1
|
Shaaban SG, LeCompte MC, Kleinberg LR, Redmond KJ, Page BR. Recognition and Management of the Long-term Effects of Cranial Radiation. Curr Treat Options Oncol 2023; 24:880-891. [PMID: 37145381 DOI: 10.1007/s11864-023-01078-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
OPINION STATEMENT Cranial radiation is ubiquitous in the treatment of primary malignant and benign brain tumors as well as brain metastases. Improvement in radiotherapy targeting and delivery has led to prolongation of survival outcomes. As long-term survivorship improves, we also focus on prevention of permanent side effects of radiation and mitigating the impact when they do occur. Such chronic treatment-related morbidity is a major concern with significant negative impact on patient's and caregiver's respective quality of life. The actual mechanisms responsible for radiation-induced brain injury remain incompletely understood. Multiple interventions have been introduced to potentially prevent, minimize, or reverse the cognitive deterioration. Hippocampal-sparing intensity modulated radiotherapy and memantine represent effective interventions to avoid damage to regions of adult neurogenesis. Radiation necrosis frequently develops in the high radiation dose region encompassing the tumor and surrounding normal tissue. The radiographic findings in addition to the clinical course of the patients' symptoms are taken into consideration to differentiate between tissue necrosis and tumor recurrence. Radiation-induced neuroendocrine dysfunction becomes more pronounced when the hypothalamo-pituitary (HP) axis is included in the radiation treatment field. Baseline and post-treatment evaluation of hormonal profile is warranted. Radiation-induced injury of the cataract and optic system can develop when these structures receive an amount of radiation that exceeds their tolerance. Special attention should always be paid to avoid irradiation of these sensitive structures, if possible, or minimize their dose to the lowest limit.
Collapse
Affiliation(s)
- Sherif G Shaaban
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Michael C LeCompte
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Kristin J Redmond
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins Medicine, 401 North Broadway, Suite 1440, Baltimore, MD, 21287, USA
| | - Brandi R Page
- Department of Radiation Oncology-National Capitol Region, Johns Hopkins Medicine, 6420 Rockledge Drive Suite 1200, Bethesda, MD, 20817, USA.
| |
Collapse
|
2
|
Dosimetric Impact of Lesion Number, Size, and Volume on Mean Brain Dose with Stereotactic Radiosurgery for Multiple Brain Metastases. Cancers (Basel) 2023; 15:cancers15030780. [PMID: 36765738 PMCID: PMC9913147 DOI: 10.3390/cancers15030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
We evaluated the effect of lesion number and volume for brain metastasis treated with SRS using GammaKnife® ICON™ (GK) and CyberKnife® M6™ (CK). Four sets of lesion sizes (<5 mm, 5-10 mm, >10-15 mm, and >15 mm) were contoured and prescribed a dose of 20 Gy/1 fraction. The number of lesions was increased until a threshold mean brain dose of 8 Gy was reached; then individually optimized to achieve maximum conformity. Across GK plans, mean brain dose was linearly proportional to the number of lesions and total GTV for all sizes. The numbers of lesions needed to reach this threshold for GK were 177, 57, 29, and 10 for each size group, respectively; corresponding total GTVs were 3.62 cc, 20.37 cc, 30.25 cc, and 57.96 cc, respectively. For CK, the threshold numbers of lesions were 135, 35, 18, and 8, with corresponding total GTVs of 2.32 cc, 12.09 cc, 18.24 cc, and 41.52 cc respectively. Mean brain dose increased linearly with number of lesions and total GTV while V8 Gy, V10 Gy, and V12 Gy showed quadratic correlations to the number of lesions and total GTV. Modern dedicated intracranial SRS systems allow for treatment of numerous brain metastases especially for ≤10 mm; clinical evidence to support this practice is critical to expansion in the clinic.
Collapse
|
3
|
Dose-dependent early white matter alterations in patients with brain metastases after radiotherapy. Neuroradiology 2023; 65:167-176. [PMID: 35864179 DOI: 10.1007/s00234-022-03020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/13/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Previous diffusion tensor imaging (DTI) studies have mainly focused on dose-dependent white matter (WM) alterations 1 month to 1 year after radiation therapy (RT) with a tract-average method. However, WM alterations immediately after RT are subtle, resulting in early WM alterations that cannot be detected by tract-average methods. Therefore, we performed a study with an along-tract method in patients with brain metastases to explore the early dose-response pattern of WM alterations after RT. METHODS Sixteen patients with brain metastases underwent DTI before and 1-3 days after brain RT. DTI metrics, such as fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD), were calculated. Along-tract statistics were then used to resample WM fibre streamlines and generate a WM skeleton fibre tract. DTI metric alterations (post_RT-pre_RT DTI metrics) and the planned doses (max or mean doses) were mapped to 18 WM tracts. A linear fixed model was performed to analyse the main effect of dose on DTI metric alterations. RESULTS AD alterations in the left hemispheric uncinated fasciculus (UNC_L) were associated with max doses, in which decreased AD alterations were associated with higher doses. CONCLUSION Our findings may provide pathological insight into early dose-dependent WM alterations and may contribute to the development of max dose-constrained RT techniques to protect brain microstructure in the UNC_L.
Collapse
|
4
|
Aizer AA, Lamba N, Ahluwalia MS, Aldape K, Boire A, Brastianos PK, Brown PD, Camidge DR, Chiang VL, Davies MA, Hu LS, Huang RY, Kaufmann T, Kumthekar P, Lam K, Lee EQ, Lin NU, Mehta M, Parsons M, Reardon DA, Sheehan J, Soffietti R, Tawbi H, Weller M, Wen PY. Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro Oncol 2022; 24:1613-1646. [PMID: 35762249 PMCID: PMC9527527 DOI: 10.1093/neuonc/noac118] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the importance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology (SNO), we review the landscape of brain metastases with particular attention to management approaches and ongoing efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of authors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress in the understanding and management of patients with brain metastases, and highlight key areas in need of further exploration that will lead to dedicated trials and other research investigations designed to advance the field.
Collapse
Affiliation(s)
- Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nayan Lamba
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | | | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla K Brastianos
- Departments of Neuro-Oncology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - D Ross Camidge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Veronica L Chiang
- Departments of Neurosurgery and Radiation Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, Arizona, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Priya Kumthekar
- Department of Neurology at The Feinberg School of Medicine at Northwestern University and The Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Keng Lam
- Department of Neurology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, California, USA
| | - Eudocia Q Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Michael Parsons
- Departments of Oncology and Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Singh K, Saxena S, Khosla AA, McDermott MW, Kotecha RR, Ahluwalia MS. Update on the Management of Brain Metastasis. Neurotherapeutics 2022; 19:1772-1781. [PMID: 36422836 PMCID: PMC9723062 DOI: 10.1007/s13311-022-01312-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Brain metastases occur in almost one-third of adult patients with solid tumor malignancies and lead to considerable patient morbidity and mortality. The rising incidence of brain metastases has been ascribed to the development of better imaging and screening techniques and the formulation of better systemic therapies. Until recently, the multimodal management of brain metastases focused primarily on the utilization of neurosurgical techniques, with varying combinations of whole-brain radiation therapy and stereotactic radio-surgical procedures. Over the past 2 decades, in particular, the increment in knowledge pertaining to molecular genetics and the pathogenesis of brain metastases has led to significant developments in targeted therapies and immunotherapies. This review article highlights the recent updates in the management of brain metastases with an emphasis on novel systemic therapies.
Collapse
Affiliation(s)
- Karanvir Singh
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Shreya Saxena
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Atulya A Khosla
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Michael W McDermott
- Division of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Rupesh R Kotecha
- Division of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Manmeet S Ahluwalia
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
6
|
Westover KD, Mendel JT, Dan T, Kumar K, Gao A, Pulipparacharuv S, Iyengar P, Nedzi L, Hannan R, Anderson J, Choe KS, Jiang W, Abdulrahman R, Rahimi A, Folkert M, Laine A, Presley C, Cullum CM, Choy H, Ahn C, Timmerman R. Phase II trial of hippocampal-sparing whole brain irradiation with simultaneous integrated boost for metastatic cancer. Neuro Oncol 2021; 22:1831-1839. [PMID: 32347302 DOI: 10.1093/neuonc/noaa092] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Advanced radiotherapeutic treatment techniques limit the cognitive morbidity associated with whole-brain radiotherapy (WBRT) for brain metastasis through avoidance of hippocampal structures. However, achieving durable intracranial control remains challenging. METHODS We conducted a single-institution single-arm phase II trial of hippocampal-sparing whole brain irradiation with simultaneous integrated boost (HSIB-WBRT) to metastatic deposits in adult patients with brain metastasis. Radiation therapy consisted of intensity-modulated radiation therapy delivering 20 Gy in 10 fractions over 2-2.5 weeks to the whole brain with a simultaneous integrated boost of 40 Gy in 10 fractions to metastatic lesions. Hippocampal regions were limited to 16 Gy. Cognitive performance and cancer outcomes were evaluated. RESULTS A total of 50 patients, median age 60 years (interquartile range, 54-65), were enrolled. Median progression-free survival was 2.9 months (95% CI: 1.5-4.0) and overall survival was 9 months. As expected, poor survival and end-of-life considerations resulted in a high exclusion rate from cognitive testing. Nevertheless, mean decline in Hopkins Verbal Learning Test-Revised delayed recall (HVLT-R DR) at 3 months after HSIB-WBRT was only 10.6% (95% CI: -36.5‒15.3%). Cumulative incidence of local and intracranial failure with death as a competing risk was 8.8% (95% CI: 2.7‒19.6%) and 21.3% (95% CI: 10.7‒34.2%) at 1 year, respectively. Three grade 3 toxicities consisting of nausea, vomiting, and necrosis or headache were observed in 3 patients. Scores on the Multidimensional Fatigue Inventory 20 remained stable for evaluable patients at 3 months. CONCLUSIONS HVLT-R DR after HSIB-WBRT was significantly improved compared with historical outcomes in patients treated with traditional WBRT, while achieving intracranial control similar to patients treated with WBRT plus stereotactic radiosurgery (SRS). This technique can be considered in select patients with multiple brain metastases who cannot otherwise receive SRS.
Collapse
Affiliation(s)
- Kenneth D Westover
- Department of Radiation Oncology, Fairfax, Virginia.,Department of Biochemistry, Fairfax, Virginia
| | | | - Tu Dan
- Department of Radiation Oncology, Fairfax, Virginia
| | - Kiran Kumar
- Department of Radiation Oncology, Fairfax, Virginia
| | - Ang Gao
- Department of Radiation Oncology, Fairfax, Virginia.,Department of Clinical Science, Fairfax, Virginia
| | | | | | - Lucien Nedzi
- Department of Radiation Oncology, Fairfax, Virginia
| | | | | | - Kevin S Choe
- The University of Texas Southwestern Medical Center, Dallas, Texas; Inova Schar Cancer Institute, Fairfax, Virginia (K.S.C.)
| | - Wen Jiang
- Department of Radiation Oncology, Fairfax, Virginia
| | | | - Asal Rahimi
- Department of Radiation Oncology, Fairfax, Virginia
| | | | - Aaron Laine
- Department of Radiation Oncology, Fairfax, Virginia
| | - Chase Presley
- Department of Radiation Oncology, Fairfax, Virginia.,Department of Psychiatry, Fairfax, Virginia
| | | | - Hak Choy
- Department of Radiation Oncology, Fairfax, Virginia
| | - Chul Ahn
- Department of Clinical Science, Fairfax, Virginia
| | | |
Collapse
|
7
|
Acharya S, Wu S, Ashford JM, Tinkle CL, Lucas JT, Qaddoumi I, Gajjar A, Krasin MJ, Conklin HM, Merchant TE. Association between hippocampal dose and memory in survivors of childhood or adolescent low-grade glioma: a 10-year neurocognitive longitudinal study. Neuro Oncol 2020; 21:1175-1183. [PMID: 30977510 PMCID: PMC7594551 DOI: 10.1093/neuonc/noz068] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Hippocampal avoidance has been suggested as a strategy to reduce short-term memory decline in adults receiving whole-brain radiation therapy (RT). The purpose of this study was to determine whether the hippocampal dose in children and adolescents undergoing RT for low-grade glioma was associated with memory, as measured by verbal recall. Methods Eighty patients aged at least 6 years but less than 21 years with low-grade glioma were treated with RT to 54 Gy on a phase II protocol. Patients underwent age-appropriate cognitive testing at baseline, 6 months posttreatment, yearly through 5 years posttreatment, year 7 or 8, and year 10 posttreatment. Random coefficient models were used to estimate the longitudinal trends in cognitive assessment scores. Results Median neurocognitive follow-up was 9.8 years. There was a significant decline in short-delay recall (slope = −0.01 standard deviation [SD]/year, P < 0.001), total recall (slope = −0.09 SD/y, P = 0.005), and long-delay recall (slope = −0.01 SD/y, P = 0.002). On multivariate regression, after accounting for hydrocephalus, decline in short-delay recall was associated with the volume of right (slope = −0.001 SD/y, P = 0.019) or left hippocampus (slope = −0.001 SD/y, P = 0.025) receiving 40 Gy (V40 Gy). On univariate regression, decline in total recall was only associated with right hippocampal dosimetry (V40 Gy slope = −0.002, P = 0.025). In children <12 years, on univariate regression, decline in long-delay recall was only associated with right (V40 Gy slope = −0.002, P = 0.013) and left (V40 Gy slope = −0.002, P = 0.014) hippocampal dosimetry. Conclusion In this 10-year longitudinal study, greater hippocampal dose was associated with a greater decline in delayed recall. Such findings might be informative for radiation therapy planning, warranting prospective evaluation.
Collapse
Affiliation(s)
- Sahaja Acharya
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Shengjie Wu
- Department of Biostatistics, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Jason M Ashford
- Department of Psychology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Christopher L Tinkle
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - John T Lucas
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Ibrahim Qaddoumi
- Division of Neuro-Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Amar Gajjar
- Division of Neuro-Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Matthew J Krasin
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather M Conklin
- Department of Psychology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Thomas E Merchant
- Department of Radiation Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
8
|
Abi Jaoude J, Adib E, Kayali M, Khabsa J, Akl EA, Zeidan Y. Prophylactic cranial irradiation for patients with limited-stage small cell lung cancer. Hippokratia 2020. [DOI: 10.1002/14651858.cd013701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Elio Adib
- Faculty of Medicine; American University of Beirut; Beirut Lebanon
| | - Majd Kayali
- Department of Radiation Oncology; American University of Beirut Medical Center; Beirut Lebanon
| | - Joanne Khabsa
- Clinical Research Institute; American University of Beirut Medical Center; Beirut Lebanon
| | - Elie A Akl
- Department of Internal Medicine; American University of Beirut Medical Center; Beirut Lebanon
| | - Youssef Zeidan
- Department of Radiation Oncology; American University of Beirut Medical Center; Beirut Lebanon
| |
Collapse
|
9
|
Porter E, Fuentes P, Siddiqui Z, Thompson A, Levitin R, Solis D, Myziuk N, Guerrero T. Hippocampus segmentation on noncontrast CT using deep learning. Med Phys 2020; 47:2950-2961. [DOI: 10.1002/mp.14098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Evan Porter
- Department of Medical Physics Wayne State University Detroit MI USA
- Beaumont Artificial Intelligence Research Laboratory Beaumont Health Systems Royal Oak MI USA
- Department of Radiation Oncology Beaumont Health Systems Royal Oak MI USA
| | - Patricia Fuentes
- Beaumont Artificial Intelligence Research Laboratory Beaumont Health Systems Royal Oak MI USA
- Oakland University William Beaumont School of Medicine Oakland University Rochester MI USA
| | - Zaid Siddiqui
- Beaumont Artificial Intelligence Research Laboratory Beaumont Health Systems Royal Oak MI USA
- Department of Radiation Oncology Beaumont Health Systems Royal Oak MI USA
| | - Andrew Thompson
- Beaumont Artificial Intelligence Research Laboratory Beaumont Health Systems Royal Oak MI USA
- Department of Radiation Oncology Beaumont Health Systems Royal Oak MI USA
| | - Ronald Levitin
- Beaumont Artificial Intelligence Research Laboratory Beaumont Health Systems Royal Oak MI USA
- Department of Radiation Oncology Beaumont Health Systems Royal Oak MI USA
| | - David Solis
- Beaumont Artificial Intelligence Research Laboratory Beaumont Health Systems Royal Oak MI USA
- Department of Radiation Oncology Beaumont Health Systems Royal Oak MI USA
| | - Nick Myziuk
- Beaumont Artificial Intelligence Research Laboratory Beaumont Health Systems Royal Oak MI USA
- Department of Radiation Oncology Beaumont Health Systems Royal Oak MI USA
| | - Thomas Guerrero
- Beaumont Artificial Intelligence Research Laboratory Beaumont Health Systems Royal Oak MI USA
- Department of Radiation Oncology Beaumont Health Systems Royal Oak MI USA
- Oakland University William Beaumont School of Medicine Oakland University Rochester MI USA
| |
Collapse
|
10
|
Susko MS, Garcia MA, Ma L, Nakamura JL, Raleigh DR, Fogh S, Theodosopoulos P, McDermott M, Sneed PK, Braunstein SE. Stereotactic Radiosurgery to More Than 10 Brain Metastases: Evidence to Support the Role of Radiosurgery for Ideal Hippocampal Sparing in the Treatment of Multiple Brain Metastases. World Neurosurg 2019; 135:e174-e180. [PMID: 31785436 DOI: 10.1016/j.wneu.2019.11.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Brain metastases are a common occurrence, with literature supporting the treatment of a limited number of brain metastases with stereotactic radiosurgery (SRS), as opposed to whole brain radiotherapy (WBRT). Less well understood is the role of SRS in patients with ≥10 brain metastases. METHODS Patients treated with SRS to ≥10 brain metastases without concurrent WBRT between March 1999 and December 2016 were reviewed. Analysis was performed for overall survival, treated lesion freedom from progression (FFP), freedom from new metastases (FFNMs), and adverse radiation effect. Hippocampal volumes were retrospectively generated in patients treated with up-front SRS for evaluation of dose volume metrics. RESULTS A total of 143 patients were identified with 75 patients having up-front SRS and 68 patients being treated as salvage therapy after prior WBRT. The median number of lesions per patient was 13 (interquartile range [IQR], 11-17). Median total volume of treatment was 4.1 cm3 (IQR, 2.0-9.9 cm3). The median 12-month FFP for up-front and salvage treatment was 96.8% (95% confidence interval [CI], 95.5-98.1) and 83.6% (95% CI, 79.9-87.5), respectively (P < 0.001). Twelve-month FFNMs for up-front and salvage SRS was 18.8% (95% CI, 10.9-32.3) versus 19.2% (95% CI, 9.7-37.8), respectively (P = 0.90). The mean hippocampal dose was 150 cGy (IQR, 100-202 cGy). CONCLUSIONS Excellent rates of local control can be achieved when treating patients with >10 intracranial metastases either in the up-front or salvage setting. Hippocampal sparing is readily achievable with expected high rates of new metastatic lesions in treated patients.
Collapse
Affiliation(s)
- Matthew S Susko
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Michael A Garcia
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Lijun Ma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Jean L Nakamura
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Shannon Fogh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Philip Theodosopoulos
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Michael McDermott
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Penny K Sneed
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
11
|
Lawrie TA, Gillespie D, Dowswell T, Evans J, Erridge S, Vale L, Kernohan A, Grant R. Long-term neurocognitive and other side effects of radiotherapy, with or without chemotherapy, for glioma. Cochrane Database Syst Rev 2019; 8:CD013047. [PMID: 31425631 PMCID: PMC6699681 DOI: 10.1002/14651858.cd013047.pub2] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gliomas are brain tumours arising from glial cells with an annual incidence of 4 to 11 people per 100,000. In this review we focus on gliomas with low aggressive potential in the short term, i.e. low-grade gliomas. Most people with low-grade gliomas are treated with surgery and may receive radiotherapy thereafter. However, there is concern about the possible long-term effects of radiotherapy, especially on neurocognitive functioning. OBJECTIVES To evaluate the long-term neurocognitive and other side effects of radiotherapy (with or without chemotherapy) compared with no radiotherapy, or different types of radiotherapy, among people with glioma (where 'long-term' is defined as at least two years after diagnosis); and to write a brief economic commentary. SEARCH METHODS We searched the following databases on 16 February 2018 and updated the search on 14 November 2018: Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 11) in the Cochrane Library; MEDLINE via Ovid; and Embase via Ovid. We also searched clinical trial registries and relevant conference proceedings from 2014 to 2018 to identify ongoing and unpublished studies. SELECTION CRITERIA Randomised and non-randomised trials, and controlled before-and-after studies (CBAS). Participants were aged 16 years and older with cerebral glioma other than glioblastoma. We included studies where patients in at least one treatment arm received radiotherapy, with or without chemotherapy, and where neurocognitive outcomes were assessed two or more years after treatment. DATA COLLECTION AND ANALYSIS Two review authors independently extracted data and assessed risk of bias. We assessed the certainty of findings using the GRADE approach. MAIN RESULTS The review includes nine studies: seven studies were of low-grade glioma and two were of grade 3 glioma. Altogether 2406 participants were involved but there was high sample attrition and outcome data were available for a minority of people at final study assessments. In seven of the nine studies, participants were recruited to randomised controlled trials (RCTs) in which longer-term follow-up was undertaken in a subset of people that had survived without disease progression. There was moderate to high risk of bias in studies due to lack of blinding and high attrition, and in two observational studies there was high risk of selection bias. Paucity of data and risk of bias meant that evidence was of low to very low certainty. We were unable to combine results in meta-analysis due to diversity in interventions and outcomes.The studies examined the following five comparisons.Radiotherapy versus no adjuvant treatmentTwo observational studies contributed data. At the 12-year follow-up in one study, the risk of cognitive impairment (defined as cognitive disability deficits in at least five of 18 neuropsychological tests) was greater in the radiotherapy group (risk ratio (RR) 1.95, 95% confidence interval (CI) 1.02 to 3.71; n = 65); at five to six years the difference between groups did not reach statistical significance (RR 1.38, 95% CI 0.92 to 2.06; n = 195). In the other study, one subject in the radiotherapy group had cognitive impairment (defined as significant deterioration in eight of 12 neuropsychological tests) at two years compared with none in the control group (very low certainty evidence).With regard to neurocognitive scores, in one study the radiotherapy group was reported to have had significantly worse mean scores on some tests compared with no radiotherapy; however, the raw data were only given for significant findings. In the second study, there were no clear differences in any of the various cognitive outcomes at two years (n = 31) and four years (n = 15) (very low certainty evidence).Radiotherapy versus chemotherapyOne RCT contributed data on cognitive impairment at up to three years with no clear difference between arms (RR 1.43, 95% CI 0.36 to 5.70, n = 117) (low-certainty evidence).High-dose radiotherapy versus low-dose radiotherapyOnly one of two studies reporting this comparison contributed data, and at two and five years there were no clear differences between high- and low-dose radiotherapy arms (very low certainty evidence).Conventional radiotherapy versus stereotactic conformal radiotherapyOne study involving younger people contributed limited data from the subgroup aged 16 to 25 years. The numbers of participants with neurocognitive impairment at five years after treatment were two out of 12 in the conventional arm versus none out of 11 in the stereotactic conformal radiotherapy arm (RR 4.62, 95% CI 0.25 to 86.72; n = 23; low-certainty evidence).Chemoradiotherapy versus radiotherapyTwo RCTs tested for cognitive impairment. One defined cognitive impairment as a decline of more than 3 points in MMSE score compared with baseline and reported data from 2-year (110 participants), 3-year (91 participants), and 5-year (57 participants) follow-up with no clear difference between the two arms at any time point. A second study did not report raw data but measured MMSE scores over five years in 126 participants at two years, 110 at three years, 69 at four years and 53 at five years. Authors concluded that there was no difference in MMSE scores between the two study arms (P = 0.4752) (low-certainty evidence).Two RCTs reported quality of life (QoL) outcomes for this comparison. One reported no differences in Brain-QoL scores between study arms over a 5-year follow-up period (P = 0.2767; no raw data were given and denominators were not stated). The other trial reported that the long-term results of health-related QoL showed no difference between the arms but did not give the raw data for overall HRQoL scores (low-certainty evidence).We found no comparative data on endocrine dysfunction; we planned to develop a brief economic commentary but found no relevant economic studies for inclusion. AUTHORS' CONCLUSIONS Radiotherapy for gliomas with a good prognosis may increase the risk of neurocognitive side effects in the long term; however the magnitude of the risk is uncertain. Evidence on long-term neurocognitive side effects associated with chemoradiotherapy is also uncertain. Neurocognitive assessment should be an integral part of long-term follow-up in trials involving radiotherapy for lower-grade gliomas to improve the certainty of evidence regarding long-term neurocognitive effects. Such trials should also assess other potential long-term effects, including endocrine dysfunction, and evaluate costs and cost effectiveness.
Collapse
Affiliation(s)
- Theresa A Lawrie
- 1st Floor Education Centre, Royal United HospitalCochrane Gynaecological, Neuro‐oncology and Orphan Cancer GroupCombe ParkBathUKBA1 3NG
| | - David Gillespie
- Western General HospitalDepartment of Neuropsychology133 Grange LoanEdinburghUKEH9 2HL
| | - Therese Dowswell
- The University of LiverpoolC/o Cochrane Pregnancy and Childbirth Group, Department of Women's and Children's HealthFirst Floor, Liverpool Women's NHS Foundation TrustCrown StreetLiverpoolUKL8 7SS
| | - Jonathan Evans
- University of GlasgowSchool of Psychological MedicineGartnavel Royal Hospital1055 Great Western RoadGlasgowUKG12 0XH
| | - Sara Erridge
- NHS LothianEdinburgh Cancer CentreWestern General HospitalCrewe RoadEdinburghUKEH4 2XU
| | - Luke Vale
- Newcastle UniversityInstitute of Health & SocietyBaddiley‐Clarke Building, Richardson RoadNewcastle upon TyneUKNE2 4AX
| | - Ashleigh Kernohan
- Newcastle UniversityInstitute of Health & SocietyBaddiley‐Clarke Building, Richardson RoadNewcastle upon TyneUKNE2 4AX
| | - Robin Grant
- Western General HospitalEdinburgh Centre for Neuro‐Oncology (ECNO)Crewe RoadEdinburghUKEH4 2XU
| |
Collapse
|
12
|
Nguyen TK, Sahgal A, Detsky J, Soliman H, Myrehaug S, Tseng CL, Husain ZA, Carty A, Das S, Yang V, Lee Y, Sarfehnia A, Chugh BP, Yeboah C, Ruschin M. Single-Fraction Stereotactic Radiosurgery Versus Hippocampal-Avoidance Whole Brain Radiation Therapy for Patients With 10 to 30 Brain Metastases: A Dosimetric Analysis. Int J Radiat Oncol Biol Phys 2019; 105:394-399. [PMID: 31283978 DOI: 10.1016/j.ijrobp.2019.06.2543] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE To compare normal tissue dosimetry between hippocampal-avoidance whole brain radiation therapy (HA-WBRT) and stereotactic radiosurgery (SRS) in patients with 10 to 30 brain metastases, and to describe a novel SRS strategy we term Spatially Partitioned Adaptive RadiosurgEry (SPARE). METHODS AND MATERIALS A retrospective review identified SRS treatment plans with >10 brain metastases located >5 mm from the hippocampi. Our Gamma Knife Icon (GKI) SPARE (GKI-Spr) technique treats multiple metastases with single-fraction SRS partitioned over consecutive days while limiting the total treatment time to ≤60 minutes per day. Hippocampal and normal brain dosimetry were compared among GKI-Spr, single-fraction single-day GKI (GKI-Sfr), and 30 Gy in 10 fractions HA-WBRT. Dose metrics were converted to equivalent dose in 2 Gy fractions. RESULTS Ten cases were analyzed. Compared with HA-WBRT, GKI-Spr significantly reduced the median equivalent dose in 2 Gy fractions hippocampal maximum point dose, mean dose, and dose to 40% of the hippocampi (D40%) by 86%, 93%, and 93%, respectively, and similarly for GKI-Sfr by 81%, 92%, and 91%, respectively. The normal brain median mean dose was reduced by 95% with GKI-Spr and 94% with GKI-Sfr. Compared with GKI-Sfr, GKI-Spr further reduced all normal brain and hippocampal dose metrics (P ≤ .014). CONCLUSIONS GKI yields superior hippocampal and normal brain dosimetry compared with HA-WBRT, and GKI-Spr results in further dosimetric advantages.
Collapse
Affiliation(s)
- Timothy K Nguyen
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Zain A Husain
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Anne Carty
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sunit Das
- Division of Neurosurgery, St Michaels Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Victor Yang
- Division of Neurosurgery, Sunnybrook Health Sciences Center, University of Toronto, Toronto, Ontario, Canada
| | - Young Lee
- Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Arman Sarfehnia
- Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Brige P Chugh
- Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Collins Yeboah
- Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Mark Ruschin
- Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Hewins W, Zienius K, Rogers JL, Kerrigan S, Bernstein M, Grant R. The Effects of Brain Tumours upon Medical Decision-Making Capacity. Curr Oncol Rep 2019; 21:55. [PMID: 31049786 PMCID: PMC6495430 DOI: 10.1007/s11912-019-0793-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose of Review Informed consent is the integral part of good medical practice in patients with brain tumours. Capacity to consent may be affected by the brain disorder or its treatment. We intend to draw upon the current neuro-oncology literature to discuss the influence intracranial tumours have upon patients’ capacity to consent to treatment and research. Recent Findings We performed a systematic review of studies of capacity to consent for treatment or research in patients with intracranial tumours. The search retrieved 1597 papers of which 8 were considered eligible for review. Summary Although there are obvious inherent limitations to solely assessing cognition, most research consistently demonstrated increased risk of incapacity in brain tumour patients with cognitive impairment. Specific items in cognitive screening batteries, for example Semantic Verbal Fluency Test (SVFT), Hopkins Verbal Learning Test (HVLT-Recall), and Trail Making Test A/B (TMT), are simple, easily applied tests that may act as significant red flags to identify patients at increased risk of incapacity and who subsequently will require additional cognitive/psychiatric evaluation or more formal tests for capacity to consent for treatment or research.
Collapse
Affiliation(s)
- Will Hewins
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, EH4 2XU, Scotland.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Karolis Zienius
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, EH4 2XU, Scotland
| | | | - Simon Kerrigan
- Department of Neurology, Salford Royal NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
| | - Mark Bernstein
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Robin Grant
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, EH4 2XU, Scotland. .,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
14
|
Shinde A, Akhavan D, Sedrak M, Glaser S, Amini A. Shifting paradigms: whole brain radiation therapy versus stereotactic radiosurgery for brain metastases. CNS Oncol 2019; 8:CNS27. [PMID: 30701987 PMCID: PMC6499015 DOI: 10.2217/cns-2018-0016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/14/2019] [Indexed: 11/29/2022] Open
Affiliation(s)
- Ashwin Shinde
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - David Akhavan
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mina Sedrak
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Scott Glaser
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| |
Collapse
|