Longitudinal Cohort of Pediatric Cancer Survivors, Enriched with CNS Tumors (Rad ART Pro). Front Oncol 2022; 12:874317. [PMID: 35814456 PMCID: PMC9259981 DOI: 10.3389/fonc.2022.874317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neurocognitive deficits in pediatric cancer survivors occur frequently; however, individual outcomes are unpredictable. We investigate clinical, genetic, and imaging predictors of neurocognition in pediatric cancer survivors, with a focus on survivors of central nervous system (CNS) tumors exposed to radiation. Methods One hundred eighteen patients with benign or malignant cancers (median diagnosis age: 7; 32% embryonal CNS tumors) were selected from an existing multi-institutional cohort (RadART Pro) if they had: 1) neurocognitive evaluation; 2) available DNA; 3) standard imaging. Utilizing RadART Pro, we collected clinical history, genomic sequencing, CNS imaging, and neurocognitive outcomes. We performed single nucleotide polymorphism (SNP) genotyping for candidate genes associated with neurocognition: COMT, BDNF, KIBRA, APOE, KLOTHO. Longitudinal neurocognitive testing were performed using validated computer-based CogState batteries. The imaging cohort was made of patients with available iron-sensitive (n = 28) and/or T2 FLAIR (n = 41) sequences. Cerebral microbleeds (CMB) were identified using a semi-automated algorithm. Volume of T2 FLAIR white matter lesions (WML) was measured using an automated method based on a convolutional neural network. Summary statistics were performed for patient characteristics, neurocognitive assessments, and imaging. Linear mixed effects and hierarchical models assessed patient characteristics and SNP relationship with neurocognition over time. Nested case-control analysis was performed to compare candidate gene carriers to non-carriers. Results CMB presence at baseline correlated with worse performance in 3 of 7 domains, including executive function. Higher baseline WML volumes correlated with worse performance in executive function and verbal learning. No candidate gene reliably predicted neurocognitive outcomes; however, APOE ϵ4 carriers trended toward worse neurocognitive function over time compared to other candidate genes and carried the highest odds of low neurocognitive performance across all domains (odds ratio 2.85, P=0.002). Hydrocephalus and seizures at diagnosis were the clinical characteristics most frequently associated with worse performance in neurocognitive domains (5 of 7 domains). Overall, executive function and verbal learning were the most frequently negatively impacted neurocognitive domains. Conclusion Presence of CMB, APOE ϵ4 carrier status, hydrocephalus, and seizures correlate with worse neurocognitive outcomes in pediatric cancer survivors, enriched with CNS tumors exposed to radiation. Ongoing research is underway to verify trends in larger cohorts.
Collapse
Affiliation(s)
- Cassie Kline
- Division of Oncology, Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Schuyler Stoller
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
| | - Lennox Byer
- UCSF School of Medicine, University of California, San Francisco, United States
| | - David Samuel
- Division of Pediatric Hematology/Oncology, Valley Children’s Hospital, Madera, CA, United States
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Andreas M. Rauschecker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Pierre Nedelec
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Walter Faig
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Dena B. Dubal
- Department of Neurology, University of California, San Francisco, CA, United States
| | - Heather J. Fullerton
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Sabine Mueller
- Division of Child Neurology, Department of Neurology, University of California, San Francisco, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, CA, United States
- *Correspondence: Sabine Mueller,
| |
Collapse
|
8
|
Chen Y, Genc O, Poynton CB, Banerjee S, Hess CP, Lupo JM. Comparison of quantitative susceptibility mapping methods on evaluating radiation-induced cerebral microbleeds and basal ganglia at 3T and 7T. NMR IN BIOMEDICINE 2022; 35:e4666. [PMID: 35075701 PMCID: PMC10443943 DOI: 10.1002/nbm.4666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Quantitative susceptibility mapping (QSM) has the potential for being a biomarker for various diseases because of its ability to measure tissue susceptibility related to iron deposition, myelin, and hemorrhage from the phase signal of a T2 *-weighted MRI. Despite its promise as a quantitative marker, QSM is faced with many challenges, including its dependence on preprocessing of the raw phase data, the relatively weak tissue signal, and the inherently ill posed relationship between the magnetic dipole and measured phase. The goal of this study was to evaluate the effects of background field removal and dipole inversion algorithms on noise characteristics, image uniformity, and structural contrast for cerebral microbleed (CMB) quantification at both 3T and 7T. We selected four widely used background phase removal and five dipole field inversion algorithms for QSM and applied them to volunteers and patients with CMBs, who were scanned at two different field strengths, with ground truth QSM reference calculated using multiple orientation scans. 7T MRI provided QSM images with lower noise than did 3T MRI. QSIP and VSHARP + iLSQR achieved the highest white matter homogeneity and vein contrast, with QSIP also providing the highest CMB contrast. Compared with ground truth COSMOS QSM images, overall good correlations between susceptibility values of dipole inversion algorithms and the COSMOS reference were observed in basal ganglia regions, with VSHARP + iLSQR achieving the susceptibility values most similar to COSMOS across all regions. This study can provide guidance for selecting the most appropriate QSM processing pipeline based on the application of interest and scanner field strength.
Collapse
Affiliation(s)
- Yicheng Chen
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, CA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Ozan Genc
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey
| | - Clare B. Poynton
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | | | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Neurology, University of California, San Francisco, CA
| | - Janine M. Lupo
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and San Francisco, CA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| |
Collapse
|
9
|
Nguyen T, Mueller S, Malbari F. Review: Neurological Complications From Therapies for Pediatric Brain Tumors. Front Oncol 2022; 12:853034. [PMID: 35480100 PMCID: PMC9035987 DOI: 10.3389/fonc.2022.853034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022] Open
Abstract
Surgery, chemotherapy and radiation have been the mainstay of pediatric brain tumor treatment over the past decades. Recently, new treatment modalities have emerged for the management of pediatric brain tumors. These therapies range from novel radiotherapy techniques and targeted immunotherapies to checkpoint inhibitors and T cell transfer therapies. These treatments are currently investigated with the goal of improving survival and decreasing morbidity. However, compared to traditional therapies, these novel modalities are not as well elucidated and similarly has the potential to cause significant short and long-term sequelae, impacting quality of life. Treatment complications are commonly mediated through direct drug toxicity or vascular, infectious, or autoimmune mechanisms, ranging from immune effector cell associated neurotoxicity syndrome with CART-cells to neuropathy with checkpoint inhibitors. Addressing treatment-induced complications is the focus of new trials, specifically improving neurocognitive outcomes. The aim of this review is to explore the pathophysiology underlying treatment related neurologic side effects, highlight associated complications, and describe the future direction of brain tumor protocols. Increasing awareness of these neurologic complications from novel therapies underscores the need for quality-of-life metrics and considerations in clinical trials to decrease associated treatment-induced morbidity.
Collapse
Affiliation(s)
- Thien Nguyen
- Department of Pediatrics, University of San Francisco, San Francisco, CA, United States
- *Correspondence: Thien Nguyen,
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of San Francisco, San Francisco, CA, United States
| | - Fatema Malbari
- Division of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Liu J, Chen H, Gao X, Cui M, Ma L, Zheng X, Guan B, Ma X. Surgical treatment of diffuse and multi-lobes involved glioma with the assistance of a multimodal technique. Sci Rep 2022; 12:3343. [PMID: 35228595 PMCID: PMC8885800 DOI: 10.1038/s41598-022-07287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/14/2022] [Indexed: 12/05/2022] Open
Abstract
Diffuse and multi-lobes involved glioma (DMG) is a rare disease, and the aim of this study was to assess the role of multimodal-assisted surgical resection of tumours combined with chemoradiotherapy and identify prognosis. Clinical data were collected from 38 patients with a diagnosis of DMG. Nineteen patients received multimodal-assisted surgical resection of tumours combined with chemoradiotherapy, and another 19 patients underwent chemoradiotherapy alone after stereotactic puncture biopsy. The clinical characteristics, magnetic resonance imaging (MRI) findings, histopathological diagnosis, progression-free survival, and overall survival of DMG patients were retrospectively analysed. Twenty-six males and 12 females were included, and the age of the participants ranged from 10 to 80 years (46.34 ± 15.61). The median overall survival in our study was 25 months, and the progression-free survival was 17 months. The extent of resection was 50.10–73.60% (62.54% ± 7.92%). The preoperative and the postoperative KPS score of the patients in the operation group showed no statistically significant difference. The results of logistic regression demonstrated that overall survival was positively associated with operative treatment + chemoradiotherapy (p = 0.003) but negatively associated with age and corpus callosal involvement (p = 0.028 and 0.022, respectively). Kaplan–Meier analyses showed that those who underwent surgical treatment had a significant progression-free and overall survival benefit compared to those who did not undergo surgical treatment (log-rank test; p = 0.011 and 0.008, respectively). Older age and involvement of the corpus callosum represent a poor prognosis in DMG patients. Multimodal-assisted surgical resection of tumours combined with chemoradiotherapy might be a treatment option for DMG. Further research is needed to obtain the clear evidence of the effect of surgical treatment.
Collapse
|
11
|
Li R, Wang H, Liang Q, Chen L, Ren J. Radiotherapy for glioblastoma: clinical issues and nanotechnology strategies. Biomater Sci 2022; 10:892-908. [PMID: 34989724 DOI: 10.1039/d1bm01401c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults with poor prognosis. Despite the current state of knowledge on its genetic characteristics, relatively little progress has been made in improving the treatment of patients with this fatal disease. Radiotherapy (RT) has been identified as a crucial treatment for GBM following surgical resection to improve both local control and survival. Unfortunately, radiotherapy resistance is frequently observed in GBM patients, which is the major reason for the high mortality rate of cancer patients. Radioresistance of GBM is often multifactorial and heterogeneous, and associated with the recurrence of GBM after surgery. Nanotechnology has gained increasing attention and has already been investigated for optimization of radiosensitization due to the unique properties of nanobiomaterials, such as photoelectric decay characteristics or potential as carriers for drug delivery to the central nervous system. A large body of preclinical data has accumulated over the past several years, in which nanotechnology-based strategies exhibit promising potential to enhance the radiosensitivity of GBM, both in cellular and animal models. In this review, we summarize the mechanisms of GBM radioresistance, including tumor cell-intrinsic factors as well as tumor microenvironment (TME). We further discuss current nano-biotechnology-based radiosensitizer in the treatment of GBM, summarize the latest findings, highlight challenges, and put forward prospects for the future of nano-radiosensitizers. These data suggest that nanotechnology has the potential to address many of the clinical challenges and nanobiomaterials would become promising next-generation radiotherapy sensitizers for GBM treatment.
Collapse
Affiliation(s)
- Ruiqi Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Haihong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Qing Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Lian Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, P. R. China.
| |
Collapse
|
12
|
Morrison MA, Lupo JM. 7-T Magnetic Resonance Imaging in the Management of Brain Tumors. Magn Reson Imaging Clin N Am 2021; 29:83-102. [PMID: 33237018 DOI: 10.1016/j.mric.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article provides an overview of the current status of ultrahigh-field 7-T magnetic resonance (MR) imaging in neuro-oncology, specifically for the management of patients with brain tumors. It includes a discussion of areas across the pretherapeutic, peritherapeutic, and posttherapeutic stages of patient care where 7-T MR imaging is currently being exploited and holds promise. This discussion includes existing technical challenges, barriers to clinical integration, as well as our impression of the future role of 7-T MR imaging as a clinical tool in neuro-oncology.
Collapse
Affiliation(s)
- Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Relationship between 7T MR-angiography features of vascular injury and cognitive decline in young brain tumor patients treated with radiation therapy. J Neurooncol 2021; 153:143-152. [PMID: 33893923 DOI: 10.1007/s11060-021-03753-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Although radiation therapy (RT) is a common treatment for pediatric brain tumors, it is associated with detrimental long-term effects such as impaired cognition, vascular injury, and increased stroke risk. This study aimed to develop metrics that describe vascular injury and relate them to the presence of cerebral microbleeds (CMBs) and cognitive performance scores. METHODS Twenty-five young adult survivors of pediatric brain tumors treated with either whole-brain (n = 12), whole-ventricular (n = 7), or no RT (n = 6) underwent 7T MRI and neurocognitive testing. Simultaneously acquired MR angiography and susceptibility-weighted images were used to segment CMBs and vessels and quantify their radii and volume. RESULTS Patients treated with whole-brain RT had significantly lower arterial volumes (p = 0.003) and a higher proportion of smaller vessels (p = 0.003) compared to the whole-ventricular RT and non-irradiated control patients. Normalized arterial volume decreased with increasing CMB count (R = - 0.66, p = 0.003), and decreasing trends were observed with time since RT and at longitudinal follow-up. Global cognition and verbal memory significantly decreased with smaller normalized arterial volume (p ≤ 0.05). CONCLUSIONS Arterial volume is reduced with increasing CMB presence and is influenced by the total brain volume exposed to radiation. This work highlights the potential use of vascular-derived metrics as non-invasive markers of treatment-induced injury and cognitive impairment in pediatric brain tumor patients.
Collapse
|
14
|
Madera J, Sánchez-Soblechero A, Navarrete Solano P, Corro Verde U, Marco de Lucas E, Pacheco Baldor M, Prada PJ, Pascual J. Late vascular complications after cranial radiotherapy: A report of two illustrative cases. Cancer Radiother 2021; 25:786-789. [PMID: 33903008 DOI: 10.1016/j.canrad.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/15/2022]
Abstract
Cranial radiotherapy (CRT) is used to treat a large variety of benign and malignant disorders. We present two cases of late neurological complications after CRT and briefly discuss its diagnosis and their shared pathophysiological aspects. The first case is a patient with cognitive impairment associated to mineralizing microangiopathy ten years after CRT for nasopharyngeal carcinoma and the second one is a woman with Stroke-like Migraine Attacks after Radiation Therapy (SMART) syndrome two years after CRT for anaplastic meningioma. Nowadays, higher survival rates might cause an increase in appearance of late neurological complications after CTR. These reported cases show that late complications can mimic a wide variety of neurological conditions and the importance of magnetic resonance image (MRI) to get a diagnosis.
Collapse
Affiliation(s)
- J Madera
- Service of Neurology, University Hospital Marqués de Valdecilla, University of Cantabria and IDIVAL, Av. Valdecilla s/n, 39008 Santander, Spain
| | - A Sánchez-Soblechero
- Service of Neurology, University Hospital Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - P Navarrete Solano
- Service of Oncology and Radiotherapy, University Hospital Marqués de Valdecilla and IDIVAL, Av. Valdecilla s/n, 39008 Santander, Spain
| | - U Corro Verde
- Service of Oncology and Radiotherapy, University Hospital Marqués de Valdecilla and IDIVAL, Av. Valdecilla s/n, 39008 Santander, Spain
| | - E Marco de Lucas
- Service of Radiology, University Hospital Marqués de Valdecilla and IDIVAL, Av. Valdecilla s/n, 39008 Santander, Spain
| | - M Pacheco Baldor
- Service of Oncology and Radiotherapy, University Hospital Marqués de Valdecilla and IDIVAL, Av. Valdecilla s/n, 39008 Santander, Spain
| | - P J Prada
- Service of Oncology and Radiotherapy, University Hospital Marqués de Valdecilla and IDIVAL, Av. Valdecilla s/n, 39008 Santander, Spain
| | - J Pascual
- Service of Neurology, University Hospital Marqués de Valdecilla, University of Cantabria and IDIVAL, Av. Valdecilla s/n, 39008 Santander, Spain.
| |
Collapse
|
15
|
Witzmann K, Raschke F, Troost EGC. MR Image Changes of Normal-Appearing Brain Tissue after Radiotherapy. Cancers (Basel) 2021; 13:cancers13071573. [PMID: 33805542 PMCID: PMC8037886 DOI: 10.3390/cancers13071573] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Radiotherapy is one of the most important treatment options against cancer. Irradiation of cancerous tissue either directly destroys the cancer cells or damages them such that they cannot reproduce. One side-effect of radiotherapy is that tumor-surrounding normal tissue is inevitably also irradiated, albeit at a lower dose. The resulting long-term damage can significantly affect cognitive performance and quality of life. Many studies investigated the effect of irradiation on normal-appearing brain tissues and some of these correlated imaging findings with functional outcome. This article provides an overview of the examination of radiation-induced injuries using conventional and enhanced MRI methods and summarizes conclusions about the underlying tissue changes. Radiation-induced morphologic, microstructural, vascular, and metabolic tissue changes have been observed, in which the effect of irradiation was evident in terms of decreased perfusion and neuronal health as well as increased diffusion and atrophy. Abstract Radiotherapy is part of the standard treatment of most primary brain tumors. Large clinical target volumes and physical characteristics of photon beams inevitably lead to irradiation of surrounding normal brain tissue. This can cause radiation-induced brain injury. In particular, late brain injury, such as cognitive dysfunction, is often irreversible and progressive over time, resulting in a significant reduction in quality of life. Since 50% of patients have survival times greater than six months, radiation-induced side effects become more relevant and need to be balanced against radiation treatment given with curative intent. To develop adequate treatment and prevention strategies, the underlying cause of radiation-induced side-effects needs to be understood. This paper provides an overview of radiation-induced changes observed in normal-appearing brains measured with conventional and advanced MRI techniques and summarizes the current findings and conclusions. Brain atrophy was observed with anatomical MRI. Changes in tissue microstructure were seen on diffusion imaging. Vascular changes were examined with perfusion-weighted imaging and susceptibility-weighted imaging. MR spectroscopy revealed decreasing N-acetyl aspartate, indicating decreased neuronal health or neuronal loss. Based on these findings, multicenter prospective studies incorporating advanced MR techniques as well as neurocognitive function tests should be designed in order to gain more evidence on radiation-induced sequelae.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G. C. Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany; (K.W.); (F.R.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden of the German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Correspondence:
| |
Collapse
|
16
|
Morrison MA, Mueller S, Felton E, Jakary A, Stoller S, Avadiappan S, Yuan J, Molinaro AM, Braunstein S, Banerjee A, Hess CP, Lupo JM. Rate of radiation-induced microbleed formation on 7T MRI relates to cognitive impairment in young patients treated with radiation therapy for a brain tumor. Radiother Oncol 2020; 154:145-153. [PMID: 32966846 DOI: 10.1016/j.radonc.2020.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/04/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Radiation therapy (RT) is essential to the management of many brain tumors, but has been known to lead to cognitive decline and vascular injury in the form of cerebral microbleeds (CMBs). PURPOSE In a subset of children, adolescents, and young adults recruited from a larger trial investigating arteriopathy and stroke risk after RT, we evaluated the prevalence of CMBs after RT, examined risk factors for CMBs and cognitive impairment, and related their longitudinal development to cognitive performance changes. METHODS Twenty-five patients (mean 17 years, range: 10-25 years) underwent 7-Tesla MRI and cognitive assessment. Nineteen patients were treated with whole-brain or focal RT 1-month to 20-years prior, while 6 non-irradiated patients with posterior-fossa tumors served as controls. CMBs were detected on 7T susceptibility-weighted imaging (SWI) using semi-automated software, a first use in this population. RESULTS CMB detection sensitivity with 7T SWI was higher than previously reported at lower field strengths, with one or more CMBs detected in 100% of patients treated with RT at least 1-year prior. CMBs were localized to dose-targeted brain volumes with risk factors including whole-brain RT (p = 0.05), a higher RT dose (p = 0.01), increasing time since RT (p = 0.03), and younger age during RT (p = 0.01). Apart from RT dose, these factors were associated with impaired memory performance. Follow-up data in a subset of patients revealed a proportional increase in CMB count with worsening verbal memory performance (r = -0.85, p = 0.03). CONCLUSIONS Treatment with RT during youth is associated with the chronic development of CMBs that evolve with memory impairment over time.
Collapse
Affiliation(s)
- Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Sabine Mueller
- Department of Neurology, University of California San Francisco, USA
| | - Erin Felton
- Department of Neurology, University of California San Francisco, USA
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Schuyler Stoller
- Department of Neurology, University of California San Francisco, USA
| | - Sivakami Avadiappan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Justin Yuan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, USA; Department of Epidemiology & Biostatistics, University of California San Francisco, USA
| | - Steve Braunstein
- Department of Radiation Oncology, University of California San Francisco, USA
| | - Anu Banerjee
- Department of Neurology, University of California San Francisco, USA
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA; Department of Neurology, University of California San Francisco, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA.
| |
Collapse
|
17
|
Chen H, Li X, Zhang X, Xu W, Mao F, Bao M, Zhu M. Late delayed radiation-induced cerebral Arteriopathy by high-resolution magnetic resonance imaging: a case report. BMC Neurol 2019; 19:232. [PMID: 31578138 PMCID: PMC6775647 DOI: 10.1186/s12883-019-1453-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 08/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Radiation therapy can cause cerebral arteriopahty, resulting in ischemic stroke. We document late-delayed cerebral arteriopathy by high-resolution magnetic resonance imaging (HR-MRI) in a middle aged man who had cranial irradiation 19 years earlier. Case presentation A 45-year-old man was diagnosed with frontal lobe glioma 19 years ago and was treated with radiation after surgical resection. He was admitted to our hospital with an acute cerebral infarction in November 8, 2017. Traditional MRI examination and HR-MRI (sagittal, reconstruction of coronal and axial) were performed at admission. He was treated with prednisone (30 mg/day) and clinical symptoms disappeared after 3 months by telephone follow-up. Our patient complained of dizziness and blurred vision and traditional MRI examination indicated acute ischemic stroke in temporal lobe and occipital lobe and microbleeds. In order to define the exact mechanism of stroke, blood tests, auto-immune screening and thrombophilia were performed and results were normal. Electrocardiography and echocardiography were negative and cardiogenic cerebral embolism was excluded. In cerebrospinal fluid (CSF) examination, level of albumin and IgG were elevated. HR-MRI showed vessel wall thickening in T1-weighted imaging, narrow lumen in proton density imaging and vessel wall concentric enhancement in contrast-enhanced T1- weighted imaging. Combined with radiotherapy history, the patient was diagnosed with radioactive vasculitis. Conclusion Radiation-induced cerebrovascular damages could be a lasting progress, which we cannot ignore. HR-MRI can provide sensitive and accurate diagnostic assessment of radiation-induced arteritis and may be a useful tool for the screening of causes of cryptogenic stroke.
Collapse
Affiliation(s)
- Huan Chen
- Department of Neurology, Shandong University, First People's Hospital of Jinan, Jinan, 250013, China
| | - Xiuhua Li
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, 250014, China
| | - Xiaoyu Zhang
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, 250014, China
| | - Wenjuan Xu
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, 250014, China
| | - Fei Mao
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, 250014, China
| | - Mengxin Bao
- Department of Neurology, Liaocheng People's Hospital, Liaocheng, 252000, China
| | - Meijia Zhu
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, 250014, China.
| |
Collapse
|
18
|
van Leyen K, Roelcke U, Gruber P, Remonda L, Berberat J. Susceptibility and Tumor Size Changes During the Time Course of Standard Treatment in Recurrent Glioblastoma. J Neuroimaging 2019; 29:645-649. [PMID: 31112344 DOI: 10.1111/jon.12631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/09/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Susceptibility-weighted magnetic resonance imaging (SWI) yields information regarding tumor biology (e.g., hemorrhage) of growing gliomas. SWI changes can also be observed as a consequence of treatment, for example radiation therapy. The aim of our study was to investigate how susceptibility changes occur during the time course after completion of standard treatment in newly diagnosed glioblastoma (GBM). METHODS Eighteen GBM patients were retrospectively analyzed. After completion of therapy, imaging was performed every 3 months. MRI was analyzed at the following time points: after the third and sixth cycle of adjuvant temozolomide chemotherapy, thereafter in 3 month intervals and at recurrence. The number of SWI positive tumor pixels was quantified and compared with progression as defined by the RANO criteria on T2- and contrast-enhanced T1-weighted MRI sequences (T1-CE). RESULTS The MRI interval between completion of the sixth chemotherapy cycle and last MRI before progression was 390 ± 292 days. Between the last MRI before progression and at progression a significant increase in SWI positive tumor pixels was observed (P = .012), whereas tumor size remained unchanged (RANO T2: P = .385; RANO T1-CE: P = .165). The number of SWI positive pixels remained unchanged between last MRI before progression until progression (P = .149), whereas RANO T2 and T1-CE showed tumor progression (interval 128 ± 69 days). CONCLUSIONS SWI positive pixel count increases significantly prior to changes in tumor size (RANO). Our findings may be explained by microbleeds compatible with stimulation of angiogenesis and possibly serve as an early biomarker of tumor progression.
Collapse
Affiliation(s)
- K van Leyen
- Department of Neurosurgery, Cantonal Hospital St. Gallen, 9007, St. Gallen, Switzerland
| | - U Roelcke
- Department of Neurology and Brain Tumor Center, Cantonal Hospital Aarau, 5001, Aarau, Switzerland
| | - P Gruber
- Department of Neuroradiology, Cantonal Hospital Aarau, 5001, Aarau, Switzerland
| | - L Remonda
- Department of Neuroradiology, Cantonal Hospital Aarau, 5001, Aarau, Switzerland.,University of Bern, Bern, Switzerland
| | - J Berberat
- Department of Neuroradiology, Cantonal Hospital Aarau, 5001, Aarau, Switzerland
| |
Collapse
|
19
|
Humphries TJ, Mathew P. Cerebral microbleeds: hearing through the silence-a narrative review. Curr Med Res Opin 2019; 35:359-366. [PMID: 30193542 DOI: 10.1080/03007995.2018.1521787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The term cerebral microbleed (CMB) refers to lesions documented as unexpected findings during computed tomography or magnetic resonance imaging examination of the brain. Initially, a CMB was thought to represent hemosiderin-laden macrophages marking an area of a tiny hemorrhage. Recently, histopathologic studies have shown that the structure of a CMB can be variable. To aid in dealing with this finding and judging its clinical significance, this review addresses important aspects of a CMB, including the definition, prevalence, and incidence in various populations, end-organ damage, associated conditions, and whether any action or treatment by the clinician might be indicated. METHODS PubMed Medline, EMBASE, BIOSIS, Current Contents, and Derwent Drug Files databases were searched for the keywords "microbleeds-detection-damage", "silent bleeds", "microbleeds", or "silent bleeds AND hemophilia" from 2011-2016. References of retrieved articles were also reviewed and included if applicable. RESULTS The published data are found primarily in the imaging literature and focus on diagnostic techniques. Some publications address relationships with diverse, co-existing clinical conditions and implications for treatment, especially in stroke, intracranial hemorrhage, and antithrombotic therapy. CONCLUSIONS It is critical for non-radiologist clinicians (primary care, internists, neurologists, hematologists) to be aware of the potential importance of the finding of a CMB, and the fact that these lesions are not always truly silent or without important clinical consequences. As additional studies appear, clinicians may be able to "hear" more clearly through the silence of the CMB and understand potential clinical implications in patients.
Collapse
Affiliation(s)
| | - Prasad Mathew
- b Bayer , Whippany , NJ , USA
- c University of New Mexico , Albuquerque , NM , USA
| |
Collapse
|
20
|
Morrison MA, Hess CP, Clarke JL, Butowski N, Chang SM, Molinaro AM, Lupo JM. Risk factors of radiotherapy-induced cerebral microbleeds and serial analysis of their size compared with white matter changes: A 7T MRI study in 113 adult patients with brain tumors. J Magn Reson Imaging 2019; 50:868-877. [PMID: 30663150 DOI: 10.1002/jmri.26651] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Although radiation therapy (RT) contributes to survival benefit in many brain tumor patients, it has also been associated with long-term brain injury. Cerebral microbleeds (CMBs) represent an important manifestation of radiation-related injury. PURPOSE To characterize the change in size and number of CMBs over time and to evaluate their relationship to white matter structural integrity as measured using diffusion MRI indices. STUDY TYPE Longitudinal, retrospective, human cohort. POPULATION In all, 113 brain tumor patients including patients treated with focal RT (n = 91, 80.5%) and a subset of nonirradiated controls (n = 22, 19.5%). FIELD STRENGTH/SEQUENCE Single and multiecho susceptibility-weighted imaging (SWI) and multiband, shell, and direction diffusion tensor imaging (DTI) at 7 T. ASSESSMENT Patients were scanned either once or serially. CMBs were detected and quantified on SWI images using a semiautomated approach. Local and global fractional anisotropy (FA) were measured from DTI data for a subset of 35 patients. STATISTICAL TESTS Potential risk factors for CMB development were determined by multivariate linear regression and using linear mixed-effect models. Longitudinal FA was quantitatively and qualitatively evaluated for trends. RESULTS All patients scanned at 1 or more years post-RT had CMBs. A history of multiple surgical resections was a risk factor for development of CMBs. The total number and volume of CMBs increased by 18% and 11% per year, respectively, although individual CMBs decreased in volume over time. Simultaneous to these microvascular changes, FA decreased by a median of 6.5% per year. While the majority of nonirradiated controls had no CMBs, four control patients presented with fewer than five CMBs. DATA CONCLUSION Identifying patients who are at the greatest risk for CMB development, with its likely associated long-term cognitive impairment, is an important step towards developing and piloting preventative and/or rehabilitative measures for patients undergoing RT. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2019;50:868-877.
Collapse
Affiliation(s)
- Melanie A Morrison
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jennifer L Clarke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA.,UCSF/UCB Graduate Group in Bioengineering, San Francisco, California, USA
| |
Collapse
|
21
|
Radiation-Induced Cerebral Microbleeds in Pediatric Patients With Brain Tumors Treated With Proton Radiation Therapy. Int J Radiat Oncol Biol Phys 2018; 102:1465-1471. [PMID: 30092336 DOI: 10.1016/j.ijrobp.2018.07.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/11/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE Proton beam radiation therapy (PBT) has been increasingly used to treat pediatric brain tumors; however, limited information exists regarding radiation-induced cerebral microbleeds (CMBs) among these patients. The purpose of this study was to evaluate the incidence, risk factors, and imaging appearance of CMBs in pediatric patients with brain tumors treated with PBT. MATERIALS AND METHODS A retrospective study was performed of 100 pediatric patients with primary brain tumors treated with PBT. CMBs were diagnosed by examination of serial magnetic resonance imaging scans, including susceptibility-weighted imaging. Radiation therapy plans were analyzed to determine doses to individual CMBs. Clinical records were used to determine risk factors associated with the development of CMBs in these patients. RESULTS The mean age at time of PBT was 8.1 years. The median follow-up duration was 57 months. The median time to development of CMBs was 8 months (mean, 11 months; range, 3-28 months). The percentage of patients with CMBs was 43%, 66%, 80%, 81%, 83%, and 81% at 1 year, 2 years, 3 years, 4 years, 5 years, and >5 years from completion of proton radiation therapy. Most of the CMBs (87%) were found in areas of brain exposed to ≥30 Gy. Risk factors included maximum radiation therapy dose (P = .001), percentage and volume of brain exposed to ≥30 Gy (P = .0004, P = .0005), and patient age at time of PBT (P = .0004). Chemotherapy was not a significant risk factor (P = .35). No CMBs required surgical intervention. CONCLUSIONS CMBs develop in a high percentage of pediatric patients with brain tumors treated with proton radiation therapy within the first few years after treatment. Significant risk factors for development of CMBs include younger age at time of PBT, higher maximum radiation therapy dose, and higher percentage and volume of brain exposed to ≥30 Gy. These findings demonstrate similarities with CMBs that develop in pediatric patients with brain tumor treated with photon radiation therapy.
Collapse
|
22
|
Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F. Cerebral Microbleeds: Imaging and Clinical Significance. Radiology 2018; 287:11-28. [PMID: 29558307 DOI: 10.1148/radiol.2018170803] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cerebral microbleeds (CMBs), also referred to as microhemorrhages, appear on magnetic resonance (MR) images as hypointense foci notably at T2*-weighted or susceptibility-weighted (SW) imaging. CMBs are detected with increasing frequency because of the more widespread use of high magnetic field strength and of newer dedicated MR imaging techniques such as three-dimensional gradient-echo T2*-weighted and SW imaging. The imaging appearance of CMBs is mainly because of changes in local magnetic susceptibility and reflects the pathologic iron accumulation, most often in perivascular macrophages, because of vasculopathy. CMBs are depicted with a true-positive rate of 48%-89% at 1.5 T or 3.0 T and T2*-weighted or SW imaging across a wide range of diseases. False-positive "mimics" of CMBs occur at a rate of 11%-24% and include microdissections, microaneurysms, and microcalcifications; the latter can be differentiated by using phase images. Compared with postmortem histopathologic analysis, at least half of CMBs are missed with premortem clinical MR imaging. In general, CMB detection rate increases with field strength, with the use of three-dimensional sequences, and with postprocessing methods that use local perturbations of the MR phase to enhance T2* contrast. Because of the more widespread availability of high-field-strength MR imaging systems and growing use of SW imaging, CMBs are increasingly recognized in normal aging, and are even more common in various disorders such as Alzheimer dementia, cerebral amyloid angiopathy, stroke, and trauma. Rare causes include endocarditis, cerebral autosomal dominant arteriopathy with subcortical infarcts, leukoencephalopathy, and radiation therapy. The presence of CMBs in patients with stroke is increasingly recognized as a marker of worse outcome. Finally, guidelines for adjustment of anticoagulant therapy in patients with CMBs are under development. © RSNA, 2018.
Collapse
Affiliation(s)
- Sven Haller
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Meike W Vernooij
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Joost P A Kuijer
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Elna-Marie Larsson
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Hans Rolf Jäger
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| | - Frederik Barkhof
- From the Affidea Centre de Diagnostic Radiologique de Carouge (CDRC), Geneva, Switzerland (S.H.); Faculty of Medicine, University of Geneva, Geneva, Switzerland (S.H.); Department of Surgical Sciences, Radiology, Uppsala University, Uppsala, Sweden (S.H., E.M.L.); Department of Neuroradiology, University Hospital Freiburg, Freiburg, Germany (S.H.); Department of Radiology and Nuclear Medicine and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands (M.W.V.); Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, the Netherlands (J.P.A.K., F.B.); Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, England (H.R.J., F.B.)
| |
Collapse
|
23
|
Lecler A, Charbonneau F, Psimaras D, Metten MA, Gueguen A, Hoang Xuan K, Feuvret L, Savatovsky J. Remote brain microhaemorrhages may predict haematoma in glioma patients treated with radiation therapy. Eur Radiol 2018; 28:4324-4333. [PMID: 29651771 DOI: 10.1007/s00330-018-5356-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/03/2018] [Accepted: 01/26/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate the prevalence of cerebral remote microhaemorrhages (RMH) and remote haematomas (RH) using magnetic resonance susceptibility-weighted imaging (SWI) among patients treated for gliomas during follow-up. METHODS We conducted a retrospective single centre longitudinal study on 58 consecutive patients treated for gliomas from January 2009 through December 2010. Our institutional review board approved this study. We evaluated the presence and number of RMH and RH found outside the brain tumour on follow-up MR imaging. We performed univariate and bivariate analyses to identify predictors for RMH and RH and Kaplan-Meier survival analysis techniques. RESULTS Twenty-five (43%) and four patients (7%) developed at least one RMH or RH, respectively, during follow-up. The risk was significantly higher for patients who received radiation therapy (49% and 8% versus 0%) (p = 0.02). The risk of developing RH was significantly higher in patients with at least one RMH and a high burden of RMH. The mean age of those presenting with at least one RMH or RH was significantly lower. CONCLUSIONS RMH were common in adult survivors of gliomas who received radiation therapy and may predict the onset of RH during follow-up, mainly in younger patients. KEY POINTS • Brain RMH and RH are significantly more likely to occur after RT. • RMH occur in almost half of the patients treated with RT. • RMH and RH are significantly more frequent in younger patients. • RH occur only in patients with RMH.
Collapse
Affiliation(s)
- Augustin Lecler
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 25 rue Manin, 75019, Paris, France.
| | - Frédérique Charbonneau
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 25 rue Manin, 75019, Paris, France
| | - Dimitri Psimaras
- Department of Neurology, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marie-Astrid Metten
- Clinical Research Unit, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Antoine Gueguen
- Department of Neurology, Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
| | - Khe Hoang Xuan
- Department of Neurooncology, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Loic Feuvret
- Department of Radiotherapy, Groupe Hospitalier Pitié-Salpêtrière, AP-HP, Paris, France
| | - Julien Savatovsky
- Department of Radiology, Fondation Ophtalmologique Adolphe de Rothschild, 25 rue Manin, 75019, Paris, France.,Imagerie Medicale Paris 13, Paris, France
| |
Collapse
|
24
|
Miura M, Nakajima M, Fujimoto A, Kaku Y, Kawano T, Watanabe M, Kuratsu JI, Ando Y. High prevalence of small vessel disease long after cranial irradiation. J Clin Neurosci 2017; 46:129-135. [DOI: 10.1016/j.jocn.2017.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/24/2017] [Accepted: 09/04/2017] [Indexed: 11/27/2022]
|
25
|
Belliveau JG, Bauman GS, Tay KY, Ho D, Menon RS. Initial Investigation into Microbleeds and White Matter Signal Changes following Radiotherapy for Low-Grade and Benign Brain Tumors Using Ultra-High-Field MRI Techniques. AJNR Am J Neuroradiol 2017; 38:2251-2256. [PMID: 28970242 DOI: 10.3174/ajnr.a5395] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 07/24/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE External beam radiation therapy is a common treatment for many brain neoplasms. While external beam radiation therapy adheres to dose limits to protect the uninvolved brain, areas of high dose to normal tissue still occur. Patients treated with chemoradiotherapy can have adverse effects such as microbleeds and radiation necrosis, but few studies exist of patients treated without chemotherapy. MATERIALS AND METHODS Ten patients were treated for low-grade or benign neoplasms with external beam radiation therapy only and scanned within 12-36 months following treatment with a 7T MR imaging scanner. A multiecho gradient-echo sequence was acquired and postprocessed into SWI, quantitative susceptibility mapping, and apparent transverse relaxation maps. Six patients returned for follow-up imaging approximately 18 months following their first research scan and were imaged with the same techniques. RESULTS At the first visit, 7/10 patients had microbleeds evident on SWI, quantitative susceptibility mapping, and apparent transverse relaxation. All microbleeds were within a dose region of >45 Gy. Additionally, 4/10 patients had asymptomatic WM signal changes evident on standard imaging. Further analysis with our technique revealed that these lesions were venocentric, suggestive of a neuroinflammatory process. CONCLUSIONS There exists a potential for microbleeds in patients treated with external beam radiation therapy without chemotherapy. This finding is of clinical relevance because it could be a precursor of future neurovascular disease and indicates that additional care should be taken when using therapies such as anticoagulants. Additionally, the appearance of venocentric WM lesions could be suggestive of a neuroinflammatory mechanism that has been suggested in diseases such as MS. Both findings merit further investigation in a larger population set.
Collapse
Affiliation(s)
- J-G Belliveau
- From the Departments of Medical Biophysics (J.-G.B., G.S.B., R.S.M.).,Centre for Functional and Metabolic Mapping (J.-G.B., R.S.M.), Robarts Research Institute, London, Ontario, Canada
| | - G S Bauman
- From the Departments of Medical Biophysics (J.-G.B., G.S.B., R.S.M.).,Oncology (G.S.B.).,London Regional Cancer Program (G.S.B.), London, Ontario, Canada
| | - K Y Tay
- Medical Imaging (K.Y.T.), University of Western Ontario, London, Ontario, Canada
| | - D Ho
- Department of Radiology (D.H.), Woodstock General Hospital, Woodstock, Ontario, Canada
| | - R S Menon
- From the Departments of Medical Biophysics (J.-G.B., G.S.B., R.S.M.) .,Centre for Functional and Metabolic Mapping (J.-G.B., R.S.M.), Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
26
|
Yust-Katz S, Inbar E, Michaeli N, Limon D, Siegal T. Aberrant paramagnetic signals outside the tumor volume on routine surveillance MRI of brain tumor patients. J Neurooncol 2017; 134:371-376. [DOI: 10.1007/s11060-017-2536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 06/26/2017] [Indexed: 11/30/2022]
|
27
|
Relationship between radiation dose and microbleed formation in patients with malignant glioma. Radiat Oncol 2017; 12:126. [PMID: 28797254 PMCID: PMC5553662 DOI: 10.1186/s13014-017-0861-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cranial irradiation is associated with long-term cognitive changes. Cerebral microbleeds (CMBs) have been identified on susceptibility-weighted MRI (SWI) in patients who have received prior cranial radiation, and serve as radiographic markers for microvascular injury thought to contribute to late cognitive decline. The relationship between CMB formation and radiation dose has not previously been quantified. METHODS SWI was performed on 13 patients with stable WHO grade III-IV gliomas between 2 and 4 years after chemoradiotherapy to 60 Gy. The median age at the time of treatment was 41 years (range 25 - 74 years). CMBs were identified as discrete foci of susceptibility on SWI that did not correspond to vessels. CMB density for low (<30 Gy), median (30-45 Gy), and high (>45 Gy) dose regions was computed. RESULTS Twelve of 13 patients exhibited CMBs. The number of CMBs was significantly higher for late (>3 years from treatment) compared to early (<3 years) timepoints (early median 6 CMBs; late median 27 CMBs; p = 0.001), and there were proportionally more CMBs at lower doses for late scans (p = 0.006). 88% of all CMBs were observed in regions receiving at least 30 Gy, but the CMB density within medium and high dose regions was not significantly different (p = 0.33 and p = 0.9, respectively, for early and late time points). CONCLUSIONS CMBs predominantly form in regions receiving at least 30 Gy, but form in lower dose regions with longer follow-up. We do not observe a clear dose-response relationship at doses above 30 Gy. These findings provide important information to assess the risk of late microvascular sequelae from cranial irradiation.
Collapse
|
28
|
Response to “Cognitive function, cerebral microbleeds, radiotherapy, and bevacizumab in survivors of paediatric brain tumors”. Neuro Oncol 2017; 19:299-300. [DOI: 10.1093/neuonc/now255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Belliveau JG, Bauman G, Macdonald DR. Detecting tumor progression in glioma: current standards and new techniques. Expert Rev Anticancer Ther 2016; 16:1177-1188. [PMID: 27661768 DOI: 10.1080/14737140.2016.1240621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The post-treatment monitoring of glioma patients remains an area of active research and development. Conventional imaging with MRI is a highly sensitive modality for detecting and monitoring primary and secondary brain tumors and includes multi-parametric sequences to better characterize the disease. Standardized schemes for measuring response to treatment are in wide clinical use; however, the introduction of new therapeutics have introduced new patterns of response that can confound interpretation of conventional MRI and can cause uncertainty in the proper management following therapy. Areas covered: A summary of current and evolving techniques for assessing glioma response in this era of new therapies that address these challenges are presented in this review. While this review focuses more on clinical and early clinical methodologies for MRI and nuclear medicine techniques some promising pre-clinical techniques are also presented. Expert commentary: While successful single institution results have been widely reported in the literature, any new methodologies must be undertaken in multi-center settings. Additionally, the need for standardization of protocols in quantitative measured are an important area that must be addressed for new and promising techniques to be implemented to a wide array of patients.
Collapse
Affiliation(s)
- Jean-Guy Belliveau
- a Department of Medical Biophysics , University of Western Ontario , London , ON , Canada
| | - Glenn Bauman
- b Department of Medical Biophysics and Oncology , University of Western Ontario , London , ON , Canada
| | - David R Macdonald
- c Department of Oncology , University of Western Ontario , London , ON , Canada
| |
Collapse
|
30
|
Roddy E, Sear K, Felton E, Tamrazi B, Gauvain K, Torkildson J, Buono BD, Samuel D, Haas-Kogan DA, Chen J, Goldsby RE, Banerjee A, Lupo JM, Molinaro AM, Fullerton HJ, Mueller S. Presence of cerebral microbleeds is associated with worse executive function in pediatric brain tumor survivors. Neuro Oncol 2016; 18:1548-1558. [PMID: 27540084 DOI: 10.1093/neuonc/now163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/23/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A specific form of small-vessel vasculopathy-cerebral microbleeds (CMBs)-has been linked to various types of dementia in adults. We assessed the incidence of CMBs and their association with neurocognitive function in pediatric brain tumor survivors. METHODS In a multi-institutional cohort of 149 pediatric brain tumor patients who received cranial radiation therapy (CRT) between 1987 and 2014 at age <21 years and 16 patients who did not receive CRT, we determined the presence of CMBs on brain MRIs. Neurocognitive function was assessed using a computerized testing program (CogState). We used survival analysis to determine cumulative incidence of CMBs and Poisson regression to examine risk factors for CMBs. Linear regression models were used to assess effect of CMBs on neurocognitive function. RESULTS The cumulative incidence of CMBs was 48.8% (95% CI: 38.3-60.5) at 5 years. Children who had whole brain irradiation developed CMBs at a rate 4 times greater than those treated with focal irradiation (P < .001). In multivariable analysis, children with CMBs performed worse on the Groton Maze Learning test (GML) compared with those without CMBs (Z-score -1.9; 95% CI: -2.7, -1.1; P < .001), indicating worse executive function when CMBs are present. CMBs in the frontal lobe were associated with worse performance on the GML (Z-score -2.4; 95% CI: -2.9, -1.8; P < .001). Presence of CMBs in the temporal lobes affected verbal memory (Z-score -2.0; 95% CI: -3.3, -0.7; P = .005). CONCLUSION CMBs are common and associated with neurocognitive dysfunction in pediatric brain tumor survivors treated with radiation.
Collapse
Affiliation(s)
- Erika Roddy
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Katherine Sear
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Erin Felton
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Benita Tamrazi
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Karen Gauvain
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Joseph Torkildson
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Benedict Del Buono
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - David Samuel
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Daphne A Haas-Kogan
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Josephine Chen
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Robert E Goldsby
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Anuradha Banerjee
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Janine M Lupo
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Annette M Molinaro
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Heather J Fullerton
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| | - Sabine Mueller
- School of Medicine University of California San Francisco (UCSF), San Francisco, California (E.R.); Department of Neurology UCSF, San Francisco, California (K.S., E.F., B.D.B., H.J.F., S.M.); D epartment of Radiology Children's Hospital Los Angeles, Los Angeles, California (B.T.); Department of Pediatrics, Washington University, St Louis, Missouri (K.G.); Department of Pediatrics, Benioff Children's Hospital Oakland, Oakland, California (J.T.); Department of Pediatrics, Valley Children's Hospital, Madera, California (D.S.); Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts (D.A.H.-K.); Department of Radiation Oncology UCSF, San Francisco, California (J.C.); Department of Pediatrics UCSF, San Francisco, California (R.E.G., A.B., S.M.); Department of Neurological Surgery UCSF, San Francisco, California (A.B., A.M.M., S.M.); Department of Radiology and Biomedical Imaging UCSF, San Francisco, California (J.M.L.); Department of Biostatistics and Epidemiology UCSF, San Francisco, California (A.M.M.)
| |
Collapse
|