1
|
Zhang H, Li J, Wan X, Liu Z. A nomogram to predict cancer-specific mortality in adult patients with malignant meningioma: a competing risk analysis. Discov Oncol 2024; 15:394. [PMID: 39217259 PMCID: PMC11365918 DOI: 10.1007/s12672-024-01263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Comprehensive investigations of the prognosis factors and treatment strategies with adjustment of competing causes of death for patients with malignant meningioma (MM) is still lacking. PATIENT AND METHOD The surveillance, Epidemiology, and End Results (SEER) database were used to include adult patients with this rare disease between 2004 and 2018. The probability of MM-caused mortality (MMCM) and non-MM-caused mortality (non-MMCM) were presented by cumulative incidence function curves. Then, the association between variates with non-MMCM was evaluated by the cox proportional hazard model, and the prognostic factors of MMCM were identified by Fine-Gray competing risk regression model. Furthermore, a nomogram was developed to predict the 1-year, 2-year, and 5-year MMCM and the performance was tested by a time-dependent area under the receiver operating characteristic (ROC) curve and calibration. RESULT 577 patients were included, with a median age of 62 (18-100) years old and a median overall survival time of 36 (0-176) months. The percentage of non-MMCM was 15.4% (n = 89) in the entire population and 21.7% (n = 54) in elderly patients. The multivariable Cox proportional hazard regression model revealed that older age and other tumor(s) before or after MM had an independently significant association with higher non-MMCM. After adjustment of competing causes of death, the multivariable Fine-gray regression model identified age group ≥ 65 year, tumor size > 5.3 cm, recurrent MM, and histologic type 9530/3 (Meningioma, malignant) had an independently significant association with higher MMCM. Compared with gross total (GTR) of tumor, subtotal resection of tumor (HR 1.66, 95%CI 1.08-2.56, P = 0.02), partial resection of lobe (HR 2.26, 95%CI 1.32-3.87, P = 0.003), and gross total resection of lobe (HR 1.69, 95%CI 1.12-2.51, P = 0.01) had an independently significant association with higher MMCM. CONCLUSION The competing risk nomogram including age group, tumor size, initial status, histologic type, and extent of resection is discriminative and clinically useful. This study emphasized the importance of the GTR of tumor in the treatment of MM patients, which had a significantly lower incidence of MMCM compared with biopsy, STR of tumor, partial resection of lobe, and GTR of lobe.
Collapse
Affiliation(s)
- Hongfu Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Wan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Zhuoyi Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Zhong LW, Chen KS, Yang HB, Liu SD, Zong ZT, Zhang XQ. Exploring machine learning applications in Meningioma Research (2004-2023). Heliyon 2024; 10:e32596. [PMID: 38975185 PMCID: PMC11225743 DOI: 10.1016/j.heliyon.2024.e32596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Objective This study aims to examine the trends in machine learning application to meningiomas between 2004 and 2023. Methods Publication data were extracted from the Science Citation Index Expanded (SCI-E) within the Web of Science Core Collection (WOSCC). Using CiteSpace 6.2.R6, a comprehensive analysis of publications, authors, cited authors, countries, institutions, cited journals, references, and keywords was conducted on December 1, 2023. Results The analysis included a total of 342 articles. Prior to 2007, no publications existed in this field, and the number remained modest until 2017. A significant increase occurred in publications from 2018 onwards. The majority of the top 10 authors hailed from Germany and China, with the USA also exerting substantial international influence, particularly in academic institutions. Journals from the IEEE series contributed significantly to the publications. "Deep learning," "brain tumor," and "classification" emerged as the primary keywords of focus among researchers. The developmental pattern in this field primarily involved a combination of interdisciplinary integration and the refinement of major disciplinary branches. Conclusion Machine learning has demonstrated significant value in predicting early meningiomas and tailoring treatment plans. Key research focuses involve optimizing detection indicators and selecting superior machine learning algorithms. Future efforts should aim to develop high-performance algorithms to drive further innovation in this field.
Collapse
Affiliation(s)
- Li-wei Zhong
- Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi, China
| | - Kun-shan Chen
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Hua-biao Yang
- Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi, China
| | - Shi-dan Liu
- Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi, China
| | - Zhi-tao Zong
- Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi, China
| | - Xue-qin Zhang
- Jiujiang Traditional Chinese Medicine Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
3
|
Pacult MA, Przybylowski CJ, Raza SM, DeMonte F. Surgical Management of High-Grade Meningiomas. Cancers (Basel) 2024; 16:1978. [PMID: 38893100 PMCID: PMC11171173 DOI: 10.3390/cancers16111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Maximal resection with the preservation of neurological function are the mainstays of the surgical management of high-grade meningiomas. Surgical morbidity is strongly associated with tumor size, location, and invasiveness, whereas patient survival is strongly associated with the extent of resection, tumor biology, and patient health. A versatile microsurgical skill set combined with a cogent multimodality treatment plan is critical in order to achieve optimal patient outcomes. Continued refinement in surgical techniques in conjunction with directed radiotherapeutic and medical therapies will define future treatment.
Collapse
Affiliation(s)
- Mark A. Pacult
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA;
| | - Colin J. Przybylowski
- Division of Neurosurgery, Fukushima Brain Tumor Center, Raleigh Neurosurgical Clinic, Raleigh, NC 27609, USA;
| | - Shaan M. Raza
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Franco DeMonte
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
4
|
Garrido Ruiz PA, Rodriguez ÁO, Corchete LA, Zelaya Huerta V, Pasco Peña A, Caballero Martínez C, González-Carreró Fojón J, Catalina Fernández I, López Duque JC, Zaldumbide Dueñas L, Mosteiro González L, Astudillo MA, Hernández-Laín A, Camacho Urkaray EN, Viguri Diaz MA, Orfao A, Tabernero MD. Paired Primary and Recurrent Rhabdoid Meningiomas: Cytogenetic Alterations, BAP1 Gene Expression Profile and Patient Outcome. BIOLOGY 2024; 13:350. [PMID: 38785832 PMCID: PMC11117813 DOI: 10.3390/biology13050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Rhabdoid meningiomas (RM) are a rare meningioma subtype with a heterogeneous clinical course which is more frequently associated with recurrence, even among tumors undergoing-complete surgical removal. Here, we retrospectively analyzed the clinical-histopathological and cytogenetic features of 29 tumors, from patients with recurrent (seven primary and 14 recurrent tumors) vs. non-recurrent RM (n = 8). Recurrent RM showed one (29%), two (29%) or three (42%) recurrences. BAP1 loss of expression was found in one third of all RM at diagnosis and increased to 100% in subsequent tumor recurrences. Despite both recurrent and non-recurrent RM shared chromosome 22 losses, non-recurrent tumors more frequently displayed extensive losses of chromosome 19p (62%) and/or 19q (50%), together with gains of chromosomes 20 and 21 (38%, respectively), whereas recurrent RM (at diagnosis) displayed more complex genotypic profiles with extensive losses of chromosomes 1p, 14q, 18p, 18q (67% each) and 21p (50%), together with focal gains at chromosome 17q22 (67%). Compared to paired primary tumors, recurrent RM samples revealed additional losses at chromosomes 16q and 19p (50% each), together with gains at chromosomes 1q and 17q in most recurrent tumors (67%, each). All deceased recurrent RM patients corresponded to women with chromosome 17q gains, although no statistical significant differences were found vs. the other RM patients.
Collapse
Grants
- GRS 2315/A/21 Consejería de Sanidad JCYL, Gerencia Regional de Salud, Spain
- Consejería de Sanidad JCYL, Gerencia Regional de Salud, Spain GRS 2132/A/20
- CB16/12/00400 CIBERONC, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain
- FICUS-CIC donations Asociación René Rodríguez Tobar (Santa Cruz de La Palma, Canarias, Spain
Collapse
Affiliation(s)
- Patricia Alejandra Garrido Ruiz
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain; (P.A.G.R.); (Á.O.R.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
| | - Álvaro Otero Rodriguez
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain; (P.A.G.R.); (Á.O.R.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
| | - Luis Antonio Corchete
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
| | - Victoria Zelaya Huerta
- Pathology Service of the University Hospital of Pamplona, 31008 Pamplona, Spain; (V.Z.H.); (A.P.P.); (C.C.M.)
| | - Alejandro Pasco Peña
- Pathology Service of the University Hospital of Pamplona, 31008 Pamplona, Spain; (V.Z.H.); (A.P.P.); (C.C.M.)
| | - Cristina Caballero Martínez
- Pathology Service of the University Hospital of Pamplona, 31008 Pamplona, Spain; (V.Z.H.); (A.P.P.); (C.C.M.)
| | | | | | | | - Laura Zaldumbide Dueñas
- Pathology Service of the University Hospital Cruces, 48903 Barakaldo, Spain; (L.Z.D.); (L.M.G.)
| | | | | | - Aurelio Hernández-Laín
- Pathology Service of the University Hospital 12 Octubre, Universidad Complutense, 28041 Madrid, Spain;
| | | | | | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400), Institute of Health Carlos III, 37007 Salamanca, Spain
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400), Institute of Health Carlos III, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Talabnin C, Trasaktaweesakul T, Jaturutthaweechot P, Asavaritikrai P, Kongnawakun D, Silsirivanit A, Araki N, Talabnin K. Altered O-linked glycosylation in benign and malignant meningiomas. PeerJ 2024; 12:e16785. [PMID: 38274327 PMCID: PMC10809981 DOI: 10.7717/peerj.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Changes in protein glycosylation have been reported in various diseases, including cancer; however, the consequences of altered glycosylation in meningiomas remains undefined. We established two benign meningioma cell lines-SUT-MG12 and SUT-MG14, WHO grade I-and demonstrated the glycan and glycosyltransferase profiles of the mucin-type O-linked glycosylation in the primary benign meningioma cells compared with two malignant meningioma cell lines-HKBMM and IOMM-Lee, WHO grade III. Changes in O-linked glycosylation profiles in malignant meningiomas were proposed. Methods Primary culture technique, morphological analysis, and immunocytochemistry were used to establish and characterize two benign meningioma cell lines. The glycan profiles of the primary benign and malignant meningiomas cell lines were then analyzed using lectin cytochemistry. The gene expression of O-linked glycosyltransferases, mucins, sialyltransferases, and fucosyltransferases were analyzed in benign and malignant meningioma using the GEO database (GEO series GSE16581) and quantitative-PCR (qPCR). Results Lectin cytochemistry revealed that the terminal galactose (Gal) and N-acetyl galactosamine (GalNAc) were highly expressed in primary benign meningioma cells (WHO grade I) compared to malignant meningioma cell lines (WHO grade III). The expression profile of mucin types O-glycosyltransferases in meningiomas were observed through the GEO database and gene expression experiment in meningioma cell lines. In the GEO database, C1GALT1-specific chaperone (COSMC) and mucin 1 (MUC1) were significantly increased in malignant meningiomas (Grade II and III) compared with benign meningiomas (Grade I). Meanwhile, in the cell lines, Core 2 β1,6-N-acetylglucosaminyltransferase-2 (C2GNT2) was highly expressed in malignant meningiomas. We then investigated the complex mucin-type O-glycans structures by determination of sialyltransferases and fucosyltransferases. We found ST3 β-galactoside α-2,3-sialyltransferase 4 (ST3GAL4) was significantly decreased in the GEO database, while ST3GAL1, ST3GAL3, α1,3 fucosyltransferases 1 and 8 (FUT1 and FUT8) were highly expressed in malignant meningioma cell lines-(HKBMM)-compared to primary benign meningioma cells-(SUT-MG12 and SUT-MG14). Conclusion Our findings are the first to demonstrate the potential glycosylation changes in the O-linked glycans of malignant meningiomas compared with benign meningiomas, which may play an essential role in the progression, tumorigenesis, and malignancy of meningiomas.
Collapse
Affiliation(s)
- Chutima Talabnin
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Thanawat Trasaktaweesakul
- School of Translational Medicine, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | - Pundit Asavaritikrai
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Dusit Kongnawakun
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
6
|
Zhang H, Wu H, Lu J, Shao W, Yu L. Combined helical tomotherapy and Gamma Knife stereotactic radiosurgery for high-grade recurrent orbital meningioma: a case report. Front Oncol 2023; 13:1273465. [PMID: 37886178 PMCID: PMC10599143 DOI: 10.3389/fonc.2023.1273465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023] Open
Abstract
Orbital meningioma is a rare type of orbital tumor with high invasiveness and recurrence rates, making it extremely challenging to treat. Due to the special location of the disease, surgery often cannot completely remove the tumor, requiring postoperative radiation therapy. Here, we report a case of an elderly male patient with right-sided proptosis, visual impairment, and diplopia. Imaging diagnosis revealed a space-occupying lesion in the extraconal space of the right orbit. Pathological and immunohistochemical examination of the resected tumor confirmed it as a grade 3 anaplastic meningioma. Two months after surgery, the patient complained of right eye swelling and a magnetic resonance imaging (MRI) scan showed a recurrence of the tumor. The patient received helical tomotherapy (TOMO) in the postoperative tumor bed and high-risk areas within the orbit with a total dose of 48Gy. However, there was no significant improvement in the patient's right eye swelling, and the size of the recurrent lesion showed no significant change on imaging. Gamma knife multifractionated stereotactic radiosurgery (MF-SRS) was then given to the recurrent lesion with 50% prescription dose 13.5Gy/3f, once every other day. An imaging diagnosis performed 45 days later showed that the tumor had disappeared completely. The patient's vision remained unchanged, but diplopia was significantly relieved after MF-SRS. We propose a new hybrid treatment model for recurrent orbital meningioma, where conventional radiation therapy ensures local control of high-risk areas around the postoperative cavity, and MF-SRS maximizes the radiation dose to recurrent lesion areas while protecting surrounding tissues and organs.
Collapse
Affiliation(s)
- Haomiao Zhang
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hanfeng Wu
- Department of Neurosurgery, Shanghai Gamma Hospital, Shanghai, China
| | - Jianjie Lu
- Department of Radiation Physics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wencheng Shao
- Department of Radiation Physics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lili Yu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
7
|
Vuong HG, Le MK, Nguyen TPX, Eschbacher K. De novo Versus Secondary Dedifferentiated Chordomas: A Population-Based Analysis and Integrated Individual Participant Data Meta-Analysis. World Neurosurg 2023; 173:208-217.e7. [PMID: 36804481 DOI: 10.1016/j.wneu.2023.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE There is a lack of data about the clinicopathological and molecular characteristics of de novo versus secondary dedifferentiated chordoma (DC). This integrated study aimed to investigate the similarities and differences in clinicopathological manifestations, prognoses, and molecular profiles of these 2 subtypes. METHODS We accessed the Surveillance, Epidemiology, and End Results (SEER) Program for DC cases from 1975 to 2020. Three electronic databases were also searched for additional DCs. Individual patient data of DC patients from SEER and published literature were combined in integrated analyses. RESULTS After excluding duplicated patients, we identified 14 and 116 DC patients from SEER and published literature, respectively. There were 74 de novo, 39 secondary, and 18 cases with unknown origin. Our results showed that de novo and secondary DCs were not statistically different in terms of age, gender, primary location, tumor size, distant metastasis at diagnosis, extent of resection, and chemotherapy receipt. There was limited available molecular data for de novo and secondary DCs, though examples TP53 mutations were found in both. In addition, the rates of tumor relapse, metastasis during follow-up, and patient mortality were also comparable between the 2 groups. In the multivariate Cox regression model, we demonstrated that gross total removal and radiotherapy use were associated with prolonged survival of DCs. CONCLUSIONS De novo and secondary DCs were statistically comparable in terms of patient demographics, clinical manifestations, and prognoses. Gross total excision and radiotherapy were optimal treatments associated with better outcomes of DC patients.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA.
| | - Minh-Khang Le
- Department of Pathology, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Truong P X Nguyen
- Department of Pathology, Chulalongkorn University, Bangkok, Thailand
| | - Kathryn Eschbacher
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Paths of Evolution of Progressive Anaplastic Meningiomas: A Clinical and Molecular Pathology Study. J Pers Med 2023; 13:jpm13020206. [PMID: 36836440 PMCID: PMC9965923 DOI: 10.3390/jpm13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Grade 3 meningiomas are rare malignant tumors that can originate de novo or from the progression of lower grade meningiomas. The molecular bases of anaplasia and progression are poorly known. We aimed to report an institutional series of grade 3 anaplastic meningiomas and to investigate the evolution of molecular profile in progressive cases. Clinical data and pathologic samples were retrospectively collected. VEGF, EGFR, EGFRvIII, PD-L1; and Sox2 expression; MGMT methylation status; and TERT promoter mutation were assessed in paired meningioma samples collected from the same patient before and after progression using immunohistochemistry and PCR. Young age, de novo cases, origin from grade 2 in progressive cases, good clinical status, and unilateral side, were associated with more favorable outcomes. In ten progressive meningiomas, by comparing molecular profile before and after progression, we identified two subgroups of patients, one defined by Sox2 increase, suggesting a stem-like, mesenchymal phenotype, and another defined by EGFRvIII gain, suggesting a committed progenitor, epithelial phenotype. Interestingly, cases with Sox2 increase had a significantly shortened survival compared to those with EGFRvIII gain. PD-L1 increase at progression was also associated with worse prognosis, portending immune escape. We thus identified the key drivers of meningioma progression, which can be exploited for personalized treatments.
Collapse
|
9
|
Prognostic significance of telomerase reverse transcriptase promoter gen mutations in high grade meningiomas. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2022; 42:574-590. [PMID: 36511679 PMCID: PMC9792127 DOI: 10.7705/biomedica.6100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 12/14/2022]
Abstract
Introduction: Mutations in the promoter region of telomerase reverse transcriptase occur frequently in meningiomas.
Objective: To estimate the prognostic importance of telomerase reverse transcriptase mutations in Colombian patients with grades II and III meningioma.
Materials and methods: This was a multicenter retrospective cohort study of patients diagnosed with refractory or recurrent WHO grades II and III meningiomas, recruited between 2011 and 2018, and treated with systemic therapy (sunitinib, everolimus ± octreotide, and bevacizumab). Mutation status of the telomerase reverse transcriptase promoter was established by PCR.
Results: Forty patients were included, of which telomerase reverse transcriptase mutations were found in 21 (52.5%), being C228T and C250T the most frequent variants with 87.5 % and 14.3 %, respectively. These were more frequent among patients with anaplastic meningiomas (p=0.18), with more than 2 recurrences (p=0.04); and in patients with parasagittal region and anterior fossa lesions (p=0.05). Subjects characterized as having punctual mutations were more frequently administered with everolimus, sunitinib and bevacizumab drug series (p=0.06). Overall survival was 23.7 months (CI95% 13.1-34.2) and 43.4 months (CI95% 37.5-49.3; p=0.0001) between subjects with and without mutations, respectively. Multivariate analysis showed that the number of recurrences and the presence of telomerase reverse transcriptase mutations were tthe only variables that negatively affected overall survival.
Conclusions: Mutations in telomerase reverse transcriptase allows the identification of high-risk patients and could be useful in the selection of the best medical treatment.
Collapse
|
10
|
Zeng L, Li H, Chen R, Yang H, Zou Y, Ke C, Chen J, Yu J. Integration of molecular pathology with histopathology to accurately evaluate the biological behaviour of WHO grade 2 meningiomas and patient prognosis. J Neurooncol 2022; 160:497-504. [DOI: 10.1007/s11060-022-04170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
11
|
Maier AD. Malignant meningioma. APMIS 2022; 130 Suppl 145:1-58. [DOI: 10.1111/apm.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
- Department of Pathology, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| |
Collapse
|
12
|
Maier AD, Mirian C, Haslund-Vinding J, Bartek J, Guldager R, Møller S, Munch TN, Fugleholm K, Poulsgaard L, Skjøth-Rasmussen J, Ziebell M, Eriksson LE, Scheie D, Poulsen FR, Mathiesen T. Granular clinical history and outcome in 51 patients with primary and secondary malignant meningioma. J Neurosurg 2022; 137:1347-1357. [PMID: 35276654 DOI: 10.3171/2022.1.jns212723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE WHO grade III meningiomas, also known as malignant meningiomas (MMs), are rare, and the heterogenous clinical course in patients with MM is not well described. To characterize the clinical course of patients with MM, granular clinical data were gathered from 51 patients treated at the Department of Neurosurgery and Radiation Oncology, Rigshospitalet, in Copenhagen, Denmark, between 2000 and 2020. METHODS The authors investigated outcome and timing in terms of 1) tumor progression and grade transformation in patients previously diagnosed with WHO grade I or II meningiomas (patients with a secondary MM [sMM]); 2) performance status and complications following surgery; and 3) transition to noncurative treatment and ultimately death. Complications, time between recurrences, and outcome (modified Rankin Scale [mRS] score) for every surgery were analyzed, both malignant and premalignant. RESULTS Of the 51 patients, 24 (47%) had an sMM. The time to WHO grade III transformation in the sMM group varied widely (median 5.5 years, range 0.5-22 years), but after transformation to a WHO grade III tumor, patients with an sMM and those with a primary MM (pMM) did not differ significantly in overall survival and cumulative risk of progression. Median overall survival for all 51 patients was 4.2 years (95% CI 2.6-7.2 years). Time from the decision to shift from curative to noncurative treatment until death was 3.8 months and the 30-day mortality rate following surgery was 11.8%. From a cumulative number of 151 surgeries, 10 surgeries were followed by improvement on the mRS, mRS score was unchanged in 70, and it worsened in 71. The MM was the underlying cause of death in 30 of 31 patients who had died at the end of follow-up. CONCLUSIONS Together, these findings clearly show a significant morbidity and mortality from the disease itself and from the treatment. These findings warrant studies of prognostic factors for earlier support and adjuvant measures in MM and identify a need for better palliative strategies in this patient group.
Collapse
Affiliation(s)
| | | | | | - Jiri Bartek
- 1Departments of Neurosurgery
- 3Department of Neurosurgery, Karolinska University Hospital, Solna, Stockholm, Sweden
- 4Department of Clinical Neuroscience, Karolinska Institutet, Solna, Stockholm, Sweden
| | | | - Søren Møller
- 5Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tina N Munch
- 1Departments of Neurosurgery
- 6Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
- 7Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Kåre Fugleholm
- 1Departments of Neurosurgery
- 7Department of Clinical Medicine, University of Copenhagen, Denmark
| | | | - Jane Skjøth-Rasmussen
- 1Departments of Neurosurgery
- 7Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Morten Ziebell
- 1Departments of Neurosurgery
- 7Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Lars E Eriksson
- 8Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden
- 9School of Health Sciences, City, University of London, United Kingdom
- 10Medical Unit Infectious Diseases, Karolinska University Hospital, Huddinge, Sweden
| | | | - Frantz R Poulsen
- 11Odense University Hospital, Department of Neurosurgery, Odense, Denmark; and
- 12University of Southern Denmark and BRIDGE, Clinical Institute, Odense, Denmark
| | - Tiit Mathiesen
- 1Departments of Neurosurgery
- 7Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
13
|
Survival Benefit of Prognostic Factors and Treatment in Adult Patients with Recurrent Anaplastic Meningioma: A Retrospective Case Series and Systematic Literature Review. World Neurosurg 2022; 166:e758-e769. [PMID: 35944862 DOI: 10.1016/j.wneu.2022.07.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recurrence rates of anaplastic meningioma (AM) are high even after a complete resection with postoperative radiotherapy. OBJECTIVE This study aimed to evaluate predictors and treatment affecting survival of recurrent AM based on our series and a systematic literature review (SLR). METHODS Our single-institute (SI) data enrolled patients with first recurrent AM, treated in our hospital from 2012 to 2018. We retrieved eligible cases from SLR from 1966 to 2020. Our SI data and pooled data, integrating SI and SLR data, were subject to Cox proportional hazard regression analysis. RESULTS Analysis from SI data (n = 38) showed that second recurrence-free survival (RFS) was associated with intervals (HR [hazard ratio], 0.263; P = 0.002), preoperative Karnofsky Performance Status (KPS) (HR, 0.450; P = 0.043), radiotherapy (HR, 0.395; P = 0.047), whereas overall survival (OS) was related to preoperative KPS (HR, 0.411; P = 0.037) and tumor size (HR, 3.429; P = 0.007). The pooled data (n = 60) indicated that short intervals (HR, 0.370; P = 0.002) and the use of radiotherapy (HR, 0.318; P = 0.003) improved second RFS and number of resections ≥3 (HR, 0.210; P = 0.002) and radiotherapy (HR, 0.209; P = 0.002) prolonged OS. Furthermore, the overall second RFS (P = 0.024) and OS (P = 0.031) stratified by 4 treatment protocols differed significantly. CONCLUSIONS Early managements of patients with AM, before presence of poor preoperative KPS and large tumor size, are critical for survival. For patients with recurrent AM, survival benefits could be obtained from radiotherapy and multiple resections.
Collapse
|
14
|
Ng HK, Li KKW, Chung NYF, Chan JYT, Poon MFM, Wong QHW, Kwan JSH, Poon WS, Chen H, Chan DTM, Shi ZF, Mao Y. Molecular landscapes of longitudinal NF2/22q and non-NF2/22q meningiomas show different life histories. Brain Pathol 2022; 33:e13120. [PMID: 36167400 PMCID: PMC10154375 DOI: 10.1111/bpa.13120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
Recurrence is a major complication of some meningiomas. Although there were many studies on biomarkers associated with higher grades or increased aggressiveness, few studies specifically examined longitudinal samples of primary meningiomas and recurrences from the same patients for molecular life history. We studied 99 primary and recurrent meningiomas from 42 patients by FISH for 22q, 1q, 1p, 3p, 5q, 6q, 10p, 10q, 14q, 18q, CDKN2A/B homozygous deletion, ALT (Alternative Lengthening of Telomere), TERT re-arrangement, targeted sequencing and TERTp sequencing. Although NF2 mutation and 22q were well known to be aetiological events in meningiomas, we found that in these paired meningiomas, combining the two events resulted in an NF2/22q group (57 tumors from 25 patients) which were almost mutually exclusive with those cases without these two changes (42 tumors from 17 patients) for NF2/22q. No other molecular changes were totally unique to NF2/22q or non-NF2/22q tumors. For molecular evolution, NF2/22q meningiomas had higher cytogenetic abnormalities than non-NF2/22q meningiomas (p = 0.003). Most of the cytogenetic changes in NF2/22q meningiomas were present from the outset whereas for non-NF2/22q meningiomas, cytogenetic events were uncommon in the primary tumors and most were acquired in recurrences. For non-NF2/22q tumors, CDKN2A/B homozygous deletion, 1q gain, 18p loss, 3p loss, and ALT were preferentially found in recurrences. Mutations were largely conserved between primary and recurrent tumors. Phylogenetic trees showed 11/11 patients with multiple recurrent tumors had a conserved evolutionary pattern. We conclude that for molecular life history, NF2 and 22q should be regarded as a group. NF2/22q recurring meningiomas showed more cytogenetic abnormalities in the primary tumors, whereas non-NF2/22q meningiomas showed CDKN2A/B deletion and other cytogenetic abnormalities and ALT at recurrences. Although chromosome 1p loss is a known poor prognostic marker in meningiomas, it was also associated with a shorter TBR (time between resection) in this cohort (p = 0.002).
Collapse
Affiliation(s)
- Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.,Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China
| | - Nellie Yuk-Fei Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Janice Yuen-Tung Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Manix Fung-Man Poon
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Queenie Hoi-Wing Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai-Sang Poon
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Hong Kong, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhi-Feng Shi
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Mao
- Hong Kong and Shanghai Brain Consortium (HSBC), Hong Kong, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Diagnostic and Therapeutic Strategy in Anaplastic (Malignant) Meningioma, CNS WHO Grade 3. Cancers (Basel) 2022; 14:cancers14194689. [PMID: 36230612 PMCID: PMC9562197 DOI: 10.3390/cancers14194689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Only 1% of all meningioma diagnosis is classified as malignant (anaplastic) meningioma. Due to their rarity, clinical management of these tumors presents several gaps. In this review, we investigate current knowledge of anaplastic meningioma focusing on their pathological and radiological diagnosis, molecular assessment, and loco-regional and systemic management. Despite the current marginal role of systemic therapy, it is possible that the increasing knowledge of molecular altered pathways of the disease will lead to the development of novel effective systemic treatments. Abstract Background: Meningiomas are the most common primary central nervous system malignancies accounting for 36% of all intracranial tumors. However, only 1% of meningioma is classified as malignant (anaplastic) meningioma. Due to their rarity, clinical management of these tumors presents several gaps. Methods: We carried out a narrative review aimed to investigate current knowledge of anaplastic meningioma focusing on their pathological and radiological diagnosis, molecular assessment, and loco-regional and systemic management. Results: The most frequent genetic alteration occurring in meningioma is the inactivation in the neurofibromatosis 2 genes (merlin). The accumulation of copy number losses, including 1p, 6p/q, 10q, 14q, and 18p/q, and less frequently 2p/q, 3p, 4p/q, 7p, 8p/q, and 9p, compatible with instability, is restricted to NF2 mutated meningioma. Surgery and different RT approaches represent the milestone of grade 3 meningioma management, while there is a marginal role of systemic therapy. Conclusions: Anaplastic meningiomas are rare tumors, and diagnosis should be suspected and confirmed by trained radiologists and pathologists. Despite the current marginal role of systemic therapy, it is possible that the increasing knowledge of molecular altered pathways of the disease will lead to the development of novel effective systemic treatments.
Collapse
|
16
|
Maier AD, Meddis A, Mirian C, Haslund-Vinding J, Bartek J, Krog SM, Nguyen TUP, Areškevičiūtė A, Melchior LC, Heegaard S, Kristensen BW, Munch TN, Fugleholm K, Ziebell M, Raleigh DR, Poulsen FR, Gerds TA, Litman T, Scheie D, Mathiesen T. Gene expression analysis during progression of malignant meningioma compared to benign meningioma. J Neurosurg 2022; 138:1302-1312. [PMID: 36115056 DOI: 10.3171/2022.7.jns22585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/22/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Meningioma is the most common primary intracranial neoplasm. Only 1%-3% of meningiomas are malignant according to the 2016 WHO criteria (WHO grade III). High-grade meningiomas present specific gene expression signatures indicating aggressive growth or recurrence. However, changes in gene expression and in neuroinflammatory gene expression signatures in WHO grade III meningiomas and during progression from WHO grade I or II to grade III are unknown. METHODS The authors used a NanoString targeted gene expression panel with focus on 787 genes relevant in meningioma pathology and neuroinflammatory pathways to investigate patients with grade III meningiomas treated at Rigshospitalet from 2000 to 2020 (n = 51). A temporal dimension was added to the investigation by including samples from patients' earlier grade I and II meningiomas and grade III recurrences (n = 139 meningiomas). The authors investigated changes in neuroinflammatory gene expression signatures in 1) grade I meningiomas that later transformed into grade III meningiomas, and 2) grade III meningiomas compared with nonrecurrent grade I meningiomas. RESULTS The authors' data indicate that FOXM1, TOP2A, BIRC5, and MYBL2 were enriched and the HOTAIR regulatory pathway was enriched in grade III meningiomas compared with nonrecurrent grade I meningiomas. They discovered a separation of malignant and benign meningiomas based only on genes involved in microglia regulation with enrichment of P2RY12 in grade I compared with grade III meningiomas. Interestingly, FOXM1 was upregulated in premalignant grade I meningioma years before the grade III transformation. CONCLUSIONS The authors found gene expression changes in low-grade meningiomas that predated histological transformation to grade III meningiomas. Neuroinflammation genes distinguished grade III from grade I meningiomas.
Collapse
Affiliation(s)
- Andrea D Maier
- Departments of1Neurosurgery and.,2Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alessandra Meddis
- 3Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jiri Bartek
- Departments of1Neurosurgery and.,4Department of Neurosurgery, Karolinska University Hospital, Solna, Stockholm, Sweden.,5Department of Clinical Neuroscience, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Sebastian M Krog
- 6Department of Oncology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Aušrinė Areškevičiūtė
- 7Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Linea C Melchior
- 2Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Steffen Heegaard
- 2Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,8Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarne W Kristensen
- 9Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark.,10Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tina N Munch
- Departments of1Neurosurgery and.,11Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,17Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | - David R Raleigh
- Departments of12Neurological Surgery and.,13Radiation Oncology, University of California, San Francisco, California
| | - Frantz R Poulsen
- 14Department of Neurosurgery, Odense University Hospital, Odense, Denmark.,15Clinical Institute and BRIDGE, University of Southern Denmark, Odense, Denmark; and
| | - Thomas A Gerds
- 3Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | | | - David Scheie
- 2Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tiit Mathiesen
- Departments of1Neurosurgery and.,17Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Kwon SM, Kim JH, Kim YH, Hong SH, Cho YH, Kim CJ, Nam SJ. Clinical Implications of the Mitotic Index as a Predictive Factor for Malignant Transformation of Atypical Meningiomas. J Korean Neurosurg Soc 2021; 65:297-306. [PMID: 34879641 PMCID: PMC8918253 DOI: 10.3340/jkns.2021.0114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/23/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Intracranial atypical meningiomas have a poor prognosis and high rates of recurrence. Moreover, up to one-third of the recurrences undergo high-grade transformation into malignant meningiomas. We aimed to investigate the clinical factors that can predict the propensity of malignant transformation from atypical to anaplastic meningiomas. Methods Between 2001 and 2018, all patients with atypical meningioma, in whom the tumors had undergone malignant transformation to anaplastic meningioma, were included. The patients' medical records documenting the diagnosis of atypical meningioma prior to malignant transformation were reviewed to identify the predictors of transformation. The control group comprised 56 patients with atypical meningiomas who were first diagnosed between January 2017 and December 2018 and had no malignant transformation. Results Nine patients in whom the atypical meningiomas underwent malignant transformation were included. The median time interval from diagnosis of atypical meningioma to malignant transformation was 19 months (range, 7-78). The study group showed a significant difference in heterogeneous enhancement (77.8% vs. 33.9%), bone invasion (55.6% vs. 12.5%), mitotic index (MI; 14.8±4.9 vs. 3.5±3.9), and Ki-67 index (20.7±13.9 vs. 9.5±7.1) compared with the control group. In multivariate analysis, increased MI (odds ratio, 1.436; 95% confidence interval, 1.127-1.900; p=0.004) was the only significant factor for predicting malignant transformation. Conclusion An increased MI within atypical meningiomas might be used as a predictor of malignant transformation. Tumors at high risk for malignant transformation might require more attentive surveillance and management than other atypical meningiomas.
Collapse
Affiliation(s)
- Sae Min Kwon
- Department of Neurosurgery, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seok Ho Hong
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hyun Cho
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Jin Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
González-Tablas M, Prieto C, Arandia D, Jara-Acevedo M, Otero Á, Pascual D, Ruíz L, Álvarez-Twose I, García-Montero AC, Orfao A, Tabernero MD. Whole-Exome Sequencing Reveals Recurrent but Heterogeneous Mutational Profiles in Sporadic WHO Grade 1 Meningiomas. Front Oncol 2021; 11:740782. [PMID: 34868937 PMCID: PMC8635692 DOI: 10.3389/fonc.2021.740782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023] Open
Abstract
Human WHO grade 1 meningiomas are generally considered benign tumors; despite this, they account for ≈50% of all recurrent meningiomas. Currently, limited data exist about the mutational profiles of grade 1 meningiomas and patient outcome. We investigated the genetic variants present in 32 WHO grade 1 meningiomas using whole exome sequencing, and correlated gene mutational profiles with tumor cytogenetics and patient outcome. Overall, WHO grade 1 meningiomas harbored numerous and heterogeneous genetic variants, which most frequently affected the NF2 (47%) gene and to a less extent the PNMA6A (22%), TIGD1 (16%), SMO (13%), PTEN (13%), CREG2 (9%), EEF1A1 (6%), POLR2A (6%), ARID1B (3%), and FAIM3 (3%) genes. Notably, non-synonymous genetic variants of SMO and POLR2A were restricted to diploid meningiomas, whereas NF2 mutations were only found among tumors that showed -22/22q─ (with or without a complex karyotype). Based on NF2 mutations and tumor cytogenetics, four genetic profiles were defined with an impact on patient recurrence-free survival (RFS). These included (1) two good-prognosis tumor subgroups-diploid meningiomas (n=9) and isolated -22/22q─ associated with NF2 mutation (n=7)-with RFS rates at 10 y of 100%; and (2) two subgroups of poor-prognosis meningiomas-isolated -22/22q─ without NF2 mutation (n=3) and tumors with complex karyotypes (n=11)-with a RFS rate at 10 y of 48% (p=0.003). Our results point out the existence of recurrent but heterogeneous mutational profiles in WHO grade 1 meningiomas which have an impact on patient outcome.
Collapse
Affiliation(s)
- María González-Tablas
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Centre for Cancer Research (Centro de Investigación del Cáncer de Salamanca (CIC)-Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Networking Centre on Cancer- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Prieto
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Bioinformatics Service Servicio de Apoyo a la Investigación de la Universidad de Salamanca (NUNCLEUS), University of Salamanca, Salamanca, Spain
| | - Daniel Arandia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Neurosurgery Service, University Hospital of Salamanca, Salamanca, Spain
| | - María Jara-Acevedo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Sequencing Service Servicio de Apoyo a la Investigación de la Universidad de Salamanca (NUNCLEUS), University of Salamanca, Salamanca, Spain
| | - Álvaro Otero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Neurosurgery Service, University Hospital of Salamanca, Salamanca, Spain
| | - Daniel Pascual
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Neurosurgery Service, University Hospital of Salamanca, Salamanca, Spain
| | - Laura Ruíz
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Neurosurgery Service, University Hospital of Salamanca, Salamanca, Spain
| | - Iván Álvarez-Twose
- Instituto de Estudios de Mastocitosis de Castilla La Mancha, Virgen del Valle Hospital, Toledo, Spain.,Spanish Network on Mastocytosis Red Española de Mastocitosis (REMA), Salamanca, Spain
| | - Andrés Celestino García-Montero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Centre for Cancer Research (Centro de Investigación del Cáncer de Salamanca (CIC)-Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain.,Spanish Network on Mastocytosis Red Española de Mastocitosis (REMA), Salamanca, Spain.,Spanish National DNA Bank Carlos III, University of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Centre for Cancer Research (Centro de Investigación del Cáncer de Salamanca (CIC)-Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Networking Centre on Cancer- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain.,Spanish National DNA Bank Carlos III, University of Salamanca, Salamanca, Spain
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain.,Centre for Cancer Research (Centro de Investigación del Cáncer de Salamanca (CIC)-Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Centro Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca (USAL), IBSAL) and Department of Medicine, University of Salamanca, Salamanca, Spain.,Biomedical Research Networking Centre on Cancer- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC) (CB16/12/00400), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL-IBSAL), Salamanca, Spain
| |
Collapse
|
19
|
Progestin-related WHO grade II meningiomas behavior-a single-institution comparative case series. Neurosurg Rev 2021; 45:1691-1699. [PMID: 34850321 DOI: 10.1007/s10143-021-01708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
WHO grade II progestin-related meningiomas have been reported in recent series but we found no previous study describing their long-term outcome. Our study aimed to evaluate patients operated on for high-grade intracranial meningioma and who underwent long-term exposure to high dose of cyproterone acetate, nomegestrol acetate, and chlormadinone acetate. Our study retrospectively included 9 patients with high-grade progestin-related intracranial meningioma between December 2006 and September 2021. In each patient, clinico-radiological follow-up was performed every 6 months after diagnosis and treatment withdrawal recommendation. The mean progestative exposure was 11.4 years. Edema existence or absence of cleft sign on MRI were the key factors for surgical indication. All patients underwent surgery. Adjuvant radiotherapy was indicated in 1 patient, and Gamma Knife radiosurgery was proposed in 2 other patients for a second location of meningioma. Six patients harbored a grade II chordoid meningioma subtype with 100% PR expression and 3 patients a grade II atypical meningioma subtype with lower PR expression. The mean follow-up was 8.1 years and none of the 9 patients presented with a recurrence. Patients with grade II progestin-related meningiomas have less tumor recurrence after surgery than patients with sporadic grade II meningiomas, especially after progestin withdrawal. The presence/appearance of peri-meningioma edema and the absence of cleft sign before volumetric change should suggest the existence of an underlying WHO grade II meningiomas. In these cases, surgical resection may immediately be considered and adjuvant radiotherapy should be reserved for proven recurrence cases.
Collapse
|
20
|
Glycation Interferes with the Expression of Sialyltransferases in Meningiomas. Cells 2021; 10:cells10123298. [PMID: 34943806 PMCID: PMC8699175 DOI: 10.3390/cells10123298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Meningiomas are the most common non-malignant intracranial tumors and prefer, like most tumors, anaerobic glycolysis for energy production (Warburg effect). This anaerobic glycolysis leads to an increased synthesis of the metabolite methylglyoxal (MGO) or glyoxal (GO), which is known to react with amino groups of proteins. This reaction is called glycation, thereby building advanced glycation end products (AGEs). In this study, we investigated the influence of glycation on sialylation in two meningioma cell lines, representing the WHO grade I (BEN-MEN-1) and the WHO grade III (IOMM-Lee). In the benign meningioma cell line, glycation led to differences in expression of sialyltransferases (ST3GAL1/2/3/5/6, ST6GAL1/2, ST6GALNAC2/6, and ST8SIA1/2), which are known to play a role in tumor progression. We could show that glycation of BEN-MEN-1 cells led to decreased expression of ST3Gal5. This resulted in decreased synthesis of the ganglioside GM3, the product of ST3Gal5. In the malignant meningioma cell line, we observed changes in expression of sialyltransferases (ST3GAL1/2/3, ST6GALNAC5, and ST8SIA1) after glycation, which correlates with less aggressive behavior.
Collapse
|
21
|
Mirian C, Grell K, Juratli TA, Sahm F, Spiegl-Kreinecker S, Peyre M, Biczok A, Tonn JC, Goutagny S, Bertero L, Maier AD, Jensen LR, Schackert G, Broholm H, Scheie D, Cahill DP, Brastianos PK, Skjøth-Rasmussen J, Fugleholm K, Ziebell M, Munch TN, Kristensen BW, Mathiesen T. Implementation of TERT promoter mutations improve prognostication of the WHO classification in meningioma. Neuropathol Appl Neurobiol 2021; 48:e12773. [PMID: 34799864 DOI: 10.1111/nan.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/21/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022]
Abstract
TERT promoter mutations have been associated with increased risk of recurrence in meningioma cohorts, thus a potential biomarker for aggressive phenotypes. A main purpose of refining tumour classification is better predictions on the patient level. We compiled data from previous published cohorts to investigate patient-level predictions of recurrence based on TERTp-mut status. Implementation of TERTp-mut into the WHO grading led to better patient prognostication by improved prediction of recurrence. Our results support implementation of TERTp-mut into diagnostics and classification of meningiomas.
Collapse
Affiliation(s)
- Christian Mirian
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kathrine Grell
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tareq A Juratli
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Matthieu Peyre
- Sorbonne Universités, Department of Neurosurgery, Groupe Hospitalier Pitié-Salpêtrière, APHP, F-75013, Paris, France
| | - Annamaria Biczok
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jörg-Christian Tonn
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stéphane Goutagny
- Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Université de Paris, Paris, France
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lasse Rehné Jensen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gabriele Schackert
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Helle Broholm
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - David Scheie
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel P Cahill
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Priscilla K Brastianos
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tina Nørgaard Munch
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neuroscience, Karolinska Institute, Solna, Sweden
| |
Collapse
|
22
|
Deng J, Sun S, Chen J, Wang D, Cheng H, Chen H, Xie Q, Hua L, Gong Y. TERT Alterations Predict Tumor Progression in De Novo High-Grade Meningiomas Following Adjuvant Radiotherapy. Front Oncol 2021; 11:747592. [PMID: 34778063 PMCID: PMC8586415 DOI: 10.3389/fonc.2021.747592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/02/2023] Open
Abstract
Background Adjuvant radiotherapy (RT) is one of the most commonly used treatments for de novo high-grade meningiomas (HGMs) after surgery, but genetic determinants of clinical benefit are poorly characterized. Objective We describe efforts to integrate clinical genomics to discover predictive biomarkers that would inform adjuvant treatment decisions in de novo HGMs. Methods We undertook a retrospective analysis of 37 patients with de novo HGMs following RT. Clinical hybrid capture-based sequencing assay covering 184 genes was performed in all cases. Associations between tumor clinical/genomic characteristics and RT response were assessed. Overall survival (OS) and progression-free survival (PFS) curves were plotted using the Kaplan–Meier method. Results Among the 172 HGMs from a single institution, 42 cases (37 WHO grade 2 meningiomas and five WHO grade 3 meningiomas) were identified as de novo HGMs following RT. Only TERT mutations [62.5% C228T; 25% C250T; 12.5% copy number amplification (CN amp.)] were significantly associated with tumor progression after postoperative RT (adjusted p = 0.003). Potential different somatic interactions between TERT and other tested genes were not identified. Furthermore, TERT alterations (TERT-alt) were the predictor of tumor progression (Fisher’s exact tests, p = 0.003) and were associated with decreased PFS (log-rank test, p = 0.0114) in de novo HGMs after RT. Conclusion Our findings suggest that TERT-alt is associated with tumor progression and poor outcome of newly diagnosed HGM patients after postoperative RT.
Collapse
Affiliation(s)
- Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Neurosurgery, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Neurosurgery, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Jiawei Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Neurosurgery, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Neurosurgery, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Chen
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Neurosurgery, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Neurosurgery, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Neurosurgery, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Stögbauer L, Thomas C, Wagner A, Warneke N, Bunk EC, Grauer O, Canisius J, Paulus W, Stummer W, Senner V, Brokinkel B. Efficacy of decitabine in malignant meningioma cells: relation to promoter demethylation of distinct tumor suppressor and oncogenes and independence from TERT. J Neurosurg 2021; 135:845-854. [PMID: 33307532 DOI: 10.3171/2020.7.jns193097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 07/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Chemotherapeutic options for meningiomas refractory to surgery or irradiation are largely unknown. Human telomerase reverse transcriptase (hTERT) promoter methylation with subsequent TERT expression and telomerase activity, key features in oncogenesis, are found in most high-grade meningiomas. Therefore, the authors investigated the impact of the demethylating agent decitabine (5-aza-2'-deoxycytidine) on survival and DNA methylation in meningioma cells. METHODS hTERT promoter methylation, telomerase activity, TERT expression, and cell viability and proliferation were investigated prior to and after incubation with decitabine in two benign (HBL-52 and Ben-Men 1) and one malignant (IOMM-Lee) meningioma cell line. The global effects of decitabine on DNA methylation were additionally explored with DNA methylation profiling. RESULTS High levels of TERT expression, telomerase activity, and hTERT promoter methylation were found in IOMM-Lee and Ben-Men 1 but not in HBL-52 cells. Decitabine induced a dose-dependent significant decrease of proliferation and viability after incubation with doses from 1 to 10 μM in IOMM-Lee but not in HBL-52 or Ben-Men 1 cells. However, effects in IOMM-Lee cells were not related to TERT expression, telomerase activity, or hTERT promoter methylation. Genome-wide methylation analyses revealed distinct demethylation of 14 DNA regions after drug administration in the decitabine-sensitive IOMM-Lee but not in the decitabine-resistant HBL-52 cells. Differentially methylated regions covered promoter regions of 11 genes, including several oncogenes and tumor suppressor genes that to the authors' knowledge have not yet been described in meningiomas. CONCLUSIONS Decitabine decreases proliferation and viability in high-grade but not in benign meningioma cell lines. The effects of decitabine are TERT independent but related to DNA methylation changes of promoters of distinct tumor suppressor genes and oncogenes.
Collapse
Affiliation(s)
| | | | | | | | | | - Oliver Grauer
- 3Department of Neurology, University Hospital Münster, North Rhine-Westphalia, Germany
| | | | | | | | | | | |
Collapse
|
24
|
WHO grade III meningioma: De novo tumors show improved progression free survival as compared to secondary progressive tumors. J Clin Neurosci 2021; 91:105-109. [PMID: 34373013 DOI: 10.1016/j.jocn.2021.05.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/24/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022]
Abstract
Emerging evidence suggest WHO grade III meningiomas that arise de novo as opposed to dedifferentiating from a lower grade may harbor differing prognoses. To investigate this, a single institution retrospective analysis of prospectively acquired patients between 1999 and 2018 was performed. Clinical data and radiographic parameters were reviewed to calculate progression free survival and overall survival in patients undergoing microsurgical resection. Next generation targeted sequencing of meningioma associated genes was performed on 11 tumors. Eighteen patients were identified as undergoing surgical resection of WHO grade III meningioma. Nine patients (50%) had de novo arising tumors and nine patients had secondary progressive tumors. To compare outcomes, only those patients undergoing gross total resection (Simpson grade I) were included for survival analysis. There was an improvement in median progression free survival for de novo resected tumors as compared to secondary progressive tumors (p = 0.02). Median overall survival for patients with de novo tumors was not statistically improved compared to that of secondary progressive tumors (p = 0.22). Next generation sequencing of targeted genes (NF2, BAP1, TRAF7, KLF4, SMO and AKT) revealed 5/11 tumors containing mutations in the NF2 gene, 2/11 containing BAP1 mutations, and a single tumor containing mutations in both NF2 and TRAF7. More mutations in NF2 and BAP1 were seen in the secondary progressive tumors. In conclusion, patients undergoing gross total resection for de novo arising grade III meningiomas showed improved progression free survival, though similar overall survival, as compared to those patients with secondary progressive tumors. Further studies focused on tumor associated genes and other associated risk factors are needed to improve risk-stratification.
Collapse
|
25
|
Malignant intraventricular meningioma: literature review and case report. Neurosurg Rev 2021; 45:151-166. [PMID: 34159472 DOI: 10.1007/s10143-021-01585-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Malignant intraventricular meningiomas (IVMs) are very rare with only a few reported cases. A midline search up to December 2020 selected 40 articles for a total of 65 patients. The inclusion criteria were series and case reports in English language, as well as papers written in other languages, but with abstracts written in English. Malignant IVMs at the first diagnosis (group A, 50 patients) and those with anaplastic transformation from previous WHO grades I and II tumors (group B, 15 patients) were separately analyzed. The unique personal case among 1285 meningiomas (0.078%) is also added. Malignant IVMs mainly occur in women (61%) with a median age of 45 years and are mainly located in the lateral ventricle (93%) and trigonal region (74%), with no cases in the fourth ventricle. Irregular borders (80%), heterogeneous enhancement (83%), and perilesional edema (76%) are the most frequent radiological findings. The histology was mainly pure anaplastic (85%), whereas papillary (7%), rhabdoid (5%), and mixed forms (3%) are very rare. The CSF spread was found in 60% of the cases. The prognosis is very dismal, with an overall median survival of 17.5 months after surgery for the anaplastic forms. Malignant IVMs at initial diagnosis (group A) show better overall survival (25 months) than those occurring from anaplastic transformation of lower grade tumors (group B) (10.1 months).
Collapse
|
26
|
Yamamoto M, Sanomachi T, Suzuki S, Uchida H, Yonezawa H, Higa N, Takajo T, Yamada Y, Sugai A, Togashi K, Seino S, Okada M, Sonoda Y, Hirano H, Yoshimoto K, Kitanaka C. Roles for hENT1 and dCK in gemcitabine sensitivity and malignancy of meningioma. Neuro Oncol 2021; 23:945-954. [PMID: 33556172 PMCID: PMC8168817 DOI: 10.1093/neuonc/noab015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background High-grade meningiomas are aggressive tumors with high morbidity and mortality rates that frequently recur even after surgery and adjuvant radiotherapy. However, limited information is currently available on the biology of these tumors, and no alternative adjuvant treatment options exist. Although we previously demonstrated that high-grade meningioma cells were highly sensitive to gemcitabine in vitro and in vivo, the underlying molecular mechanisms remain unknown. Methods We examined the roles of hENT1 (human equilibrative nucleoside transporter 1) and dCK (deoxycytidine kinase) in the gemcitabine sensitivity and growth of meningioma cells in vitro. Tissue samples from meningiomas (26 WHO grade I and 21 WHO grade II/III meningiomas) were immunohistochemically analyzed for hENT1 and dCK as well as for Ki-67 as a marker of proliferative activity. Results hENT1 and dCK, which play critical roles in the intracellular transport and activation of gemcitabine, respectively, were responsible for the high gemcitabine sensitivity of high-grade meningioma cells and were strongly expressed in high-grade meningiomas. hENT1 expression was required for the proliferation and survival of high-grade meningioma cells and dCK expression. Furthermore, high hENT1 and dCK expression levels correlated with stronger tumor cell proliferative activity and shorter survival in meningioma patients. Conclusions The present results suggest that hENT1 is a key molecular factor influencing the growth capacity and gemcitabine sensitivity of meningioma cells and also that hENT1, together with dCK, may be a viable prognostic marker for meningioma patients as well as a predictive marker of their responses to gemcitabine.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Departments of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Tomomi Sanomachi
- Departments of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan.,Clinical Oncology, Yamagata University School of Medicine, Yamagata, Japan
| | - Shuhei Suzuki
- Departments of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan.,Clinical Oncology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroyuki Uchida
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Nayuta Higa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tomoko Takajo
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuki Yamada
- Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Asuka Sugai
- Departments of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Keita Togashi
- Departments of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan.,Ophthalmology and Visual Sciences, Yamagata University School of Medicine, Yamagata, Japan
| | - Shizuka Seino
- Departments of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Masashi Okada
- Departments of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | - Yukihiko Sonoda
- Neurosurgery, Yamagata University School of Medicine, Yamagata, Japan
| | - Hirofumi Hirano
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Chifumi Kitanaka
- Departments of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan.,Research Institute for Promotion of Medical Sciences, Yamagata University Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
27
|
Brokinkel B, Spille DC, Schipmann S, Hess K, Paulus W, Stummer W. Letter to the Editor: "Surgery for Recurrent Meningiomas: The Minor Prognostic Role of the Extent of Resection". World Neurosurg 2021; 145:514-516. [PMID: 33348495 DOI: 10.1016/j.wneu.2020.09.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Benjamin Brokinkel
- Department of Neurosurgery, University Hospital Münster, Münster, Germany.
| | | | | | - Katharina Hess
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
28
|
Meningiomas: A review of general, histopathological, clinical and molecular characteristics. Pathol Res Pract 2021; 223:153476. [PMID: 33991850 DOI: 10.1016/j.prp.2021.153476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVES In this review, the main histological and molecular characteristics of meningiomas will be addressed, as well as the aspects most related to clinical conditions, treatment, and survival of patients, enabling a better understanding of these tumors behavior. METHODS This study was conducted with the search for published studies available on NCBI, PubMed, MEDLINE, Scielo and Google Scholar. Relevant documents have been identified and 50 articles were selected. RESULTS The main points about meningiomas were characterized, as well as the histological presence of spontaneous necrosis in grade I and brain invasion as diagnostic criteria, their molecular origin related to deletion of chromosome 22 and mutations in theNF2 and TERT genes, in addition to their clinical characteristics. The preferential treatment remains the total resection of the tumor. CONCLUSION The information about meningiomas is well known and necessary, but it is expected that more work will emerge related to the behavior of these tumors, and that the scientific community will obtain more clarity about the best ways to conduct the patients treatment.
Collapse
|
29
|
Esami citologici, istologici, immunoistochimici e genetici dei tumori del sistema nervoso centrale. Neurologia 2021. [DOI: 10.1016/s1634-7072(21)45000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Multimodal management of surgery- and radiation-refractory meningiomas: an analysis of the French national tumor board meeting on meningiomas cohort. J Neurooncol 2021; 153:55-64. [PMID: 33778930 DOI: 10.1007/s11060-021-03741-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/12/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE Meningiomas represent the most frequent tumor of the central nervous system in adults. While most meningiomas are efficiently treated by surgery and radiotherapy/radiosurgery, there is a small portion of radiation- and surgery-refractory tumors for which there is no clear recommendation for optimal management. The French National Tumor Board Meeting on Meningiomas (NTBM) offers a glimpse on the current management of such patients. METHODS We retrospectively reviewed the charts of patients presented to the multidisciplinary Meeting between 2016 and 2019. We selected patients with a progressive disease after at least two treatments, including surgery and radiotherapy. RESULTS In this multicentric cohort of 86 cases, patients harbored 17 (19.8%) WHO Grade I, 48 (55.8%) WHO Grade II and 21 (24.4%) WHO Grade III tumors. The median number of treatments received before inclusion was 3 (range: 2 - 11). Following the Board Meeting, 32 patients (37.2%) received chemotherapy, 11 (12.8%) surgery, 17 (19.8%) radiotherapy, 14 (16.3%) watchful observation and 12 (13.9%) palliative care. After a mean follow-up of 13 months post-inclusion, 32 patients (37.2%) had died from their disease. The mean progression free survival was 27 months after radiotherapy, 10 months after surgery, 8.5 months after chemotherapy (Bevacizumab: 9 months - Octreotide/Everolimus: 8 months). CONCLUSIONS Surgery- and radiation-refractory meningiomas represent a heterogeneous group of tumors with a majority of WHO Grade II cases. If re-irradiation and redo-surgery are not possible, bevacizumab and octreotide-everolimus appear as a valuable option in heavily pre-treated patients considering the current EANO guidelines.
Collapse
|
31
|
Huang X, Zhang G, Tang T, Liang T. Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development. Mol Cancer 2021; 20:44. [PMID: 33648511 PMCID: PMC7917175 DOI: 10.1186/s12943-021-01310-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although mRNA vaccines have been effective against multiple cancers, their efficacy against pancreatic adenocarcinoma (PAAD) remains undefined. Accumulating evidence suggests that immunotyping can indicate the comprehensive immune status in tumors and their immune microenvironment, which is closely associated with therapeutic response and vaccination potential. The aim of this study was to identify potent antigens in PAAD for mRNA vaccine development, and further distinguish immune subtypes of PAAD to construct an immune landscape for selecting suitable patients for vaccination. METHODS Gene expression profiles and clinical information of 239 PAAD datasets were extracted from ICGC, and RNA-Seq data of 103 samples were retrieved from TCGA. GEPIA was used to calculate differential expression levels and prognostic indices, cBioPortal program was used to compare genetic alterations, and TIMER was used to explore correlation between genes and immune infiltrating cells. Consensus cluster was used for consistency matrix construction and data clustering, DAVID was used for functional annotation, and graph learning-based dimensional reduction was used to depict immune landscape. RESULTS Six overexpressed and mutated tumor antigens associated with poor prognosis and infiltration of antigen presenting cells were identified in PAAD, including ADAM9, EFNB2, MET, TMOD3, TPX2, and WNT7A. Furthermore, five immune subtypes (IS1-IS5) and nine immune gene modules of PAAD were identified that were consistent in both patient cohorts. The immune subtypes showed distinct molecular, cellular and clinical characteristics. IS1 and IS2 exhibited immune-activated phenotypes and correlated to better survival compared to the other subtypes. IS4 and IS5 tumors were immunologically cold and associated with higher tumor mutation burden. Immunogenic cell death modulators, immune checkpoints, and CA125 and CA199, were also differentially expressed among the five immune subtypes. Finally, the immune landscape of PAAD showed a high degree of heterogeneity between individual patients. CONCLUSIONS ADAM9, EFNB2, MET, TMOD3, TPX2, and WNT7A are potent antigens for developing anti-PAAD mRNA vaccine, and patients with IS4 and IS5 tumors are suitable for vaccination.
Collapse
Affiliation(s)
- Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang, 310003 Hangzhou China
- Zhejiang University Cancer Center, Zhejiang, 310003 Hangzhou China
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, 310003 Hangzhou China
| | - Gang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang, 310003 Hangzhou China
- Zhejiang University Cancer Center, Zhejiang, 310003 Hangzhou China
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, 310003 Hangzhou China
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang, 310003 Hangzhou China
- Zhejiang University Cancer Center, Zhejiang, 310003 Hangzhou China
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, 310003 Hangzhou China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 Hangzhou China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Zhejiang, 310003 Hangzhou China
- Zhejiang University Cancer Center, Zhejiang, 310003 Hangzhou China
- Research Center for Healthcare Data Science, Zhejiang Lab, Zhejiang, 310003 Hangzhou China
| |
Collapse
|
32
|
Sá-Marta E, Alves JL, Rebelo O, Barbosa M. World Health Organization Grade III Meningiomas: A Retrospective Study at an Academic Medical Center. World Neurosurg 2021; 149:e877-e893. [PMID: 33516862 DOI: 10.1016/j.wneu.2021.01.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Meningiomas are the most common primary brain tumors and are generally considered benign. However, a rare subgroup of meningiomas, classified as World Health Organization (WHO) grade III meningiomas, can show extremely aggressive behavior and high rates of recurrence. Despite ongoing research, data on the clinical outcome of this subgroup of meningiomas are still limited. METHODS Medical records of patients with WHO grade III meningiomas diagnosed between 2000 and 2018 at the Coimbra University Hospital Center were retrospectively reviewed and several variables of interest and their relation to patients' survival were analyzed. RESULTS Of the 26 patients included in the final analysis, 23 had anaplastic meningiomas, 2 had papillary meningiomas, and 1 had a rhabdoid meningioma. Median overall survival and median progression-free survival were 2.45 and 1.22 years, respectively. Overall survival at 1, 2 and 5 years was 73%, 57%, and 35%, respectively. Adjuvant radiotherapy correlated with improved survival for subtotally resected meningiomas but not for gross totally resected meningiomas. There was a trend toward improved overall survival with gross total resection versus subtotal resection, but this difference failed to reach statistical significance. CONCLUSIONS This study provides insight into the clinical outcomes of WHO grade III meningiomas and suggests that adjuvant radiotherapy may not be beneficial for patients who underwent gross total resection. This rare subset of meningiomas still portends a devastating prognosis and the impact of extent of resection and adjuvant therapies in these patients needs further clarification.
Collapse
Affiliation(s)
- Eduarda Sá-Marta
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.
| | - José Luís Alves
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Department of Neurology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Marcos Barbosa
- Department of Neurosurgery, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
33
|
Takei J, Tanaka T, Teshigawara A, Tochigi S, Hasegawa Y, Murayama Y. Alteration of FOXM1 expression and macrophage polarization in refractory meningiomas during long-term follow-up. Transl Cancer Res 2021; 10:553-566. [PMID: 35116285 PMCID: PMC8797451 DOI: 10.21037/tcr-20-1896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Malignant progression of grade I meningioma with a long latency period is rare. We experienced grade II/III meningiomas with refractoriness and recurrence from grade I meningiomas through multiple surgeries. Three patients with atypical/anaplastic meningioma experienced long-latent recurrence after initial surgery for grade I (meningothelial) meningioma without following adjuvant radiotherapy were included in the present study. Histological findings of the initial tumors in all cases (case 1, 2, and 3) revealed meningothelial meningioma with 1%, 5%, and 0.1% MIB-1 positive cells, respectively. Surprisingly, magnetic resonance imaging (MRI) detected a recurrent tumor 2, 12, and 12 years after the initial operation, respectively. Case 1 was atypical meningioma after third recurrence, and case 2 and 3 were anaplastic meningioma after second and third recurrence, respectively. The patient in case 2 received adjuvant radiotherapy. In case 2, the tumor recurred intracranial and distant metastasis to the lung with huge substantial pleural effusion was detected. To investigate the pathogenesis of malignant progression from benign to malignant meningioma, CD163/CD68 expression by immunohistochemically and FOXM1 mRNA expression by RT-PCR were compared using surgical specimens from initial and recurrent tumors in all three patients. The ratio of CD163/CD68 positivity and FOXM1 mRNA expression were increased in recurrent tumors compared with matched initial tumors. CD163 and FOXM1 expression levels were induced even in recurrent grade I meningioma, suggesting that macrophage polarization and pro-mitotic transcriptional factor might be associated with clinical behavior of meningioma and be useful as a prediction marker for malignant progression. Careful long-term follow-up is important for early diagnosis of malignant progression in meningiomas, even if grade I meningioma is completely resected. Development of a multidisciplinary approach including radiation and novel molecular targeted therapy is expected for recurrent and malignant meningiomas.
Collapse
Affiliation(s)
- Jun Takei
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan.,Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan
| | - Akihiko Teshigawara
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan
| | - Satoru Tochigi
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan
| | - Yuzuru Hasegawa
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Chiba, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Gauchotte G, Peyre M, Pouget C, Cazals-Hatem D, Polivka M, Rech F, Varlet P, Loiseau H, Lacomme S, Mokhtari K, Kalamarides M, Bielle F. Prognostic Value of Histopathological Features and Loss of H3K27me3 Immunolabeling in Anaplastic Meningioma: A Multicenter Retrospective Study. J Neuropathol Exp Neurol 2020; 79:754-762. [PMID: 32447376 DOI: 10.1093/jnen/nlaa038] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/15/2020] [Indexed: 12/26/2022] Open
Abstract
The diagnosis of anaplastic meningioma (AM) (WHO grade III) is based on the presence of a high mitotic index (MI) and/or overt anaplasia. Only few data exist about the reproducibility and prognostic value of overt anaplasia. Additionally, the prognostic value of H3K27me3 loss in AM has not yet been demonstrated. Our objectives were to evaluate the reproducibility and prognostic value of WHO criteria and H3K27me3 loss in a multicenter series of 66 AM. Interobserver reproducibility was good for the determination of WHO grade (Kappa = 0.671) and MI (intraclass correlation coefficient [ICC] = 0.649), and fair for assessment of overt anaplasia (Kappa = 0.366). Patients with meningiomas showing high MI had significantly shorter overall survival (OS) than patients with meningiomas showing overt anaplasia without high MI (p = 0.009). OS was significantly lower in case of overt anaplasia with low MI (<20/1.6 mm2) than in atypical meningiomas (p = 0.008). H3K27me3 loss was present in 10/47 (21%) of AM and independently associated with shorter OS (p = 0.036; Cox multivariate analysis), with a good reproducibility (Kappa = 0.643). In conclusion, the presence of overt anaplasia could give additional prognostic information in tumors lacking high MI. Finally, loss of H3K27me3 is an easy-to-use and reproducible marker of poorer prognosis.
Collapse
Affiliation(s)
- Guillaume Gauchotte
- INSERM U1256, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy.,Department of Pathology, CHRU, Nancy, France.,Centre de Ressources Biologiques, BB-0033-00035 (GG, SL), CHRU, Nancy, France
| | - Matthieu Peyre
- Sorbonne Universités, INSERM, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France.,Department of Neurosurgery, Groupe Hospitalier Pitié Salpêtrière, AP-HP (MP, MK), Paris, France.,Department of Pathology, Hôpital Lariboisière, AP-HP, Paris, France
| | - Celso Pouget
- INSERM U1256, Faculty of Medicine, Université de Lorraine, Vandoeuvre-lès-Nancy.,Department of Pathology, CHRU, Nancy, France
| | | | | | - Fabien Rech
- Department of Neurosurgery, CHRU, Nancy, France.,Institut des Neurosciences, INSERM U1051, Montpellier, France
| | - Pascale Varlet
- Department of Neuropathology, Centre Hospitalier Saint-Anne, Paris, France
| | - Hugues Loiseau
- Department of Neurosurgery, CEREPEG, Hôpital Pellegrin Tripode, Bordeaux, France.,EA 7435 - IMOTION University of Bordeaux (HL), Bordeaux
| | - Stéphanie Lacomme
- Centre de Ressources Biologiques, BB-0033-00035 (GG, SL), CHRU, Nancy, France
| | - Karima Mokhtari
- Sorbonne Universités, INSERM, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France.,AP-HP, Department of Neuropathology, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Michel Kalamarides
- Sorbonne Universités, INSERM, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France.,Department of Neurosurgery, Groupe Hospitalier Pitié Salpêtrière, AP-HP (MP, MK), Paris, France
| | - Franck Bielle
- Sorbonne Universités, INSERM, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle Épinière, Paris, France.,AP-HP, Department of Neuropathology, Hôpital de la Pitié Salpêtrière, Paris, France.,SiRIC CURAMUS (Cancer United Research Associating Medicine, University & Society), Site de Recherche Intégrée sur le Cancer IUC, APHP.6, Sorbonne Université (FB), Paris, France
| |
Collapse
|
35
|
Wang D, Sun S, Hua L, Deng J, Luan S, Cheng H, Xie Q, Wakimoto H, Zhu H, Gong Y. Prognostic Model That Predicts Benefits of Adjuvant Radiotherapy in Patients With High Grade Meningioma. Front Oncol 2020; 10:568079. [PMID: 33240812 PMCID: PMC7683714 DOI: 10.3389/fonc.2020.568079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Adjuvant radiotherapy is the main treatment modality for high grade meningioma after surgical resection; however, recurrence and survival outcomes vary. The aim of this study was to create a new “prognostic score” that allows personalized recommendations for post-operative adjuvant radiotherapy in patients with high grade meningioma. Methods Clinical data were collected from 115 patients with high grade meningioma treated with surgical resection and adjuvant radiotherapy. A prognostic model was built based on the hazards ratios of independent prognostic factors yielded by multivariate cox proportional analysis. Calibration and discrimination of the prognostic score was evaluated using good of fit test and Harrel’s C index, respectively. Results A total of 115 high grade meningioma patients (72 atypical and 43 anaplastic meningiomas) were enrolled. Three factors were independently associated with progression-free survival (PFS): extent of resection (GTR vs. STR), recurrent status (de novo vs. recurrent), and Ki-67 labeling index (<5% vs. ≥ 5%). The respective β-coefficients were used to generate the “prognostic score”. The cohort was divided into low-risk and high-risk groups based on the median prognostic score. Good of fit test showed strong calibration (P = 0.7133) and Harrel’s C index 0.766 indicated a strong discrimination capability of the prognostic score. The Harrel’s C index for OS was 0.60. Conclusions Our prognostic model using three basic clinical parameters robustly separated high grade meningioma patients who benefit vs. do not benefit from adjuvant radiotherapy. External validation of our model is warranted to help improve patient selection suitable for adjuvant radiotherapy.
Collapse
Affiliation(s)
- Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shihai Luan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haixia Cheng
- Department of Neuropathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Hongda Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Dunn J, Lenis VP, Hilton DA, Warta R, Herold-Mende C, Hanemann CO, Futschik ME. Integration and Comparison of Transcriptomic and Proteomic Data for Meningioma. Cancers (Basel) 2020; 12:E3270. [PMID: 33167358 PMCID: PMC7694371 DOI: 10.3390/cancers12113270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Meningioma are the most frequent primary intracranial tumour. Management of aggressive meningioma is complex, and development of effective biomarkers or pharmacological interventions is hampered by an incomplete knowledge of molecular landscape. Here, we present an integrated analysis of two complementary omics studies to investigate alterations in the "transcriptome-proteome" profile of high-grade (III) compared to low-grade (I) meningiomas. We identified 3598 common transcripts/proteins and revealed concordant up- and downregulation in grade III vs. grade I meningiomas. Concordantly upregulated genes included FABP7, a fatty acid binding protein and the monoamine oxidase MAOB, the latter of which we validated at the protein level and established an association with Food and Drug Administration (FDA)-approved drugs. Notably, we derived a plasma signature of 21 discordantly expressed genes showing positive changes in protein but negative in transcript levels of high-grade meningiomas, including the validated genes CST3, LAMP2, PACS1 and HTRA1, suggesting the acquisition of these proteins by tumour from plasma. Aggressive meningiomas were enriched in processes such as oxidative phosphorylation and RNA metabolism, whilst concordantly downregulated genes were related to reduced cellular adhesion. Overall, our study provides the first transcriptome-proteome characterisation of meningioma, identifying several novel and previously described transcripts/proteins with potential grade III biomarker and therapeutic significance.
Collapse
Affiliation(s)
- Jemma Dunn
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK;
| | - Vasileios P. Lenis
- School of Health & Life Sciences, Centuria Building, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK;
| | - David A. Hilton
- Cellular and Anatomical Pathology, Plymouth Hospitals NHS Trust, Derriford Road, Plymouth PL6 8BU, UK;
| | - Rolf Warta
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (R.W.); (C.H.-M.)
| | - Christel Herold-Mende
- Department of Neurosurgery, Division of Experimental Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany; (R.W.); (C.H.-M.)
| | - C. Oliver Hanemann
- Faculty of Health: Medicine, Dentistry and Human Sciences, The Institute of Translational and Stratified Medicine, University of Plymouth, The John Bull Building, Plymouth Science Park, Research Way, Plymouth PL6 8BU, UK;
| | - Matthias E. Futschik
- Faculty of Medicine, School of Public Health, Imperial College London, Medical School, St Mary’s Hospital, Praed Street, London W2 1NY, UK
| |
Collapse
|
37
|
Nakasu S, Notsu A, Na K, Nakasu Y. Malignant transformation of WHO grade I meningiomas after surgery or radiosurgery: systematic review and meta-analysis of observational studies. Neurooncol Adv 2020; 2:vdaa129. [PMID: 33305267 PMCID: PMC7712809 DOI: 10.1093/noajnl/vdaa129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background The incidence and clinical features of the malignant transformation of benign meningiomas are poorly understood. This study examined the risk of the malignant transformation of benign meningiomas after surgery or stereotactic radiosurgery. Methods We systematically reviewed studies published between 1979 and 2019 using PubMed, Scopus, and other sources. We analyzed pooled data according to the PRISMA guideline to clarify the incidence rate of malignant transformation (IMT) and factors affecting malignant transformation in surgically or radiosurgically treated benign meningiomas. Results IMT was 2.98/1000 patient-years (95% confidence interval [CI] = 1.9–4.3) in 13 studies in a single-arm meta-analysis. Although the evidence level of the included studies was low, the heterogeneity of the incidence was mostly explained by the tumor location. In meta-regression analysis, skull base tumors had a significantly lower IMT than non-skull base tumors, but no gender association was observed. IMT after radiosurgery in 9 studies was 0.50/1000 person-years (95% CI = 0.02–1.38). However, a higher proportion of skull base tumors, lower proportion of males, and lower salvage surgery rate were observed in the radiosurgery group than in the surgery group. The median time to malignant change was 5 years (interquartile range = 2.5–8.2), and the median survival after malignant transformation was 4.7 years (95% CI = 3.7–8) in individual case data. Conclusion IMT of benign meningioma was significantly affected by the tumor location. Radiosurgery did not appear to increase IMT, but exact comparisons were difficult because of differences in study populations.
Collapse
Affiliation(s)
- Satoshi Nakasu
- Division of Neurosurgery, Kusatsu General Hospital, Kusatsu, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan
| | - Akifumi Notsu
- Clinical Research Center, Shizuoka Cancer Center, Nagaizumi, Japan
| | - Kiyong Na
- Department of Pathology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Yoko Nakasu
- Department of Neurosurgery, Shiga University of Medical Science, Ohtsu, Japan.,Division of Neurosurgery, Shizuoka Cancer Center, Nagaizumi, Japan
| |
Collapse
|
38
|
Hua L, Juratli TA, Zhu H, Deng J, Wang D, Sun S, Xie Q, Wakimoto H, Gong Y. High Tumor Mitochondrial DNA Content Correlates With an Improved Patient's Outcome in WHO Grade III Meningioma. Front Oncol 2020; 10:542294. [PMID: 33072573 PMCID: PMC7530740 DOI: 10.3389/fonc.2020.542294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Studies have shown mitochondrial genome content (mtDNA content) varies in many malignancies. However, its distribution and prognostic values in high-grade meningioma remain largely unknown. In this retrospective study, we sought to assess a putative correlation between the mtDNA content and clinical characteristics. Methods: Mitochondrial DNA was extracted from 87 World Health Organization grade III meningioma samples using a qPCR method. The distribution of mtDNA content in WHO grade III meningioma and its correlations with clinical variables were assessed. Furthermore, we prognostic values were also determined. Results: Mean mtDNA content was 617.7 (range, 0.8-3000). There was no mtDNA distribution difference based on the histological subtypes (P = 0.07). Tumors with preoperative radiation were associated with lower mtDNA content (P = 0.041), whereas no correlations with other clinical variables were observed. A high mtDNA content was associated with significantly better PFS (P = 0.044) and OS (P = 0.019). However, in patients who received postoperative radiotherapy, low mtDNA content was associated with better PFS (P = 0.028), while no difference in OS was observed (P = 0.272). Low mtDNA content was also associated with better OS and PFS in subgroups of patients with ER negative status (PFS, P = 0.002; OS, P = 0.002). Conclusions: Consistent with other tumors, high mtDNA content was associated with better outcome in WHO grade III meningioma in our cohort. However, for patients who received post-operative radiation therapy, low mtDNA content was associated with better PFS. These findings suggest that mtDNA content may further be explored as a potential biomarker for high-grade meningioma patients and for those who received postoperative radiation therapy.
Collapse
Affiliation(s)
- Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tareq A. Juratli
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Hongda Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Maier AD, Stenman A, Svahn F, Mirian C, Bartek J, Juhler M, Zedenius J, Broholm H, Mathiesen T. TERT promoter mutations in primary and secondary WHO grade III meningioma. Brain Pathol 2020; 31:61-69. [PMID: 32805769 PMCID: PMC8018144 DOI: 10.1111/bpa.12892] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
Purpose:TERT promoter mutation (TERTpMut) has a strong association to recurrence and has been suggested to act as a driver mutation for malignant transformation of WHO grade I and II meningiomas. TERTpMut has been investigated in selected high‐grade meningioma samples. The existence of TERTpMut across recurrent tumors in a population‐based cohort needs to be investigated in order to identify when TERTpMut emerges across recurrent samples and to validate prognostic impact among WHO grade III tumors. Methods: We gathered material from a consecutive single‐center cohort of 40 patients with malignant meningioma (WHO grade III) treated between 2000 and 2018, including specimens from primary and secondary malignant meningiomas with the corresponding earlier benign specimens and later malignant recurrences. In total 107 tumor samples were studied by Sanger sequencing for TERT promoter mutational status. Results: Seven of 40 patients (17.5%) harbored TERTpMut thus validating the incidence of TERTpMut in previous non‐population‐based cohorts. In 6/7 patients, the TERTpMut was present at initial surgery (WHO grade I–III) while in one patient the TERTpMut was found de novo when the meningioma became malignant. The incidences were 2/1.000.000/year for TERTpMut WHO grade III meningioma and 8/1.000.000/year for TERTpwt WHO grade III meningioma in our catchment area. We found a 1.7 times higher recurrence rate (CI 95% 0.65–4.44) and a 2.5 higher mortality rate per 10 person‐years (CI 95% 1.01–6.19) for TERTpMut compared to TERTpwt. Conclusion:TERTpMut can occur independently of malignant progression in meningioma and was most often present from the first tumor sample across recurring tumors. TERTpMut in WHO grade III may represent a marker of an aggressive subset of tumors.
Collapse
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Adam Stenman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrika Svahn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Christian Mirian
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jiri Bartek
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Neuroscience and Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Juhler
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Helle Broholm
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Neuroscience and Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Champeaux C, Jecko V, Houston D, Thorne L, Dunn L, Fersht N, Khan AA, Resche-Rigon M. Malignant Meningioma: An International Multicentre Retrospective Study. Neurosurgery 2020; 85:E461-E469. [PMID: 30566646 DOI: 10.1093/neuros/nyy610] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/20/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In contrast to benign meningiomas, malignant meningiomas (MM) are rare and associated with an unfavourable prognosis. Reports on MM concern fairly small cohorts, often comprising less than 30 cases. OBJECTIVE To describe the outcome MM and identify factors that may influence survival. METHODS Pathology reports and clinical data of 178 patients treated between 1989 and 2017 for a MM at 6 different international institutions were retrospectively reviewed. Seventy-six patients (42.7%) had a previous history of grade I or grade II meningioma. The patients underwent a total of 380 surgical resections and 72.5% received radiotherapy. Median follow-up was 4.5 yr. RESULTS At data collection, 111 patients were deceased (63.4%) and only 23 patients (13.7%) were alive without any residual tumor on the most recent scan. Median overall survival was 2.9 yr, 95% confidence interval [CI; 2.4, 4.5]. Overall survival rates at 1, 5, and 10 yr, respectively, were: 77.7%, 95% CI [71.6, 84.3], 40%, 95% CI [32.7, 49], and 27.9%, 95% CI [20.9, 37.3]. In the multivariable analysis, age at MM surgery <65 yr (hazard ratio [HR] = 0.44, 95% CI [0.29, 0.67], P < .001), previous benign or atypical meningioma surgery (HR = 1.9, 95% CI [1.23, 2.92], P = .004), completeness of resection (HR = 0.51, 95% CI [0.34, 0.78], P = .002), and adjuvant radiotherapy (HR = 0.64, 95% CI [0.42, 0.98], P = .039) were established as independent prognostic factors for survival. CONCLUSION This large series confirms the poor prognosis associated with MM, the treatment of which remains challenging. Patients under 65-yr-old with primary MM may live longer after complete resection and postoperative radiotherapy. Even with aggressive treatments, local control remains difficult to achieve.
Collapse
Affiliation(s)
- Charles Champeaux
- INSERM U1153, Statistic and Epidemiologic Research Center Sorbonne Paris Cité (CRESS), ECSTRRA team, Université Diderot - Paris 7, USPC, Paris, France.,Department of Neurosurgery, NHNN, University College London Hospitals NHS Foundation Trust, London, United Kingdom.,Department of Neurosurgery, Pellegrin Hospital, Bordeaux, France.,Department of Neurosurgery, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Vincent Jecko
- Department of Neurosurgery, Pellegrin Hospital, Bordeaux, France
| | - Deborah Houston
- Department of Neurosurgery, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Lewis Thorne
- Department of Neurosurgery, NHNN, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Laurence Dunn
- Department of Neurosurgery, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Naomi Fersht
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Akbar Ali Khan
- Department of Neurosurgery, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Matthieu Resche-Rigon
- INSERM U1153, Statistic and Epidemiologic Research Center Sorbonne Paris Cité (CRESS), ECSTRRA team, Université Diderot - Paris 7, USPC, Paris, France
| |
Collapse
|
41
|
Mirian C, Duun-Henriksen AK, Juratli T, Sahm F, Spiegl-Kreinecker S, Peyre M, Biczok A, Tonn JC, Goutagny S, Bertero L, Maier AD, Møller Pedersen M, Law I, Broholm H, Cahill DP, Brastianos P, Poulsgaard L, Fugleholm K, Ziebell M, Munch T, Mathiesen T. Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. J Neurol Neurosurg Psychiatry 2020; 91:378-387. [PMID: 32041819 DOI: 10.1136/jnnp-2019-322257] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/06/2020] [Accepted: 01/25/2020] [Indexed: 11/12/2022]
Abstract
BACKGROUND TERT gene alterations (TERT-alt) have been linked to increased risk of recurrence in meningiomas, whereas the association to mortality largely remain incompletely investigated. As incongruence between clinical course and WHO grade exists, reliable biomarkers have been sought. METHODS We applied the Preferred Reporting Items for Systematic Review and Meta-Analyses of individual participant data Statement. We compiled data from eight studies and allocated patients to TERT-alt (n=59) or TERT promoter wild-type (TERTp-wt; n=618). We compared the two groups stratified for WHO grades as: incidence rates, survival probabilities and cumulative recurrences. We estimated the effects of WHO grade, age at diagnosis and sex as HRs. RESULTS TERT-alt occurred in 4.7%, 7.9% and 15.4% of WHO-I/WHO-II/WHO-III meningiomas, respectively. The median recurrence-free survival was 14 months for all TERT-alt patients versus 101 months for all TERTp-wt patients. The HR for TERT-alt was 3.74 in reference to TERTp-wt. For all TERT-alt patients versus all TERTp-wt patients, the median overall survival was 58 months and 160 months, respectively. The HR for TERT-alt was 2.77 compared with TERTp-wt. TERT-alt affected prognosis independent of WHO grades. Particularly, the recurrence rate was 4.8 times higher in WHO-I/-II TERT-alt patients compared with WHO-III TERTp-wt patients. The mortality rate was 2.7 times higher in the WHO-I and WHO-II TERT-alt patients compared with WHO-III TERTp-wt patients. CONCLUSIONS TERT-alt is an important biomarker for significantly higher risk of recurrence and death in meningiomas. TERT-alt should be managed and surveilled aggressively. We propose that TERT-alt analysis should be implemented as a routine diagnostic test in meningioma and integrated into the WHO classification. TRIAL REGISTRATION NUMBER PROSPERO: CRD42018110566.
Collapse
Affiliation(s)
- Christian Mirian
- Department of Neurosurgery, Copenhagen, Copenhagen University Hospital, Denmark
| | | | - Tareq Juratli
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, United States.,Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital GmbH, Johannes Kepler University, Linz, Austria
| | - Matthieu Peyre
- Department of Neurosurgery, Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Annamaria Biczok
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jörg-Christian Tonn
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stéphane Goutagny
- Department of Neurosurgery, Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, Clichy, Paris, France
| | - Luca Bertero
- Department of Medical Sciences, Pathology Unit, University of Turin, Torino, Italy
| | | | | | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle Broholm
- Department of Neuropathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Daniel P Cahill
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, United States
| | - Priscilla Brastianos
- Department of Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lars Poulsgaard
- Department of Neurosurgery, Copenhagen, Copenhagen University Hospital, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, Copenhagen, Copenhagen University Hospital, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Copenhagen, Copenhagen University Hospital, Denmark
| | - Tina Munch
- Department of Neurosurgery, Copenhagen, Copenhagen University Hospital, Denmark.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Copenhagen, Copenhagen University Hospital, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
42
|
Multiple Pulmonary and Pleural Metastases in Recurrent Intracranial Meningioma with Genetic Changes: Case Report and Review of the Literature. World Neurosurg 2020; 136:337-340. [DOI: 10.1016/j.wneu.2020.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/08/2023]
|
43
|
Masalha W, Heiland DH, Delev D, Fennell JT, Franco P, Scheiwe C, Mercas BI, Mader I, Schnell O, Grauvogel J. Survival and Prognostic Predictors of Anaplastic Meningiomas. World Neurosurg 2019; 131:e321-e328. [DOI: 10.1016/j.wneu.2019.07.148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/26/2022]
|
44
|
Du Z, Brewster R, Merrill PH, Chmielecki J, Francis J, Aizer A, Abedalthagafi M, Sholl LM, Geffers L, Alexander B, Santagata S. Meningioma transcription factors link cell lineage with systemic metabolic cues. Neuro Oncol 2019; 20:1331-1343. [PMID: 29660031 DOI: 10.1093/neuonc/noy057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Tumor cells recapitulate cell-lineage transcriptional programs that are characteristic of normal tissues from which they arise. It is unclear why such lineage programs are fatefully maintained in tumors and if they contribute to cell proliferation and viability. Methods Here, we used the most common brain tumor, meningioma, which is strongly associated with female sex and high body mass index (BMI), as a model system to address these questions. We screened expression profiling data to identify the transcription factor (TF) genes which are highly enriched in meningioma, and characterized the expression pattern of those TFs and downstream genes in clinical meningioma samples as well as normal brain tissues. Meningioma patient-derived cell lines (PDCLs) were used for further validation and characterization. Results We identified 8 TFs highly enriched in meningioma. Expression of these TFs, which included sine oculis homeobox 1 (SIX1), readily distinguished meningiomas from other primary brain tumors and was maintained in PDCLs and even in pulmonary meningothelial nodules. In meningioma PDCLs, SIX1 and its coactivator eyes absent 2 (EYA2) supported the expression of the leptin receptor (LEPR), the cell-surface receptor for leptin (LEP), the adipose-specific hormone that is high in women and in individuals with high BMI. Notably, these transcriptional regulatory factors, LEPR and LEP, both contributed to support meningioma PDCLs proliferation and survival, elucidating a survival dependency on both a core transcriptional program and a metabolic cell-surface receptor. Conclusions These findings provide one rationale for why lineage TF expression is maintained in meningioma and for the epidemiological association of female sex and obesity with meningioma risk.
Collapse
Affiliation(s)
- Ziming Du
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ryan Brewster
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Parker H Merrill
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Juliann Chmielecki
- Harvard Medical School, Boston, Massachusetts, USA.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Josh Francis
- Harvard Medical School, Boston, Massachusetts, USA.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ayal Aizer
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Malak Abedalthagafi
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Lars Geffers
- Department of Genes and Behavior, Max-Planck-Institute of Biophysical Chemistry, Goettingen, Germany
| | - Brian Alexander
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Clinical, radiological, and histopathological predictors for long-term prognosis after surgery for atypical meningiomas. Acta Neurochir (Wien) 2019; 161:1647-1656. [PMID: 31147831 DOI: 10.1007/s00701-019-03956-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite considerable rates of recurrence and mortality in atypical meningiomas, reliable predictors for estimating postoperative long-term prognosis remain elusive. METHODS Clinical, histopathological, and radiological variables from 138 patients, including 64 females and 74 males (46% and 54%, median age 62 years), who underwent surgery for intracranial atypical meningioma were retrospectively analyzed. Associations between variables and recurrence and mortality were investigated using uni- and multivariate analyses. RESULTS Gross total (GTR) and subtotal resection (STR) was achieved in 81% and 19% of cases, respectively. Within a median follow-up of 62 months, recurrence occurred in 52 (38%) and mortality in 22 (16%) cases. In patients who did not receive adjuvant irradiation, recurrence rates were higher after STR than after GTR (32% vs 63%, p = 0.025). In univariate analyses, only intratumoral calcifications on preoperative MRI (p = 0.012) and the presence of brain invasion in the absence of other histological grading criteria (p = 0.010) were correlated with longer progression-free intervals (PFI). In multivariate analyses, patient age was positively (HR 1.03, 95%CI 1.04-1.05; p = 0.018) and the presence of brain invasion as the only grading criterion (HR 0.37, 95%CI 0.19-0.74; p = 0.005) was negatively related with progression, while rising age at the time of surgery (HR 1.07, 95%CI 1.03-1.12; p = 0.001) was prognostic for mortality. CONCLUSIONS PFI was longer in brain invasive but otherwise histological benign meningiomas and in tumors displaying calcifications on preoperative MRI. Advancing patient age and lower Karnofsky Performance Score were associated with higher overall mortality.
Collapse
|
46
|
Kim H, Park KJ, Ryu BK, Park DH, Kong DS, Chong K, Chae YS, Chung YG, Park SI, Kang SH. Forkhead box M1 (FOXM1) transcription factor is a key oncogenic driver of aggressive human meningioma progression. Neuropathol Appl Neurobiol 2019; 46:125-141. [PMID: 31179553 DOI: 10.1111/nan.12571] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/04/2019] [Indexed: 12/11/2022]
Abstract
AIMS Aggressive meningioma remains incurable with neither chemo- nor targeted therapies proven effective, largely due to unidentified genetic alterations and/or aberrant oncogenic pathways driving the disease progression. In this study, we examined the expression and function of Forkhead box M1 (FOXM1) transcription factor during meningioma progression. METHODS Human meningioma samples (n = 101) were collected, followed by Western blotting, quantitative PCR, immunohistochemical and progression-free survival (PFS) analyses. For in vitro assays, FOXM1 was overexpressed or knocked-down in benign (SF4433 and SF4068) or malignant (SF3061 and IOMM-Lee) human meningioma cell lines respectively. For in vivo studies, siomycin A (a FOXM1 inhibitor)-pretreated or control IOMM-Lee cells were implanted subcutaneously in nude mice. RESULTS FOXM1 expression was increased in higher grades of meningioma and correlated with the mitotic index in the tumour tissue. Moreover, FOXM1 was increased in recurrent meningioma compared with the matched primary lesions. The patients who had higher FOXM1 expression had shorter PFS. In the subsequent in vitro assays, knockdown of FOXM1 in malignant meningioma cell lines resulted in decreased tumour cell proliferation, angiogenesis and invasion, potentially via regulation of β-catenin, cyclin D1, p21, interleukin-8, vascular endothelial growth factor-A, PLAU, and epithelial-to-mesenchymal transition-related genes, whereas overexpression of FOXM1 in benign meningioma cell lines had the opposite effects. Last, suppression of FOXM1 using a pharmacological inhibitor, siomycin A, decreased tumour growth in an in vivo mouse model. CONCLUSIONS Our data demonstrate that FOXM1 is a key transcription factor regulating oncogenic signalling pathways in meningioma progression, and a promising therapeutic target for aggressive meningioma.
Collapse
Affiliation(s)
- H Kim
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, Korea
| | - K-J Park
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, Korea
| | - B-K Ryu
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, Korea
| | - D-H Park
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, Korea
| | - D-S Kong
- Department of Neurosurgery, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - K Chong
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, Korea
| | - Y-S Chae
- Department of Pathology, Korea University College of Medicine, Seoul, Korea
| | - Y-G Chung
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, Korea
| | - S I Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Korea.,The BK21 Plus Program, Korea University College of Medicine, Seoul, Korea.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt Centre for Bone Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - S-H Kang
- Department of Neurosurgery, Korea University Anam Hospital, Seoul, Korea
| |
Collapse
|
47
|
Loewenstern J, Rutland J, Gill C, Arib H, Pain M, Umphlett M, Kinoshita Y, McBride R, Donovan M, Sebra R, Bederson J, Fowkes M, Shrivastava R. Comparative genomic analysis of driver mutations in matched primary and recurrent meningiomas. Oncotarget 2019; 10:3506-3517. [PMID: 31191822 PMCID: PMC6544407 DOI: 10.18632/oncotarget.26941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/21/2019] [Indexed: 11/25/2022] Open
Abstract
A significant proportion of low-grade WHO grade I and higher-grade WHO grade II or III meningiomas are at risk to develop post-resection recurrence. Though recent studies investigated genomic alterations within histological subtypes of meningiomas, few have compared genomic profiles of primary meningiomas matched to their recurrences. The present study aimed to identify oncogenic driver mutations that may indicate risk of meningioma recurrence and aggressive clinical course. Seventeen patients treated for low-grade (n = 8) or high-grade (n = 9) meningioma and underwent both primary and recurrent resection between 2007-2017 were reviewed. Tumor specimens (n = 38) underwent genomic sequencing of known oncogenic driver mutations. Primary and recurrent tumors were compared using matched-pair analyses for mutational associations with clinical outcomes including functional status, progression-free survival (PFS) and overall survival (OS). Most common driver mutations included POLE and NF2. There was no enrichment for any driver mutation from primary to recurrent tumor specimen. NF2 mutant meningiomas were associated with larger tumor size (8-fold increase), presence of vasogenic edema, and higher mitotic proliferation on univariate and independently on multivariate regression (p's < 0.05) after controlling for preoperative and tumor features. Tumors with POLE driver mutations were associated with decreased functional status at last postoperative follow-up (p = 0.022) relative to presentation. Mutation status was not associated with PFS or OS on multivariate Cox regression, but rather with grade of resection (p = 0.046) for PFS. While primary and recurrent tumors exhibited similar driver mutations within patients, the identification of driver mutations associated with clinical outcomes is crucial for guiding potential targeted treatments in recurrent meningiomas.
Collapse
Affiliation(s)
- Joshua Loewenstern
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - John Rutland
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Corey Gill
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Hanane Arib
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Margaret Pain
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Melissa Umphlett
- Department of Pathology, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Russell McBride
- Department of Pathology, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Michael Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Joshua Bederson
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Mary Fowkes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Raj Shrivastava
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, NY, New York, USA
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, NY, New York, USA
| |
Collapse
|
48
|
Maier AD, Bartek J, Eriksson F, Ugleholdt H, Juhler M, Broholm H, Mathiesen TI. Clinical and histopathological predictors of outcome in malignant meningioma. Neurosurg Rev 2019; 43:643-653. [DOI: 10.1007/s10143-019-01093-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/10/2019] [Accepted: 03/03/2019] [Indexed: 02/01/2023]
|
49
|
Stögbauer L, Stummer W, Senner V, Brokinkel B. Telomerase activity, TERT expression, hTERT promoter alterations, and alternative lengthening of the telomeres (ALT) in meningiomas – a systematic review. Neurosurg Rev 2019; 43:903-910. [DOI: 10.1007/s10143-019-01087-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
50
|
The prognostic significance of TERT promoter mutations in meningioma: a systematic review and meta-analysis. J Neurooncol 2018; 142:1-10. [PMID: 30506498 DOI: 10.1007/s11060-018-03067-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/28/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mutations in the telomerase reverse transcriptase promoter (TERTp) region have been associated with worse prognosis in some cancers. Meningiomas are the most common type of primary central nervous tumors, and evaluation of the prognostic significance of TERTp mutations across the literature is lacking. The aim of this study was to pool all current evidence to assess for clinical relevance of TERTp mutations in meningioma and survival effect. METHODS Searches of seven electronic databases from inception to September 2018 were conducted following the appropriate guidelines. Two hundred and twenty seven articles were identified for screening. Hazard ratio (HR) and mean difference (MD) statistics were obtained and pooled utilizing both fixed- and random-effect (RE) models. Meta-regression was utilized to determine potential sources of heterogeneity and statistical influence. RESULTS A total of five retrospective observational cohort studies describing 532 meningioma patients satisfied selection criteria. The incidence of TERTp mutations was 8%, and was associated with significantly worse prognosis (HR 3.79; P = 0.005) and significantly shorter overall survival (MD 59.8 months; P = 0.037) by RE modelling. Meningioma grade was not significantly associated with a TERTp mutation effect, however, preliminary meta-regression trends indicated this may be significant once greater statistical power is achieved. CONCLUSION The current evidence indicates the presence of a TERTp mutation in meningioma can be associated with worse prognosis, and shorter overall survival. Routine detection in greater numbers will allow for further validation, as well as delineate the effect across histological grades. By identifying this subgroup of meningioma patients early in management, it may support more frequent follow-up and aggressive management to optimize survival outcomes.
Collapse
|