1
|
Maliszewska-Olejniczak K, Bednarczyk P. Novel insights into the role of ion channels in cellular DNA damage response. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108488. [PMID: 38266668 DOI: 10.1016/j.mrrev.2024.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
The DNA damage response (DDR) is a complex and highly regulated cellular process that detects and repairs DNA damage. The integrity of the DNA molecule is crucial for the proper functioning and survival of cells, as DNA damage can lead to mutations, genomic instability, and various diseases, including cancer. The DDR safeguards the genome by coordinating a series of signaling events and repair mechanisms to maintain genomic stability and prevent the propagation of damaged DNA to daughter cells. The study of an ion channels in the context of DDR is a promising avenue in biomedical research. Lately, it has been reported that the movement of ions through channels plays a crucial role in various physiological processes, including nerve signaling, muscle contraction, cell signaling, and maintaining cell membrane potential. Knowledge regarding the involvement of ion channels in the DDR could support refinement of our approach to several pathologies, mainly cancer, and perhaps lead to innovative therapies. In this review, we focused on the ion channel's possible role in the DDR. We present an analysis of the involvement of ion channels in DDR, their role in DNA repair mechanisms, and cellular outcomes. By addressing these areas, we aim to provide a comprehensive perspective on ion channels in the DDR and potentially guide future research in this field. It is worth noting that the interplay between ion channels and the cellular DDR is complex and multifaceted. More research is needed to fully understand the underlying mechanisms and potential therapeutic implications of these interactions.
Collapse
Affiliation(s)
- Kamila Maliszewska-Olejniczak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland.
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| |
Collapse
|
2
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|