1
|
Ellingson BM, Sanvito F, Cloughesy TF, Huang RY, Villanueva-Meyer JE, Pope WB, Barboriak DP, Shankar LK, Smits M, Kaufmann TJ, Boxerman JL, Weller M, Galanis E, Groot JD, Gilbert MR, Lassman AB, Shiroishi MS, Nabavizadeh A, Mehta M, Stupp R, Wick W, Reardon DA, Vogelbaum MA, van den Bent M, Chang SM, Wen PY. A Neuroradiologist's Guide to Operationalizing the Response Assessment in Neuro-Oncology (RANO) Criteria Version 2.0 for Gliomas in Adults. AJNR Am J Neuroradiol 2024:ajnr.A8396. [PMID: 38926092 DOI: 10.3174/ajnr.a8396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Radiographic assessment plays a crucial role in the management of patients with central nervous system (CNS) tumors, aiding in treatment planning and evaluation of therapeutic efficacy by quantifying response. Recently, an updated version of the Response Assessment in Neuro-Oncology (RANO) criteria (RANO 2.0) was developed to improve upon prior criteria and provide an updated, standardized framework for assessing treatment response in clinical trials for gliomas in adults. This article provides an overview of significant updates to the criteria including (1) the use of a unified set of criteria for high and low grade gliomas in adults; (2) the use of the post-radiotherapy MRI scan as the baseline for evaluation in newly diagnosed high-grade gliomas; (3) the option for the trial to mandate a confirmation scan to more reliably distinguish pseudoprogression from tumor progression; (4) the option of using volumetric tumor measurements; and (5) the removal of subjective non-enhancing tumor evaluations in predominantly enhancing gliomas (except for specific therapeutic modalities). Step-by-step pragmatic guidance is hereby provided for the neuroradiologist and imaging core lab involved in operationalization and technical execution of RANO 2.0 in clinical trials, including the display of representative cases and in-depth discussion of challenging scenarios.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- From the UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences (B.M.E., F.S.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Francesco Sanvito
- From the UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences (B.M.E., F.S.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Timothy F Cloughesy
- UCLA Brain Tumor Program, Department of Neurology (T.F.C.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital (R.Y.H.), Harvard Medical School, Boston, MA
| | | | - Whitney B Pope
- Department of Radiological Sciences (W.B.P.), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Daniel P Barboriak
- Department of Radiology (D.P.B.), Duke University Medical Center, Durham, NC
| | - Lalitha K Shankar
- Clinical Trials Branch, Cancer Imaging Program (L.K.S.), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Marion Smits
- Department of Radiology & Nuclear Medicine (M.S.), Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Jerrold L Boxerman
- Department of Diagnostic Imaging (J.L.B.), Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI
| | - Michael Weller
- Department of Neurology (M.W.), University Hospital and University of Zurich, Zurich, Switzerland
| | | | - John de Groot
- Division of Neuro-Oncology, Department of Neurosurgery (J.d.G., S.M.C.), University of California, San Francisco, CA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research (M.R.G.), National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Andrew B Lassman
- Division of Neuro-Oncology, Department of Neurology (A.B.L.), Herbert Irving Comprehensive Cancer Center and Irving Institute for Clinical and Translational Research, Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital, New York, NY
| | - Mark S Shiroishi
- Department of Radiology (M.S.S.), Keck School of Medicine of the University of Southern California (USC), Los Angeles, CA
| | - Ali Nabavizadeh
- Department of Radiology (A.N.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Roger Stupp
- Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center and Departments of Neurological Surgery, Neurology and Division of Hematology/Oncology (R.S.), Northwestern University, Chicago, IL
| | - Wolfgang Wick
- Department of Neurology Heidelberg University Hospital & Clinical Cooperation Unit Neurooncology (W.W.), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School(D.A.R., P.Y.W.), Boston, MA
| | | | - Martin van den Bent
- Department Neuro-Oncology (M.v.d.B.), Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurosurgery (J.d.G., S.M.C.), University of California, San Francisco, CA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School(D.A.R., P.Y.W.), Boston, MA
| |
Collapse
|
2
|
Lim-Fat MJ, Iorgulescu JB, Rahman R, Bhave V, Muzikansky A, Woodward E, Whorral S, Allen M, Touat M, Li X, Xy G, Patel J, Gerstner ER, Kalpathy-Cramer J, Youssef G, Chukwueke U, McFaline-Figueroa JR, Nayak L, Lee EQ, Reardon DA, Beroukhim R, Huang RY, Bi WL, Ligon KL, Wen PY. Clinical and Genomic Predictors of Adverse Events in Newly Diagnosed Glioblastoma. Clin Cancer Res 2024; 30:1327-1337. [PMID: 38252427 DOI: 10.1158/1078-0432.ccr-23-3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
PURPOSE Adverse clinical events cause significant morbidity in patients with GBM (GBM). We examined whether genomic alterations were associated with AE (AE) in patients with GBM. EXPERIMENTAL DESIGN We identified adults with histologically confirmed IDH-wild-type GBM with targeted next-generation sequencing (OncoPanel) at Dana Farber Cancer Institute from 2013 to 2019. Seizure at presentation, lymphopenia, thromboembolic events, pseudoprogression, and early progression (within 6 months of diagnosis) were identified as AE. The biologic function of genetic variants was categorized as loss-of-function (LoF), no change in function, or gain-of-function (GoF) using a somatic tumor mutation knowledge base (OncoKB) and consensus protein function predictions. Associations between functional genomic alterations and AE were examined using univariate logistic regressions and multivariable regressions adjusted for additional clinical predictors. RESULTS Our study included 470 patients diagnosed with GBM who met the study criteria. We focused on 105 genes that had sequencing data available for ≥ 90% of the patients and were altered in ≥10% of the cohort. Following false-discovery rate (FDR) correction and multivariable adjustment, the TP53, RB1, IGF1R, and DIS3 LoF alterations were associated with lower odds of seizures, while EGFR, SMARCA4, GNA11, BRD4, and TCF3 GoF and SETD2 LoF alterations were associated with higher odds of seizures. For all other AE of interest, no significant associations were found with genomic alterations following FDR correction. CONCLUSIONS Genomic biomarkers based on functional variant analysis of a routine clinical panel may help identify AE in GBM, particularly seizures. Identifying these risk factors could improve the management of patients through better supportive care and consideration of prophylactic therapies.
Collapse
Affiliation(s)
- Mary Jane Lim-Fat
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - J Bryan Iorgulescu
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rifaquat Rahman
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Varun Bhave
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alona Muzikansky
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Eleanor Woodward
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sydney Whorral
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marie Allen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mehdi Touat
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | | | | | - Jay Patel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth R Gerstner
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Gilbert Youssef
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ugonma Chukwueke
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - J Ricardo McFaline-Figueroa
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eudocia Q Lee
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rameen Beroukhim
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raymond Y Huang
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith L Ligon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Quan G, Wang T, Ren JL, Xue X, Wang W, Wu Y, Li X, Yuan T. Prognostic and predictive impact of abnormal signal volume evolution early after chemoradiotherapy in glioblastoma. J Neurooncol 2023; 162:385-396. [PMID: 36991305 DOI: 10.1007/s11060-023-04299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023]
Abstract
INTRODUCTION This study was designed to explore the feasibility of semiautomatic measurement of abnormal signal volume (ASV) in glioblastoma (GBM) patients, and the predictive value of ASV evolution for the survival prognosis after chemoradiotherapy (CRT). METHODS This retrospective trial included 110 consecutive patients with GBM. MRI metrics, including the orthogonal diameter (OD) of the abnormal signal lesions, the pre-radiation enhancement volume (PRRCE), the volume change rate of enhancement (rCE), and fluid attenuated inversion recovery (rFLAIR) before and after CRT were analyzed. Semi-automatic measurements of ASV were done through the Slicer software. RESULTS In logistic regression analysis, age (HR = 2.185, p = 0.012), PRRCE (HR = 0.373, p < 0.001), post CE volume (HR = 4.261, p = 0.001), rCE1m (HR = 0.519, p = 0.046) were the significant independent predictors of short overall survival (OS) (< 15.43 months). The areas under the receiver operating characteristic curve (AUCs) for predicting short OS with rFLAIR3m and rCE1m were 0.646 and 0.771, respectively. The AUCs of Model 1 (clinical), Model 2 (clinical + conventional MRI), Model 3 (volume parameters), Model 4 (volume parameters + conventional MRI), and Model 5 (clinical + conventional MRI + volume parameters) for predicting short OS were 0.690, 0.723, 0.877, 0.879, 0.898, respectively. CONCLUSION Semi-automatic measurement of ASV in GBM patients is feasible. The early evolution of ASV after CRT was beneficial in improving the survival evaluation after CRT. The efficacy of rCE1m was better than that of rFLAIR3m in this evaluation.
Collapse
Affiliation(s)
- Guanmin Quan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Tianda Wang
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Jia-Liang Ren
- GE Healthcare China, Beijing, People's Republic of China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yankai Wu
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Xiaotong Li
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Tao Yuan
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China.
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
4
|
Sidibe I, Tensaouti F, Gilhodes J, Cabarrou B, Filleron T, Desmoulin F, Ken S, Noël G, Truc G, Sunyach MP, Charissoux M, Magné N, Lotterie JA, Roques M, Péran P, Cohen-Jonathan Moyal E, Laprie A. Pseudoprogression in GBM versus true progression in patients with glioblastoma: A multiapproach analysis. Radiother Oncol 2023; 181:109486. [PMID: 36706959 DOI: 10.1016/j.radonc.2023.109486] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE To investigate the feasibility of using a multiapproach analysis combining clinical data, diffusion- and perfusion-weighted imaging, and 3D magnetic resonance spectroscopic imaging to distinguish true tumor progression (TP) from pseudoprogression (PSP) in patients with glioblastoma. MATERIALS AND METHODS Progression was suspected within 6 months of radiotherapy in 46 of the 180 patients included in the Phase-III SpectroGlio trial (NCT01507506). Choline/creatine (Cho/Cr), choline/N-acetyl aspartate (Cho/NAA) and lactate/N-acetyl aspartate (Lac/NAA) ratios were extracted. Apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) maps were calculated. ADC, relative CBV values and tumor volume (TV) were collected at relapse. Differences between TP and PSP were evaluated using Mann-Whitney tests, and p values were adjusted with Bonferroni correction. RESULTS Patients with suspected progression underwent a new MRI scan 1 month after the first one. Of these, 28 were classified as PSP, and 18 as TP. After a median follow-up of 41 months, median overall survival was higher in PSP than in TP (25.2 vs 20.3 months; p = 0.0092). Lac/NAA and Cho/Cr ratios were higher in TP than in PSP (1.2 vs 0.5; p = 0.006; and 3 vs 2.2; p = 0.021). After multivariate regression analysis, TV was the most significant predictor of TP vs PSP, and the only one retained in the model (p = 0.028). CONCLUSION Three spectroscopic ratios could be used to differentiate PSP from TP. TV at relapse was the most predictive factor in the multivariate analysis, and overall survival was higher in PSP than in TP.
Collapse
Affiliation(s)
- Ingrid Sidibe
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Fatima Tensaouti
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Julia Gilhodes
- Biostatistics Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France
| | - Bastien Cabarrou
- Biostatistics Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France
| | - Thomas Filleron
- Biostatistics Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Soleakhena Ken
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Radiation Oncology Department, Toulouse Center for Cancer Research & INSERM, Toulouse, France
| | - Georges Noël
- Radiation Oncology Department, ICANS, Strasbourg, France
| | - Gilles Truc
- Radiation Oncology Department, Georges-François Leclerc Center, Dijon, France
| | | | | | - Nicolas Magné
- Radiation Oncology Department, Lucien Neuwirth Loire Cancer Institute, Saint-Priest-en-Jarez, France
| | - Jean-Albert Lotterie
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Margaux Roques
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Patrice Péran
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France
| | - Elizabeth Cohen-Jonathan Moyal
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Radiation Oncology Department, Toulouse Center for Cancer Research & INSERM, Toulouse, France
| | - Anne Laprie
- Radiation Oncology Department, Claudius Regaud Institute/Toulouse University Cancer Institute - Oncopôle, Toulouse, France; Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier & INSERM, Toulouse, France.
| |
Collapse
|
5
|
Takei J, Fukasawa N, Tanaka T, Yamamoto Y, Tamura R, Sasaki H, Akasaki Y, Kamata Y, Murahashi M, Shimoda M, Murayama Y. Impact of Neoadjuvant Bevacizumab on Neuroradiographic Response and Histological Findings Related to Tumor Stemness and the Hypoxic Tumor Microenvironment in Glioblastoma: Paired Comparison Between Newly Diagnosed and Recurrent Glioblastomas. Front Oncol 2022; 12:898614. [PMID: 35785200 PMCID: PMC9247463 DOI: 10.3389/fonc.2022.898614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background Previously, we reported that bevacizumab (Bev) produces histological and neuroradiographic alterations including changes in tumor oxygenation, induction of an immunosupportive tumor microenvironment, and inhibition of stemness. To confirm how those effects vary during Bev therapy, paired samples from the same patients with newly diagnosed glioblastoma (GBM) who received preoperative neoadjuvant Bev (neoBev) were investigated with immunohistochemistry before and after recurrence. Methods Eighteen samples from nine patients with newly diagnosed GBM who received preoperative neoBev followed by surgery and chemoradiotherapy and then autopsy or salvage surgery after recurrence were investigated. The expression of carbonic anhydrase 9 (CA9), hypoxia-inducible factor-1 alpha (HIF-1α), nestin, and Forkhead box M1 (FOXM1) was evaluated with immunohistochemistry. For comparison between neoBev and recurrent tumors, we divided the present cohort into two groups based on neuroradiographic response: good and poor responders (GR and PR, respectively) to Bev were defined by the tumor regression rate on T1-weighted images with gadolinium enhancement (T1Gd) and fluid-attenuated inversion recovery images. Patterns of recurrence after Bev therapy were classified as cT1 flare-up and T2-diffuse/T2-circumscribed. Furthermore, we explored the possibility of utilizing FOXM1 as a biomarker of survival in this cohort. Results A characteristic “pseudo-papillary”-like structure containing round-shaped tumor cells clustered adjacent to blood vessels surrounded by spindle-shaped tumor cells was seen only in recurrent tumors. Tumor cells at the outer part of the “pseudo-papillary” structure were CA9-positive (CA9+)/HIF-1α+, whereas cells at the inner part of this structure were CA9−/HIF-1α+ and nestin+/FOXM1+. CA9 and HIF-1α expression was lower in T1Gd-GR and decreased in the “T2-circumscribed/T2-diffuse” pattern compared with the “T1 flare-up” pattern, suggesting that tumor oxygenation was frequently observed in T1Gd-GR in initial tumors and in the “T2-circumscribed/T2-diffuse” pattern in recurrent tumors. FOXM1 low-expression tumors tended to have a better prognosis than that of FOXM1 high-expression tumors. Conclusion A “pseudo-papillary” structure was seen in recurrent GBM after anti-vascular endothelial growth factor therapy. Bev may contribute to tumor oxygenation, leading to inhibition of stemness and correlation with a neuroimaging response during Bev therapy. FOXM1 may play a role as a biomarker of survival during Bev therapy.
Collapse
Affiliation(s)
- Jun Takei
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Nei Fukasawa
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
- Department of Neurosurgery, Jikei University School of Medicine Kashiwa Hospital, Kashiwa, Japan
- *Correspondence: Toshihide Tanaka,
| | - Yohei Yamamoto
- Department of Neurosurgery, Jikei University School of Medicine Daisan Hospital, Tokyo, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Mutsunori Murahashi
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
De Witt Hamer PC, Klein M, Hervey-Jumper SL, Wefel JS, Berger MS. Functional Outcomes and Health-Related Quality of Life Following Glioma Surgery. Neurosurgery 2021; 88:720-732. [PMID: 33517431 PMCID: PMC7955971 DOI: 10.1093/neuros/nyaa365] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022] Open
Abstract
Functional outcome following glioma surgery is defined as how the patient functions or feels. Functional outcome is a coprimary end point of surgery in patients with diffuse glioma, together with oncological outcome. In this review, we structure the functional outcome measurements following glioma surgery as reported in the last 5 yr. We review various perspectives on functional outcome of glioma surgery with available measures, and offer suggestions for their use. From the recent neurosurgical literature, 160 publications were retrieved fulfilling the selection criteria. In these publications, neurological outcomes were reported most often, followed by activities of daily living, seizure outcomes, neurocognitive outcomes, and health-related quality of life or well-being. In more than a quarter of these publications functional outcome was not reported. A minimum essential consensus set of functional outcome measurements would benefit comparison across neurosurgical reports. The consensus set should be based on a combination of clinician- and patient-reported outcomes, assessed at a predefined time before and after surgery. The selected measurements should have psychometric properties supporting the intended use including validity-related evidence, reliability, and sensitivity to detect meaningful change with minimal burden to ensure compliance. We circulate a short survey as a start towards reporting guidelines. Many questions remain to better understand, report, and improve functional outcome following glioma surgery.
Collapse
Affiliation(s)
- Philip C De Witt Hamer
- Correspondence: Philip C. De Witt Hamer, MD, PhD, Amsterdam UMC, Vrije Universiteit, Department of Neurosurgery, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands.
| | - Martin Klein
- Amsterdam UMC, Vrije Universiteit, Department of Medical Psychology, Neuroscience Campus, Amsterdam, Netherlands
| | - Shawn L Hervey-Jumper
- University of California San Francisco, Department of Neurological Surgery, San Francisco, California
| | - Jeffrey S Wefel
- University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology and Department of Radiation Oncology, Houston, Texas
| | - Mitchel S Berger
- University of California San Francisco, Department of Neurological Surgery, San Francisco, California
| |
Collapse
|
7
|
Cloughesy TF, Brenner A, de Groot JF, Butowski NA, Zach L, Campian JL, Ellingson BM, Freedman LS, Cohen YC, Lowenton-Spier N, Rachmilewitz Minei T, Fain Shmueli S, Wen PY. A randomized controlled phase III study of VB-111 combined with bevacizumab vs bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE). Neuro Oncol 2021; 22:705-717. [PMID: 31844890 PMCID: PMC7229248 DOI: 10.1093/neuonc/noz232] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Ofranergene obadenovec (VB-111) is an anticancer viral therapy that demonstrated in a phase II study a survival benefit for patients with recurrent glioblastoma (rGBM) who were primed with VB-111 monotherapy that was continued after progression with concomitant bevacizumab. Methods This pivotal phase III randomized, controlled trial compared the efficacy and safety of upfront combination of VB-111 and bevacizumab versus bevacizumab monotherapy. Patients were randomized 1:1 to receive VB-111 1013 viral particles every 8 weeks in combination with bevacizumab 10 mg/kg every 2 weeks (combination arm) or bevacizumab monotherapy (control arm). The primary endpoint was overall survival (OS), and secondary endpoints were objective response rate (ORR) by Response Assessment in Neuro-Oncology (RANO) criteria and progression-free survival (PFS). Results Enrolled were 256 patients at 57 sites. Median exposure to VB-111 was 4 months. The study did not meet its primary or secondary goals. Median OS was 6.8 versus 7.9 months in the combination versus control arm (hazard ratio, 1.20; 95% CI: 0.91–1.59; P = 0.19) and ORR was 27.3% versus 21.9% (P = 0.26). A higher rate of grades 3–5 adverse events was reported in the combination arm (67% vs 40%), mainly attributed to a higher rate of CNS and flu-like/fever events. Trends for improved survival with combination treatment were seen in the subgroup of patients with smaller tumors and in patients who had a posttreatment febrile reaction. Conclusions In this study, upfront concomitant administration of VB-111 and bevacizumab failed to improve outcomes in rGBM. Change of treatment regimen, with the lack of VB-111 monotherapy priming, may explain the differences from the favorable phase II results. Clinical trials registration NCT02511405
Collapse
Affiliation(s)
- Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Andrew Brenner
- University of Texas Health San Antonio Cancer Center, San Antonio, Texas, USA
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Leor Zach
- Oncology Institute, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | - Jian L Campian
- Division of Medical Oncology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Laurence S Freedman
- Biostatistics and Biomathematics Unit, Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel HaShomer, Israel
| | | | | | | | | | | | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Müller DMJ, Robe PA, Ardon H, Barkhof F, Bello L, Berger MS, Bouwknegt W, Van den Brink WA, Conti Nibali M, Eijgelaar RS, Furtner J, Han SJ, Hervey-Jumper SL, Idema AJS, Kiesel B, Kloet A, De Munck JC, Rossi M, Sciortino T, Vandertop WP, Visser M, Wagemakers M, Widhalm G, Witte MG, Zwinderman AH, De Witt Hamer PC. Quantifying eloquent locations for glioblastoma surgery using resection probability maps. J Neurosurg 2021; 134:1091-1101. [PMID: 32244208 DOI: 10.3171/2020.1.jns193049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Decisions in glioblastoma surgery are often guided by presumed eloquence of the tumor location. The authors introduce the "expected residual tumor volume" (eRV) and the "expected resectability index" (eRI) based on previous decisions aggregated in resection probability maps. The diagnostic accuracy of eRV and eRI to predict biopsy decisions, resectability, functional outcome, and survival was determined. METHODS Consecutive patients with first-time glioblastoma surgery in 2012-2013 were included from 12 hospitals. The eRV was calculated from the preoperative MR images of each patient using a resection probability map, and the eRI was derived from the tumor volume. As reference, Sawaya's tumor location eloquence grades (EGs) were classified. Resectability was measured as observed extent of resection (EOR) and residual volume, and functional outcome as change in Karnofsky Performance Scale score. Receiver operating characteristic curves and multivariable logistic regression were applied. RESULTS Of 915 patients, 674 (74%) underwent a resection with a median EOR of 97%, functional improvement in 71 (8%), functional decline in 78 (9%), and median survival of 12.8 months. The eRI and eRV identified biopsies and EORs of at least 80%, 90%, or 98% better than EG. The eRV and eRI predicted observed residual volumes under 10, 5, and 1 ml better than EG. The eRV, eRI, and EG had low diagnostic accuracy for functional outcome changes. Higher eRV and lower eRI were strongly associated with shorter survival, independent of known prognostic factors. CONCLUSIONS The eRV and eRI predict biopsy decisions, resectability, and survival better than eloquence grading and may be useful preoperative indices to support surgical decisions.
Collapse
Affiliation(s)
- Domenique M J Müller
- 1Brain Tumor Center & Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Pierre A Robe
- 2Department of Neurology & Neurosurgery, University Medical Center Utrecht, The Netherlands
| | - Hilko Ardon
- 3Department of Neurosurgery, St. Elisabeth Hospital, Tilburg, The Netherlands
| | - Frederik Barkhof
- 4Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, University Medical Center, Amsterdam, The Netherlands
- 5Institutes of Neurology and Healthcare Engineering, University College London, United Kingdom
| | - Lorenzo Bello
- 6Neurosurgical Oncology Unit, Departments of Oncology and Remato-Oncology, Università degli Studi di Milano, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Mitchel S Berger
- 7Department of Neurological Surgery, University of California, San Francisco, California
| | - Wim Bouwknegt
- 8Department of Neurosurgery, Medical Center Slotervaart, Amsterdam, The Netherlands
| | | | - Marco Conti Nibali
- 6Neurosurgical Oncology Unit, Departments of Oncology and Remato-Oncology, Università degli Studi di Milano, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Roelant S Eijgelaar
- 10Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julia Furtner
- 11Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Austria
| | - Seunggu J Han
- 12Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon
| | - Shawn L Hervey-Jumper
- 7Department of Neurological Surgery, University of California, San Francisco, California
| | - Albert J S Idema
- 13Department of Neurosurgery, Northwest Clinics, Alkmaar, The Netherlands
| | - Barbara Kiesel
- 14Department of Neurosurgery, Medical University Vienna, Austria
| | - Alfred Kloet
- 15Department of Neurosurgery, Medical Center Haaglanden, The Hague, The Netherlands
| | - Jan C De Munck
- 4Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, University Medical Center, Amsterdam, The Netherlands
| | - Marco Rossi
- 6Neurosurgical Oncology Unit, Departments of Oncology and Remato-Oncology, Università degli Studi di Milano, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - Tommaso Sciortino
- 6Neurosurgical Oncology Unit, Departments of Oncology and Remato-Oncology, Università degli Studi di Milano, Humanitas Research Hospital, IRCCS, Milan, Italy
| | - W Peter Vandertop
- 1Brain Tumor Center & Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| | - Martin Visser
- 4Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Vrije Universiteit, University Medical Center, Amsterdam, The Netherlands
| | - Michiel Wagemakers
- 16Department of Neurosurgery, University of Groningen, University Medical Center Groningen, The Netherlands; and
| | - Georg Widhalm
- 14Department of Neurosurgery, Medical University Vienna, Austria
| | - Marnix G Witte
- 10Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aeilko H Zwinderman
- 17Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands
| | - Philip C De Witt Hamer
- 1Brain Tumor Center & Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Advanced magnetic resonance imaging to support clinical drug development for malignant glioma. Drug Discov Today 2020; 26:429-441. [PMID: 33249294 DOI: 10.1016/j.drudis.2020.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
Even though the treatment options and survival of patients with glioblastoma multiforme (GBM), the most common type of malignant glioma, have improved over the past decade, there is still a high unmet medical need to develop novel therapies. Complexity in pathology and therapy require biomarkers to characterize tumors, to define malignant and active areas, to assess disease prognosis, and to quantify and monitor therapy response. While conventional magnetic resonance imaging (MRI) techniques have improved these assessments, limitations remain. In this review, we evaluate the role of various non-invasive biomarkers based on advanced structural and functional MRI techniques in the context of GBM drug development over the past 5 years.
Collapse
|
10
|
Wirsching HG, Roelcke U, Weller J, Hundsberger T, Hottinger AF, von Moos R, Caparrotti F, Conen K, Remonda L, Roth P, Ochsenbein A, Tabatabai G, Weller M. MRI and 18FET-PET Predict Survival Benefit from Bevacizumab Plus Radiotherapy in Patients with Isocitrate Dehydrogenase Wild-type Glioblastoma: Results from the Randomized ARTE Trial. Clin Cancer Res 2020; 27:179-188. [PMID: 32967939 DOI: 10.1158/1078-0432.ccr-20-2096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/09/2020] [Accepted: 09/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To explore a prognostic or predictive role of MRI and O-(2-18F-fluoroethyl)-L-tyrosine (18FET) PET parameters for outcome in the randomized multicenter trial ARTE that compared bevacizumab plus radiotherapy with radiotherpay alone in elderly patients with glioblastoma. PATIENTS AND METHODS Patients with isocitrate dehydrogenase wild-type glioblastoma ages 65 years or older were included in this post hoc analysis. Tumor volumetric and apparent diffusion coefficient (ADC) analyses of serial MRI scans from 67 patients and serial 18FET-PET tumor-to-brain intensity ratios (TBRs) from 31 patients were analyzed blinded for treatment arm and outcome. Multivariate Cox regression analysis was done to account for established prognostic factors and treatment arm. RESULTS Overall survival benefit from bevacizumab plus radiotherapy compared with radiotherapy alone was observed for larger pretreatment MRI contrast-enhancing tumor [HR per cm3 0.94; 95% confidence interval (CI), 0.89-0.99] and for higher ADC (HR 0.18; CI, 0.05-0.66). Higher 18FET-TBR on pretreatment PET scans was associated with inferior overall survival in both arms. Response assessed by standard MRI-based Response Assessment in Neuro-Oncology criteria was associated with overall survival in the bevacizumab plus radiotherapy arm by trend only (P = 0.09). High 18FET-TBR of noncontrast-enhancing tumor portions during bevacizumab therapy was associated with inferior overall survival on multivariate analysis (HR 5.97; CI, 1.16-30.8). CONCLUSIONS Large pretreatment contrast-enhancing tumor mass and higher ADCs identify patients who may experience a survival benefit from bevacizumab plus radiotherapy. Persistent 18FET-PET signal of no longer contrast-enhancing tumor after concomitant bevacizumab plus radiotherapy suggests pseudoresponse and predicts poor outcome.
Collapse
Affiliation(s)
- Hans-Georg Wirsching
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Ulrich Roelcke
- Department of Neurology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Jonathan Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Thomas Hundsberger
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Andreas F Hottinger
- Departments of Clinical Neurosciences and Medical Oncology, University Hospital Lausanne, Lausanne, Switzerland
| | - Roger von Moos
- Department of Medical Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Francesca Caparrotti
- Department of Radiation Oncology, University Hospital Geneva, Geneva, Switzerland
| | - Katrin Conen
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Luca Remonda
- Department of Neuroradiology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Patrick Roth
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Adrian Ochsenbein
- Department of Medical Oncology, Inselspital, Berne University Hospital, University of Berne, Berne, Switzerland
| | - Ghazaleh Tabatabai
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Nell E, Ober C, Rendahl A, Forrest L, Lawrence J. Volumetric tumor response assessment is inefficient without overt clinical benefit compared to conventional, manual veterinary response assessment in canine nasal tumors. Vet Radiol Ultrasound 2020; 61:592-603. [PMID: 32702179 DOI: 10.1111/vru.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/27/2020] [Accepted: 05/07/2020] [Indexed: 02/04/2023] Open
Abstract
Accurate assessment of tumor response to therapy is critical in guiding management of veterinary oncology patients and is most commonly performed using response evaluation criteria in solid tumors criteria. This process can be time consuming and have high intra- and interobserver variability. The primary aim of this serial measurements, secondary analysis study was to compare manual linear tumor response assessment to semi-automated, contoured response assessment in canine nasal tumors. The secondary objective was to determine if tumor measurements or clinical characteristics, such as stage, would correlate to progression-free interval. Three investigators evaluated paired CT scans of skulls of 22 dogs with nasal tumors obtained prior to and following radiation therapy. The automatically generated tumor volumes were not useful for canine nasal tumors in this study, characterized by poor intraobserver agreement between automatically generated contours and hand-adjusted contours. The radiologist's manual linear method of determining response evaluation criteria in solid tumors categorization and tumor volume is significantly faster (P < .0001) but significantly underestimates nasal tumor volume (P < .05) when compared to a contour-based method. Interobserver agreement was greater for volume determination using the contour-based method when compared to response evaluation criteria in solid tumors categorization utilizing the same method. However, response evaluation criteria in solid tumors categorization and percentage volume change were strongly correlated, providing validity to response evaluation criteria in solid tumors as a rapid method of tumor response assessment for canine nasal tumors. No clinical characteristics or tumor measurements were significantly associated with progression-free interval.
Collapse
Affiliation(s)
- Esther Nell
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Christopher Ober
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Lisa Forrest
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
12
|
Ellingson BM, Yao J, Raymond C, Nathanson DA, Chakhoyan A, Simpson J, Garner JS, Olivero AG, Mueller LU, Rodon J, Gerstner E, Cloughesy TF, Wen PY. Multiparametric MR-PET Imaging Predicts Pharmacokinetics and Clinical Response to GDC-0084 in Patients with Recurrent High-Grade Glioma. Clin Cancer Res 2020; 26:3135-3144. [PMID: 32269051 DOI: 10.1158/1078-0432.ccr-19-3817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/14/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE GDC-0084 is an oral, brain-penetrant small-molecule inhibitor of PI3K and mTOR. Because these two targets alter tumor vascularity and metabolism, respectively, we hypothesized multiparametric MR-PET could be used to quantify the response, estimate pharmacokinetic (PK) parameters, and predict progression-free survival (PFS) in patients with recurrent malignant gliomas. PATIENTS AND METHODS Multiparametric advanced MR-PET imaging was performed to evaluate physiologic response in a first-in-man, multicenter, phase I, dose-escalation study of GDC-0084 (NCT01547546) in 47 patients with recurrent malignant glioma. RESULTS Measured maximum concentration (C max) was associated with a decrease in enhancing tumor volume (P = 0.0287) and an increase in fractional anisotropy (FA; P = 0.0418). Posttreatment tumor volume, 18F-FDG uptake, Ktrans, and relative cerebral blood volume (rCBV) were all correlated with C max. A linear combination of change in 18F-FDG PET uptake, apparent diffusion coefficient (ADC), FA, Ktrans, vp, and rCBV was able to estimate both C max (R2 = 0.4113; P < 0.0001) and drug exposure (AUC; R2 = 0.3481; P < 0.0001). Using this composite multiparametric MR-PET imaging response biomarker to predict PK, patients with an estimated C max > 0.1 μmol/L and AUC > 1.25 μmol/L*hour demonstrated significantly longer PFS compared with patients with a lower estimated concentration and exposure (P = 0.0039 and P = 0.0296, respectively). CONCLUSIONS Results from this study suggest composite biomarkers created from multiparametric MR-PET imaging targeting metabolic and/or physiologic processes specific to the drug mechanism of action may be useful for subsequent evaluation of treatment efficacy for larger phase II-III studies.
Collapse
Affiliation(s)
- Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California. .,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, California
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jeremy Simpson
- Kazia Therapeutics Limited, Sydney, New South Wales, Australia
| | - James S Garner
- Kazia Therapeutics Limited, Sydney, New South Wales, Australia
| | | | | | - Jordi Rodon
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Elizabeth Gerstner
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, University of California, Los Angeles, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Brenner AJ, Peters KB, Vredenburgh J, Bokstein F, Blumenthal DT, Yust-Katz S, Peretz I, Oberman B, Freedman LS, Ellingson BM, Cloughesy TF, Sher N, Cohen YC, Lowenton-Spier N, Rachmilewitz Minei T, Yakov N, Mendel I, Breitbart E, Wen PY. Safety and efficacy of VB-111, an anticancer gene therapy, in patients with recurrent glioblastoma: results of a phase I/II study. Neuro Oncol 2020; 22:694-704. [PMID: 31844886 PMCID: PMC7229257 DOI: 10.1093/neuonc/noz231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND VB-111 is a non-replicating adenovirus carrying a Fas-chimera transgene, leading to targeted apoptosis of tumor vascular endothelium and induction of a tumor-specific immune response. This phase I/II study evaluated the safety, tolerability, and efficacy of VB-111 with and without bevacizumab in recurrent glioblastoma (rGBM). METHODS Patients with rGBM (n = 72) received VB-111 in 4 treatment groups: subtherapeutic (VB-111 dose escalation), limited exposure (LE; VB-111 monotherapy until progression), primed combination (VB-111 monotherapy continued upon progression with combination of bevacizumab), and unprimed combination (upfront combination of VB-111 and bevacizumab). The primary endpoint was median overall survival (OS). Secondary endpoints were safety, overall response rate, and progression-free survival (PFS). RESULTS VB-111 was well tolerated. The most common adverse event was transient mild-moderate fever. Median OS time was significantly longer in the primed combination group compared with both LE (414 vs 223 days; hazard ratio [HR], 0.48; P = 0.043) and unprimed combination (414 vs 141.5 days; HR, 0.24; P = 0.0056). Patients in the combination phase of the primed combination group had a median PFS time of 90 days compared with 60 in the LE group (HR, 0.36; P = 0.032), and 63 in the unprimed combination group (P = 0.72). Radiographic responders to VB-111 exhibited characteristic, expansive areas of necrosis in the areas of initial enhancing disease. CONCLUSIONS Patients with rGBM who were primed with VB-111 monotherapy that continued after progression with the addition of bevacizumab showed significant survival and PFS advantage, as well as specific imaging characteristics related to VB-111 mechanism of action. These results warrant further assessment in a randomized controlled study.
Collapse
Affiliation(s)
- Andrew J Brenner
- University of Texas Health San Antonio Mays Cancer Center, San Antonio, Texas, USA
| | - Katherine B Peters
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
| | - James Vredenburgh
- Saint Francis Hospital and Medical Center, Hartford, Connecticut, USA
| | - Felix Bokstein
- Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Deborah T Blumenthal
- Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shlomit Yust-Katz
- Neuro-Oncology Unit, Davidoff Cancer Center at Rabin Medical Center, Petach Tikvah, Israel and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Peretz
- Neuro-Oncology Unit, Davidoff Cancer Center at Rabin Medical Center, Petach Tikvah, Israel and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bernice Oberman
- Biostatistics and Biomathematics Unit, Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Laurence S Freedman
- Biostatistics and Biomathematics Unit, Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Timothy F Cloughesy
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, California, USA
| | | | | | | | | | | | | | | | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Bagley SJ, Nabavizadeh SA, Mays JJ, Till JE, Ware JB, Levy S, Sarchiapone W, Hussain J, Prior T, Guiry S, Christensen T, Yee SS, Nasrallah MP, Morrissette JJD, Binder ZA, O'Rourke DM, Cucchiara AJ, Brem S, Desai AS, Carpenter EL. Clinical Utility of Plasma Cell-Free DNA in Adult Patients with Newly Diagnosed Glioblastoma: A Pilot Prospective Study. Clin Cancer Res 2020; 26:397-407. [PMID: 31666247 PMCID: PMC6980766 DOI: 10.1158/1078-0432.ccr-19-2533] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/19/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The clinical utility of plasma cell-free DNA (cfDNA) has not been assessed prospectively in patients with glioblastoma (GBM). We aimed to determine the prognostic impact of plasma cfDNA in GBM, as well as its role as a surrogate of tumor burden and substrate for next-generation sequencing (NGS). EXPERIMENTAL DESIGN We conducted a prospective cohort study of 42 patients with newly diagnosed GBM. Plasma cfDNA was quantified at baseline prior to initial tumor resection and longitudinally during chemoradiotherapy. Plasma cfDNA was assessed for its association with progression-free survival (PFS) and overall survival (OS), correlated with radiographic tumor burden, and subjected to a targeted NGS panel. RESULTS Prior to initial surgery, GBM patients had higher plasma cfDNA concentration than age-matched healthy controls (mean 13.4 vs. 6.7 ng/mL, P < 0.001). Plasma cfDNA concentration was correlated with radiographic tumor burden on patients' first post-radiation magnetic resonance imaging scan (ρ = 0.77, P = 0.003) and tended to rise prior to or concurrently with radiographic tumor progression. Preoperative plasma cfDNA concentration above the mean (>13.4 ng/mL) was associated with inferior PFS (median 4.9 vs. 9.5 months, P = 0.038). Detection of ≥1 somatic mutation in plasma cfDNA occurred in 55% of patients and was associated with nonstatistically significant decreases in PFS (median 6.0 vs. 8.7 months, P = 0.093) and OS (median 5.5 vs. 9.2 months, P = 0.053). CONCLUSIONS Plasma cfDNA may be an effective prognostic tool and surrogate of tumor burden in newly diagnosed GBM. Detection of somatic alterations in plasma is feasible when samples are obtained prior to initial surgical resection.
Collapse
Affiliation(s)
- Stephen J Bagley
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - S Ali Nabavizadeh
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jazmine J Mays
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacob E Till
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey B Ware
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott Levy
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Whitney Sarchiapone
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jasmin Hussain
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy Prior
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Samantha Guiry
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa Christensen
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephanie S Yee
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - MacLean P Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer J D Morrissette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Penn Center for Personalized Diagnostics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zev A Binder
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Donald M O'Rourke
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew J Cucchiara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven Brem
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arati S Desai
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erica L Carpenter
- Division of Hematology/Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Wang H, Yu J, Wang X, Zhang Y. The RNA helicase DHX33 is required for cancer cell proliferation in human glioblastoma and confers resistance to PI3K/mTOR inhibition. Cell Signal 2018; 54:170-178. [PMID: 30552990 DOI: 10.1016/j.cellsig.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/28/2022]
Abstract
Human Glioblastoma is one deadly disease; the median survival time is reported to be 13.9 months after treatment. In the present study, we discovered that DHX33 is highly expressed in 84% of all Glioblastoma multiforme (GBM). Knockdown of DHX33 led to significant reduced proliferation and migration in glioblastoma cells in vitro and in vivo. Mechanistically, DHX33 regulated a set of critical genes involved in cell cycle and cell migration to promote glioblastoma development. Additionally, DHX33 was found to be induced by inhibitors of PI3K and mTOR whose activation has been detected in 50% of glioblastoma. Overexpression of wild type DHX33 protein, but not the helicase dead mutant, confers resistance to mTOR inhibitors in glioblastoma cells. DHX33 probably functions as a critical regulator to promote GBM development. Our results highlight its therapeutic potential in treating GBM.
Collapse
Affiliation(s)
- Hongzhong Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Junyan Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xingshun Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China; Southern University of Science and Technology - University of Macau Joint Ph.D Program, Shenzhen, Guangdong, China
| | - Yandong Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
Kydd J, Jadia R, Rai P. Co-Administered Polymeric Nano-Antidotes for Improved Photo-Triggered Response in Glioblastoma. Pharmaceutics 2018; 10:pharmaceutics10040226. [PMID: 30423822 PMCID: PMC6321570 DOI: 10.3390/pharmaceutics10040226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Polymer-based nanoparticles (NPs) are useful vehicles in treating glioblastoma because of their favorable characteristics such as small size and ability to cross the blood–brain barrier, as well as reduced immunogenicity and side effects. The use of a photosensitizer drug such as Verteporfin (BPD), in combination with a pan-vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitor (TKI), Cediranib (CED), encapsulated in NPs will provide the medical field with new research on the possible ways to treat glioblastoma. Concomitant administration of BPD and CED NPs have the potential to induce dual photocytotoxic and cytostatic effects in U87 MG cells by (1) remotely triggering BPD through photodynamic therapy by irradiating laser at 690 nm and subsequent production of reactive oxygen species and (2) inhibiting cell proliferation by VEGFR interference and growth factor signaling mechanisms which may allow for longer progression free survival in patients and fewer systemic side effects. The specific aims of this research were to synthesize, characterize and assess cell viability and drug interactions for polyethylene-glycolated (PEGylated) polymeric based CED and BPD NPs which were less than 100 nm in size for enhanced permeation and retention effects. Synergistic effects were found using the co-administered therapies compared to the individual drugs. The major goal of this research was to investigate a new combination of photodynamic-chemotherapy drugs in nano-formulation for increased efficacy in glioblastoma treatment at reduced concentrations of therapeutics for enhanced drug delivery in vitro.
Collapse
Affiliation(s)
- Janel Kydd
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| | - Rahul Jadia
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| | - Prakash Rai
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
- Department of Chemical Engineering, University of Massachusetts Lowell, 1 University Ave, Lowell, MA 01854, USA.
| |
Collapse
|