1
|
Galimberti C, Piepoli T, Letari O, Artusi R, Persiani S, Caselli G, Rovati LC. CR13626: a novel oral brain penetrant tyrosine kinase inhibitor that reduces tumor growth and prolongs survival in a mouse model of glioblastoma. Am J Cancer Res 2021; 11:3558-3574. [PMID: 34354860 PMCID: PMC8332859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain cancer. Despite aggressive treatments currently there is no cure for GBM. Many challenges should be considered for the development of new therapeutical agents for glioblastoma, including appropriate target selectivity and pharmacokinetics. Several mutations and alterations of key cellular pathways including tyrosine kinases (TKs) are involved in malignant transformation and tumor progression. Thus, the targeting of multiple pathways and the development of innovative combination drug regimens is expected to yield improved therapies. Moreover, the abilities to cross the blood-brain barrier (BBB) reaching effective concentrations in brain and to remain into this tissue avoiding the effects of efflux transporters are also critical issues in the development of new therapeutics for GBM. CR13626 is a novel brain penetrant small molecule able to potently inhibit in vitro the activity of EGFR, VEGFR2 (aka KDR), Fyn, Yes, Lck, HGK (aka MAP4K4) and RET kinases relevant for GBM development. CR13626 shows good oral bioavailability (72%) and relevant brain penetration (brain/plasma ratio of 1.4). In an orthotopic xenograft glioblastoma mouse model, oral treatment with CR13626 results in a time-dependent reduction of tumor growth, leading to a significant increase of animal survival. The unique properties of CR13626 warrant its further investigation as a potential new drug candidate in glioblastoma.
Collapse
Affiliation(s)
- Chiara Galimberti
- Rottapharm Biotech SrlMonza, Italy
- PhD Program in Neuroscience, University of Milano - BicoccaMonza, Italy
| | | | | | | | | | | | | |
Collapse
|
2
|
Zanella S, Bocchinfuso G, De Zotti M, Arosio D, Marino F, Raniolo S, Pignataro L, Sacco G, Palleschi A, Siano AS, Piarulli U, Belvisi L, Formaggio F, Gennari C, Stella L. Rational Design of Antiangiogenic Helical Oligopeptides Targeting the Vascular Endothelial Growth Factor Receptors. Front Chem 2019; 7:170. [PMID: 30984741 PMCID: PMC6449863 DOI: 10.3389/fchem.2019.00170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/05/2019] [Indexed: 01/25/2023] Open
Abstract
Tumor angiogenesis, essential for cancer development, is regulated mainly by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), which are overexpressed in cancer cells. Therefore, the VEGF/VEGFR interaction represents a promising pharmaceutical target to fight cancer progression. The VEGF surface interacting with VEGFRs comprises a short α-helix. In this work, helical oligopeptides mimicking the VEGF-C helix were rationally designed based on structural analyses and computational studies. The helical conformation was stabilized by optimizing intramolecular interactions and by introducing helix-inducing Cα,α-disubstituted amino acids. The conformational features of the synthetic peptides were characterized by circular dichroism and nuclear magnetic resonance, and their receptor binding properties and antiangiogenic activity were determined. The best hits exhibited antiangiogenic activity in vitro at nanomolar concentrations and were resistant to proteolytic degradation.
Collapse
Affiliation(s)
- Simone Zanella
- Department of Chemistry, University of Milan, Milan, Italy
| | - Gianfranco Bocchinfuso
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Marta De Zotti
- Padova Unit, Department of Chemistry, Institute of Biomolecular Chemistry, CNR, University of Padova, Padova, Italy
| | - Daniela Arosio
- National Research Council, Institute of Molecular Science and Technologies, Milan, Italy
| | - Franca Marino
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Stefano Raniolo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Luca Pignataro
- Department of Chemistry, University of Milan, Milan, Italy
| | - Giovanni Sacco
- Department of Chemistry, University of Milan, Milan, Italy
| | - Antonio Palleschi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Umberto Piarulli
- Center for Research in Medical Pharmacology, University of Insubria, Varese, Italy
| | - Laura Belvisi
- Department of Chemistry, University of Milan, Milan, Italy.,National Research Council, Institute of Molecular Science and Technologies, Milan, Italy
| | - Fernando Formaggio
- Padova Unit, Department of Chemistry, Institute of Biomolecular Chemistry, CNR, University of Padova, Padova, Italy
| | - Cesare Gennari
- Department of Chemistry, University of Milan, Milan, Italy.,National Research Council, Institute of Molecular Science and Technologies, Milan, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|