1
|
Nagy DG, Fedorcsák I, Bagó AG, Gáti G, Martos J, Szabó P, Rajnai H, Kenessey I, Borbély K. Therapy Defining at Initial Diagnosis of Primary Brain Tumor-The Role of 18F-FET PET/CT and MRI. Biomedicines 2023; 11:biomedicines11010128. [PMID: 36672636 PMCID: PMC9855996 DOI: 10.3390/biomedicines11010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Primary malignant brain tumors are heterogeneous and infrequent neoplasms. Their classification, therapeutic regimen and prognosis have undergone significant development requiring the innovation of an imaging diagnostic. The performance of enhanced magnetic resonance imaging depends on blood-brain barrier function. Several studies have demonstrated the advantages of static and dynamic amino acid PET/CT providing accurate metabolic status in the neurooncological setting. The aim of our single-center retrospective study was to test the primary diagnostic role of amino acid PET/CT compared to enhanced MRI. Emphasis was placed on cases prior to intervention, therefore, a certain natural bias was inevitable. In our analysis for newly found brain tumors 18F-FET PET/CT outperformed contrast MRI and PWI in terms of sensitivity and negative predictive value (100% vs. 52.9% and 36.36%; 100% vs. 38.46% and 41.67%), in terms of positive predictive value their performance was roughly the same (84.21 % vs. 90% and 100%), whereas regarding specificity contrast MRI and PWI were superior (40% vs. 83.33% and 100%). Based on these results the superiority of 18F-FET PET/CT seems to present incremental value during the initial diagnosis. In the case of non-enhancing tumors, it should always be suggested as a therapy-determining test.
Collapse
Affiliation(s)
- Dávid Gergő Nagy
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - Imre Fedorcsák
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - Attila György Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - Georgina Gáti
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | - János Martos
- National Institute of Mental Health, Neurology and Neurosurgery, 1145 Budapest, Hungary
| | | | - Hajnalka Rajnai
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| | - István Kenessey
- National Cancer Registry, National Institute of Oncology, 1122 Budapest, Hungary
- Pathology, Forensic and Insurance Medicine, Semmelweis University, 1091 Budapest, Hungary
- Correspondence:
| | - Katalin Borbély
- PET/CT Outpatient Department, National Institute of Oncology, 1122 Budapest, Hungary
| |
Collapse
|
2
|
Vettermann FJ, Diekmann C, Weidner L, Unterrainer M, Suchorska B, Ruf V, Dorostkar M, Wenter V, Herms J, Tonn JC, Bartenstein P, Riemenschneider MJ, Albert NL. L-type amino acid transporter (LAT) 1 expression in 18F-FET-negative gliomas. EJNMMI Res 2021; 11:124. [PMID: 34905134 PMCID: PMC8671595 DOI: 10.1186/s13550-021-00865-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) is a highly sensitive PET tracer for glioma imaging, and its uptake is suggested to be driven by an overexpression of the L-type amino-acid transporter 1 (LAT1). However, 30% of low- and 5% of high-grade gliomas do not present enhanced 18F-FET uptake at primary diagnosis (“18F-FET-negative gliomas”) and the pathophysiologic basis for this phenomenon remains unclear. The aim of this study was to determine the expression of LAT1 in a homogeneous group of newly diagnosed 18F-FET-negative gliomas and to compare them to a matched group of 18F-FET-positive gliomas. Forty newly diagnosed IDH-mutant astrocytomas without 1p/19q codeletion were evaluated (n = 20 18F-FET-negative (tumour-to-background ratio (TBR) < 1.6), n = 20 18F-FET-positive gliomas (TBR > 1.6)). LAT1 immunohistochemistry (IHC) was performed using SLC7A5/LAT1 antibody. The percentage of LAT1-positive tumour cells (%) and the staining intensity (range 0–2) were multiplied to an overall score (H-score; range 0–200) and correlated to PET findings as well as progression-free survival (PFS). Results IHC staining of LAT1 expression was positive in both, 18F-FET-positive as well as 18F-FET-negative gliomas. No differences were found between the 18F-FET-negative and 18F-FET-positive group with regard to percentage of LAT1-positive tumour cells, staining intensity or H-score. Interestingly, the LAT1 expression showed a significant negative correlation with the PFS (p = 0.031), whereas no significant correlation was found for TBRmax, neither in the overall group nor in the 18F-FET-positive group only (p = 0.651 and p = 0.140). Conclusion Although LAT1 is reported to mediate the uptake of 18F-FET into tumour cells, the levels of LAT1 expression do not correlate with the levels of 18F-FET uptake in IDH-mutant astrocytomas. In particular, the lack of tracer uptake in 18F-FET-negative gliomas cannot be explained by a reduced LAT1 expression. A higher LAT1 expression in IDH-mutant astrocytomas seems to be associated with a short PFS. Further studies regarding mechanisms influencing the uptake of 18F-FET are necessary. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00865-9.
Collapse
Affiliation(s)
- Franziska J Vettermann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.
| | - Caroline Diekmann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lorraine Weidner
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Marcus Unterrainer
- Department of Radiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany.,Department of Neurosurgery, Sana Hospital, Duisburg, Germany
| | - Viktoria Ruf
- Center for Neuropathology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Mario Dorostkar
- Center for Neuropathology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Vera Wenter
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jochen Herms
- Center for Neuropathology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
18F-FET PET Uptake Characteristics of Long-Term IDH-Wildtype Diffuse Glioma Survivors. Cancers (Basel) 2021; 13:cancers13133163. [PMID: 34202726 PMCID: PMC8268019 DOI: 10.3390/cancers13133163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary IDH-wildtype (IDHwt) gliomas represent a tumor entity with poor overall survival. Only rare cases have an overall survival over several years. Dynamic and static 18F-FET PET is recommended as valuable complementary tool for glioma imaging in gliomas. This study shows that, besides molecular genetic prognosticators, long survival (≥36 months survival) in IDHwt gliomas is associated with a longer time-to-peak and smaller volume on 18F-FET PET at initial diagnosis compared to glioma patients with a short-term survival (≤15 months survival). 18F-FET uptake intensity and MRI-derived tumor size do not differ in patients with long-term survival compared to patient with a short-term survival. Abstract Background: IDHwt diffuse gliomas represent the tumor entity with one of the worst clinical outcomes. Only rare cases present with a long-term survival of several years. Here we aimed at comparing the uptake characteristics on dynamic 18F-FET PET, clinical and molecular genetic parameters of long-term survivors (LTS) versus short-term survivors (STS): Methods: Patients with de-novo IDHwt glioma (WHO grade III/IV) and 18F-FET PET prior to any therapy were stratified into LTS (≥36 months survival) and STS (≤15 months survival). Static and dynamic 18F-FET PET parameters (mean/maximal tumor-to-background ratio (TBRmean/max), biological tumor volume (BTV), minimal time-to-peak (TTPmin)), diameter and volume of contrast-enhancement on MRI, clinical parameters (age, sex, Karnofksy-performance-score), mode of surgery; initial treatment and molecular genetics were assessed and compared between LTS and STS. Results: Overall, 75 IDHwt glioma patients were included (26 LTS, 49 STS). LTS were significantly younger (p < 0.001), had a higher rate of WHO grade III glioma (p = 0.032), of O(6)-Methylguanine-DNA methyltransferase (MGMT) promoter methylation (p < 0.001) and missing Telomerase reverse transcriptase promoter (TERTp) mutations (p = 0.004) compared to STS. On imaging, LTS showed a smaller median BTV (p = 0.017) and a significantly longer TTPmin (p = 0.008) on 18F-FET PET than STS, while uptake intensity (TBRmean/max) did not differ. In contrast to the tumor-volume on PET, MRI-derived parameters such as tumor size as well as all other above-mentioned parameters did not differ between LTS and STS (p > 0.05 each). Conclusion: Besides molecular genetic prognosticators, a long survival time in IDHwt glioma patients is associated with a longer TTPmin as well as a smaller BTV on 18F-FET PET at initial diagnosis. 18F-FET uptake intensity as well as the MRI-derived tumor size (volume and maximal diameter) do not differ in patients with long-term survival.
Collapse
|
4
|
Zaragori T, Castello A, Guedj E, Girard A, Galldiks N, Albert NL, Lopci E, Verger A. Photopenic Defects in Gliomas With Amino-Acid PET and Relative Prognostic Value: A Multicentric 11C-Methionine and 18F-FDOPA PET Experience. Clin Nucl Med 2021; 46:e36-e37. [PMID: 32804767 DOI: 10.1097/rlu.0000000000003240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim is to explore the concept of photopenic defects in newly diagnosed glioma patients with the 2 widely used C-MET and F-FDOPA PET amino acid tracers. Thirty-two C-MET and 26 F-FDOPA PET scans with amino acid PET-negative gliomas were selected in this European multicentric study. Of these gliomas, 16 C-MET and 10 F-FDOPA PET scans with photopenic defects were identified, exhibiting lower mean tumor-to-background ratio as compared with isometabolic gliomas (P < 0.001). Gliomas with photopenic defects had no different progression-free survival than isometabolic gliomas in the whole population (P = 0.40), but shorter progression-free survival in the subgroup of World Health Organization grade II IDH-mutant astrocytomas (35 vs 68 months; P = 0.047).
Collapse
Affiliation(s)
| | - Angelo Castello
- Nuclear Medicine Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Italy
| | | | - Antoine Girard
- Department of Nuclear Medicine, Eugène Marquis Center, Rennes 1 University, Rennes, France
| | | | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Egesta Lopci
- Nuclear Medicine Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Italy
| | | |
Collapse
|
5
|
Galldiks N, Verger A, Zaragori T, Unterrainer M, Suchorska B, Lohmann P, Tonn JC, Langen KJ, Albert NL. Comment on "Hypometabolic gliomas on FET-PET-is there an inverted U-curve for survival?". Neuro Oncol 2020; 21:1612-1613. [PMID: 31504819 DOI: 10.1093/neuonc/noz173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine, Reseach Center Juelich, Juelich, Germany.,Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Regional University Hospital Center, Lorraine University, Nancy, France
| | - Timothée Zaragori
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Regional University Hospital Center, Lorraine University, Nancy, France
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine, Reseach Center Juelich, Juelich, Germany
| | - Jörg C Tonn
- Department of Neurosurgery, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Reseach Center Juelich, Juelich, Germany.,Center of Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany.,Department of Nuclear Medicine, University of Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| |
Collapse
|
6
|
Kudulaiti N, Zhang H, Qiu T, Lu J, Aibaidula A, Zhang Z, Guan Y, Zhuang D. The Relationship Between IDH1 Mutation Status and Metabolic Imaging in Nonenhancing Supratentorial Diffuse Gliomas: A 11C-MET PET Study. Mol Imaging 2020; 18:1536012119894087. [PMID: 31889470 PMCID: PMC6997723 DOI: 10.1177/1536012119894087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: We evaluated the relationship between isocitrate dehydrogenase 1 (IDH1) mutation status and metabolic imaging in patients with nonenhancing supratentorial diffuse gliomas using 11C-methionine positron emission tomography (11C-MET PET). Materials and Methods: Between June 2012 and November 2017, we enrolled 86 (38 women and 48 men; mean age, 41.9 ± 13.1 years [range, 8-67 years]) patients with newly diagnosed supratentorial diffuse gliomas. All patients underwent preoperative 11C-MET PET. Tumor samples were obtained and immunohistochemically analyzed for IDH1 mutation status. Results: The mutant and wild-type IDH1 diffuse gliomas had significantly different mean maximum standardized uptake value values (2.73 [95% confidence interval, CI: 2.32-3.16] vs 3.85 [95% CI: 3.22-4.51], respectively; P = .004) and mean tumor-to-background ratio (1.90 [95% CI: 1.65-2.16] vs 2.59 [95% CI: 2.17-3.04], respectively; P = .007). Conclusions: 11C-methionine PET can noninvasively evaluate the IDH1 mutation status of patients with nonenhancing supratentorial diffuse gliomas.
Collapse
Affiliation(s)
- Nijiati Kudulaiti
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| | - Abudumijiti Aibaidula
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yihui Guan
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|