1
|
Brem S, Hoch MJ. Commentary: Resting State Functional Networks in Gliomas: Validation With Direct Electric Stimulation Using a New Tool for Planning Brain Resections. Neurosurgery 2024; 95:e156-e158. [PMID: 38869302 DOI: 10.1227/neu.0000000000003065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Affiliation(s)
- Steven Brem
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia , Pennsylvania , USA
- Glioblastoma Translational Center of Excellence (TCE), Abramson Cancer Center, University of Pennsylvania, Philadelphia , Pennsylvania , USA
| | - Michael J Hoch
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia , Pennsylvania , USA
| |
Collapse
|
2
|
Semonche A, Lee A, Negussie MB, Ambati VS, Aabedi AA, Kaur J, Mehari M, Berger MS, Hervey-Jumper SL. The Association Between Task Complexity and Cortical Language Mapping Accuracy. Neurosurgery 2024; 95:1126-1134. [PMID: 38712941 DOI: 10.1227/neu.0000000000002981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Direct cortical stimulation (DCS) mapping enables the identification of functional language regions within and around gliomas before tumor resection. Intraoperative mapping is required because glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex but has decreased ability to encode information for complex tasks. It is unknown whether task complexity influenced DCS mapping results. We aim to understand correlations between audiovisual picture naming (PN) task complexity and DCS error rate. We also asked what functional and oncological factors might be associated with higher rates of erroneous responses. METHODS We retrospectively reviewed intraoperative PN and word reading (WR) task performance during awake DCS language mapping for resection of dominant hemisphere World Health Organization grade 2 to 4 gliomas. The complexity of word tested in PN/WR tasks, patient characteristics, and tumor characteristics were compared between correct and incorrect trials. RESULTS Between 2017 and 2021, 74 patients met inclusion criteria. At median 18.6 months of follow-up, 73.0% were alive and 52.7% remained recurrence-free. A total of 2643 PN and 978 WR trials were analyzed. A greater number of syllables in PN was associated with a higher DCS error rate ( P = .001). Multivariate logistic regression found that each additional syllable in PN tasks independently increased odds of error by 2.40 ( P < .001). Older age was also an independent correlate of higher error rate ( P < .043). World Health Organization grade did not correlate with error rate ( P = .866). More severe language impairment before surgery correlated with worse performance on more complex intraoperative tasks ( P < .001). A higher error rate on PN testing did not correlate with lower extent of glioma resection ( P = .949). CONCLUSION Word complexity, quantified by the number of syllables, is associated with higher error rates for intraoperative PN tasks but does not affect extent of resection.
Collapse
Affiliation(s)
- Alexa Semonche
- Department of Neurological Surgery, University of California, San Francisco, San Francisco , California , USA
| | - Anthony Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco , California , USA
| | - Mikias B Negussie
- Department of Neurological Surgery, University of California, San Francisco, San Francisco , California , USA
| | - Vardhaan S Ambati
- Department of Neurological Surgery, University of California, San Francisco, San Francisco , California , USA
| | - Alexander A Aabedi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco , California , USA
| | - Jasleen Kaur
- Department of Neurological Surgery, University of California, San Francisco, San Francisco , California , USA
| | - Mulki Mehari
- Department of Neurological Surgery, University of California, San Francisco, San Francisco , California , USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco , California , USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco , California , USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco , California , USA
| |
Collapse
|
3
|
Johnson H, Vestal ML, Husain AM. A Novel Technique for Intraoperative Mapping of the Somatosensory Cortex. World Neurosurg 2024; 188:170-176. [PMID: 38789031 DOI: 10.1016/j.wneu.2024.05.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE Intraoperative mapping of the nervous system is used to identify "eloquent" cortical areas. In this technical report, we describe a novel way of mapping the somatosensory cortex so that injury to those critical pathways can be avoided. METHODS An 8-year-old female with drug resistant epilepsy presented for resection of a right posterior parietal focal cortical dysplasia. Left median nerve stimulation was used to record somatosensory evoked potentials (SEPs) directly from the somatosensory cortex with a strip electrode. A handheld monopolar electrode was also used to record both the median and tibial SEP. Total intravenous anesthesia with propofol and remifentanil was used. RESULTS SEP recordings were obtained from a 4-contact strip electrode placed across the central sulcus. A phase reversal was identified and the most likely post central gyrus was noted. With the strip electrode left in place, a monopolar handheld electrode was used to record the median nerve SEPs from different locations on the postcentral gyrus. The tibial nerve was also stimulated to record where the highest amplitude tibial nerve SEP was present. This map was used delineate functionally "eloquent" areas to avoid during surgery. During resection, the median nerve SEP was recorded from the strip electrode continuously. No significant change in the SEP was noted, and the patient awoke without any sensory deficits. CONCLUSIONS Sensory mapping of the cortex is possible with a handheld monopolar electrode. This technique is easy to perform and can help reduce neurological morbidity.
Collapse
Affiliation(s)
- Holly Johnson
- Department of Neurology, Duke University Medical Center, Durham, NC
| | - Matthew L Vestal
- Department of Neurosurgery, Duke University Medical Center, Durham, NC
| | - Aatif M Husain
- Department of Neurology, Duke University Medical Center, Durham, NC; Neurodiagnostic Center, Veterans Affairs Medical Center, Durham, NC.
| |
Collapse
|
4
|
Tariq R, Aziz HF, Paracha S, Ahmed N, Baqai MWS, Bakhshi SK, McAtee A, Ainger TJ, Mirza FA, Enam SA. Intraoperative mapping and preservation of executive functions in awake craniotomy: a systematic review. Neurol Sci 2024; 45:3723-3735. [PMID: 38520640 DOI: 10.1007/s10072-024-07475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Awake craniotomy (AC) allows intraoperative brain mapping (ioBM) for maximum lesion resection while monitoring and preserving neurological function. Conventionally, language, visuospatial assessment, and motor functions are mapped, while the assessment of executive functions (EF) is uncommon. Impaired EF may lead to occupational, personal, and social limitations, thus, a compromised quality of life. A comprehensive literature search was conducted through Scopus, Medline, and Cochrane Library using a pre-defined search strategy. Articles were selected after duplicate removal, initial screening, and full-text assessment. The demographic details, ioBM techniques, intraoperative tasks, and their assessments, the extent of resection (EOR), post-op EF and neurocognitive status, and feasibility and potential adverse effects of the procedure were reviewed. The correlations of tumor locations with intraoperative EF deficits were also assessed. A total of 13 studies with intraoperative EF assessment of 351 patients were reviewed. Awake-asleep-awake protocol was most commonly used. Most studies performed ioBM using bipolar stimulation, with a frequency of 60 Hz, pulse durations ranging 1-2 ms, and intensity ranging 2-6 mA. Cognitive function was monitored with the Stroop task, spatial-2-back test, line-bisection test, trail-making-task, and digit-span tests. All studies reported similar or better EOR in patients with ioBM for EF. When comparing the neuropsychological outcomes of patients with ioBM of EF to those without it, all studies reported significantly better EF preservation in ioBM groups. Most authors reported EF mapping as a feasible tool to obtain satisfactory outcomes. Adverse effects included intraoperative seizures which were easily controlled. AC with ioBM of EF is a safe, effective, and feasible technique that allows satisfactory EOR and improved neurocognitive outcomes with minimal adverse effects.
Collapse
Affiliation(s)
- Rabeet Tariq
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Hafiza Fatima Aziz
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Shahier Paracha
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Noman Ahmed
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | - Saqib Kamran Bakhshi
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Annabel McAtee
- College of Medicine, University of Kentucky, Lexington, USA
| | - Timothy J Ainger
- Department of Neurology, University of Kentucky College of Medicine, Kentucky Neuroscience Institute, Lexington, KY, USA
| | - Farhan A Mirza
- Department of Neurosurgery, Kentucky Neuroscience Institute (KNI), University of Kentucky, Lexington, USA
| | - Syed Ather Enam
- Section of Neurosurgery, Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
| |
Collapse
|
5
|
Ruella ME, Caffaratti G, Chaves H, Yañez P, Cervio A. Transoperative Magnetic Resonance Imaging in Awake Glioma Surgery: Experience in a Latin American Tertiary-Level Center. World Neurosurg 2024; 186:e65-e74. [PMID: 38417621 DOI: 10.1016/j.wneu.2024.02.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVE Analyze the usefulness, efficacy, and safety of transoperative magnetic resonance imaging (tMRI) in glioma surgery in awake patients. METHODS Retrospective, single-center, analytical study of a cohort of patients who underwent awake surgery for gliomas by the same surgeon in a third-level Argentine center, in the period between 2012 and 2022. Only patients with pathology-confirmed gliomas, with 6-month follow-up, who had preoperative and postoperative volumetric magnetic resonance imaging, were included in this sample. Subsequently, we analyzed which patients received surgery with the tMRI protocol and the results using multivariate regression analysis. RESULTS A total of 71 patients were included. A tMRI study was performed on 22 (31%) of these patients. The use of tMRI increased the percentage of resection by 20% (P = 0.03), thereby increasing the possibility of gross total resection. However, using tMRI significantly extended surgical time by 84 minutes (P < 0.001). In 55% of the patients in whom tMRI was performed, the resection was continued after it. The use of tMRI did not increase the rate of infections or the development of surgically associated neurological deficits in the long term, despite the fact that 47% of the patients showed the development of a new deficit or worsening of a previous one during the intraoperative period. CONCLUSIONS The use of tMRI in awake glioma surgery proved to be a safe tool that contributes to increasing the degree of tumor resection, compared to the use of neurophysiological mapping and neuronavigation, at the expense of increased surgical times and costs. We consider tMRI in awake glioma surgery should be used in properly selected cases.
Collapse
Affiliation(s)
- Mauro E Ruella
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina.
| | | | - Hernan Chaves
- Department of Neuro-Radiology, Fleni, Buenos Aires, Argentina
| | - Paulina Yañez
- Department of Neuro-Radiology, Fleni, Buenos Aires, Argentina
| | - Andrés Cervio
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina
| |
Collapse
|
6
|
Caffaratti G, Ruella M, Villamil F, Keller G, Savini D, Cervio A. Experience in awake glioma surgery in a South American center. Correlation between intraoperative evaluation, extent of resection and functional outcomes. World Neurosurg X 2024; 22:100357. [PMID: 38469388 PMCID: PMC10926357 DOI: 10.1016/j.wnsx.2024.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Gliomas are the second most frequent primary brain tumors. Surgical resection remains a crucial part of treatment, as well as maximum preservation of neurological function. For this reason awake surgery has an important role.The objectives of this article are to present our experience with awake surgery for gliomas in a South American center and to analyze how intraoperative functional findings may influence the extent of resection and neurological outcomes. Materials and methods Retrospective single center study of a cohort of adult patients undergoing awake surgery for brain glioma, by the same neurosurgeon, between 2012 and 2022 in the city of Buenos Aires, Argentina. Results A total of 71 patients were included (mean age 34 years, 62% males). Seventy seven percent of tumors were low grade, with average extent of resection reaching 94% of preoperative volumetric assessment. At six months follow up, 81.7% of patients presented no motor or language deficit.Further analysis showed that having a positive mapping did not have a negative impact in the extent of resection, but was associated with short term postoperative motor and language deficits, among other variables, with later improvement. Conclusion Awake surgery for gliomas is a safe procedure, with the proper training. In this study it was observed that guiding the resection by negative mapping did not worsen the results and that positive subcortical mapping correlated with short term postoperative neurological deficits with posterior improvement within six months in most cases.
Collapse
Affiliation(s)
| | - Mauro Ruella
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina
| | | | - Greta Keller
- Department of Cognitive Neurology, Neuropsychology and Neuropsychiatry, Fleni, Buenos Aires, Argentina
| | - Darío Savini
- Department of Neurophysiology, Fleni, Buenos Aires, Argentina
| | - Andrés Cervio
- Department of Neurosurgery, Fleni, Buenos Aires, Argentina
| |
Collapse
|
7
|
van Ierschot FC, Veenstra W, Miozzo A, Santini B, Jeltema HR, Spena G, Miceli G. Written language preservation in glioma patients undergoing awake surgery: The value of tailored intra-operative assessment. J Neuropsychol 2024; 18 Suppl 1:205-229. [PMID: 37840529 DOI: 10.1111/jnp.12349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Written language is increasingly important, as contemporary society strongly relies on text-based communication. Nonetheless, in neurosurgical practice, language preservation has classically focused on spoken language. The current study aimed to evaluate the potential role of intra-operative assessments in the preservation of written language skills in glioma patients undergoing awake surgery. It is the first feasibility study to use a standardized and detailed Written language battery in glioma patients undergoing awakening surgery. Reading and spelling were assessed pre- and post-operatively in eleven patients. Intra-operatively, 7 cases underwent written language assessment in addition to spoken object naming. Results show that reading and spelling deficits may arise before and after glioma surgery and that written language may be differently affected than spoken language. In our case series, task-specific preservation of function was obtained in all cases when a specific written language skill was monitored intra-operatively. However, the benefits of intra-operative testing did not always generalize, and non-monitored written language tasks may not be preserved. Hence, when a specific written language skill needs to be preserved, to facilitate return to work and maintain quality of life, results indicate that intra-operative assessment of that skill is advised. An illustrative case report demonstrates how profile analyses can be used pre-operatively to identify cognitive components at risk and intra-operatively to preserve written language abilities in clinical practice.
Collapse
Affiliation(s)
- Fleur Céline van Ierschot
- Center for Mind/Brain Sciences (CiMeC), University of Trento, Rovereto, Italy
- International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), Universities of Trento, Groningen, Newcastle, Potsdam and Macquarie University, Trento, Groningen, Newcastle, Potsdam, Sydney, Italy, Netherlands, Australia, Germany, Australia
| | - Wencke Veenstra
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
- Department of Rehabilitation Medicine, Center for Rehabilitation, University Medical Center Groningen, Groningen, The Netherlands
| | - Antonio Miozzo
- Centre for Aging Brain and Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Barbara Santini
- Department of Neuroscience, Neurosurgery Clinic, University of Verona, Verona, Italy
| | - Hanne-Rinck Jeltema
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Giannantonio Spena
- Centre for Aging Brain and Neurodegenerative Disorders, University of Brescia, Brescia, Italy
| | - Gabriele Miceli
- Center for Mind/Brain Sciences (CiMeC), University of Trento, Rovereto, Italy
- International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), Universities of Trento, Groningen, Newcastle, Potsdam and Macquarie University, Trento, Groningen, Newcastle, Potsdam, Sydney, Italy, Netherlands, Australia, Germany, Australia
| |
Collapse
|
8
|
Ryalino C, Sahinovic MM, Drost G, Absalom AR. Intraoperative monitoring of the central and peripheral nervous systems: a narrative review. Br J Anaesth 2024; 132:285-299. [PMID: 38114354 DOI: 10.1016/j.bja.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023] Open
Abstract
The central and peripheral nervous systems are the primary target organs during anaesthesia. At the time of the inception of the British Journal of Anaesthesia, monitoring of the central nervous system comprised clinical observation, which provided only limited information. During the 100 yr since then, and particularly in the past few decades, significant progress has been made, providing anaesthetists with tools to obtain real-time assessments of cerebral neurophysiology during surgical procedures. In this narrative review article, we discuss the rationale and uses of electroencephalography, evoked potentials, near-infrared spectroscopy, and transcranial Doppler ultrasonography for intraoperative monitoring of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Christopher Ryalino
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marko M Sahinovic
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gea Drost
- Department of Neurology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands; Department of Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anthony R Absalom
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Young JS, Morshed RA, Hervey-Jumper SL, Berger MS. The surgical management of diffuse gliomas: Current state of neurosurgical management and future directions. Neuro Oncol 2023; 25:2117-2133. [PMID: 37499054 PMCID: PMC10708937 DOI: 10.1093/neuonc/noad133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 07/29/2023] Open
Abstract
After recent updates to the World Health Organization pathological criteria for diagnosing and grading diffuse gliomas, all major North American and European neuro-oncology societies recommend a maximal safe resection as the initial management of a diffuse glioma. For neurosurgeons to achieve this goal, the surgical plan for both low- and high-grade gliomas should be to perform a supramaximal resection when feasible based on preoperative imaging and the patient's performance status, utilizing every intraoperative adjunct to minimize postoperative neurological deficits. While the surgical approach and technique can vary, every effort must be taken to identify and preserve functional cortical and subcortical regions. In this summary statement on the current state of the field, we describe the tools and technologies that facilitate the safe removal of diffuse gliomas and highlight intraoperative and postoperative management strategies to minimize complications for these patients. Moreover, we discuss how surgical resections can go beyond cytoreduction by facilitating biological discoveries and improving the local delivery of adjuvant chemo- and radiotherapies.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, USA
| | | | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, USA
| |
Collapse
|
10
|
Elia A, Young JS, Simboli GA, Roux A, Moiraghi A, Trancart B, Al-Adli N, Aboubakr O, Bedioui A, Leclerc A, Planet M, Parraga E, Benevello C, Oppenheim C, Chretien F, Dezamis E, Berger MS, Zanello M, Pallud J. A Preoperative Scoring System to Predict Function-Based Resection Limitation Due to Insufficient Participation During Awake Surgery. Neurosurgery 2023; 93:678-690. [PMID: 37018385 DOI: 10.1227/neu.0000000000002477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/06/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Failure in achieving a function-based resection related to the insufficient patient's participation is a drawback of awake surgery. OBJECTIVE To assess preoperative parameters predicting the risk of patient insufficient intraoperative cooperation leading to the arrest of the awake resection. METHODS Observational, retrospective, multicentric cohort analysis enrolling 384 (experimental dataset) and 100 (external validation dataset) awake surgeries. RESULTS In the experimental data set, an insufficient intraoperative cooperation occurred in 20/384 patients (5.2%), leading to awake surgery failure in 3/384 patients (ie, no resection, 0.8%), and precluded the achievement of the function-based resection in 17/384 patients (ie, resection limitation, 4.4%). The insufficient intraoperative cooperation significantly reduced the resection rates (55.0% vs 94.0%, P < .001) and precluded a supratotal resection (0% vs 11.3%, P = .017). Seventy years or older, uncontrolled epileptic seizures, previous oncological treatment, hyperperfusion on MRI, and mass effect on midline were independent predictors of insufficient cooperation during awake surgery ( P < .05). An Awake Surgery Insufficient Cooperation score was then assessed: 96.9% of patients (n = 343/354) with a score ≤2 presented a good intraoperative cooperation, while only 70.0% of patients (n = 21/30) with a score >2 presented a good intraoperative cooperation. In the experimental data set, similar date were found: 98.9% of patients (n = 98/99) with a score ≤2 presented a good cooperation, while 0% of patients (n = 0/1) with a score >2 presented a good cooperation. CONCLUSION Function-based resection under awake conditions can be safely performed with a low rate of insufficient patient intraoperative cooperation. The risk can be assessed preoperatively by a careful patient selection.
Collapse
Affiliation(s)
- Angela Elia
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia , Italy
- Université Paris Cité, Paris , France
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California , USA
| | - Giorgia Antonia Simboli
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Alexandre Roux
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
| | - Alessandro Moiraghi
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
| | - Bénédicte Trancart
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Nadeem Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, California , USA
| | - Oumaima Aboubakr
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Aziz Bedioui
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Department of Neurosurgery, Centre Hospitalier Universitaire Caen, Caen , France
| | - Arthur Leclerc
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Department of Neurosurgery, Centre Hospitalier Universitaire Caen, Caen , France
| | - Martin Planet
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Eduardo Parraga
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Chiara Benevello
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Catherine Oppenheim
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
- Department of Neuroradiology, Sainte-Anne Hospital, Paris , France
| | - Fabrice Chretien
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
- Department of Neuropathology, Sainte-Anne Hospital, Paris , France
| | - Edouard Dezamis
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California , USA
| | - Marc Zanello
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris , France
- Université Paris Cité, Paris , France
- Inserm, U1266, IMA-Brain, Centre de Psychiatrie et Neurosciences, Paris , France
| |
Collapse
|
11
|
Al-Adli NN, Young JS, Sibih YE, Berger MS. Technical Aspects of Motor and Language Mapping in Glioma Patients. Cancers (Basel) 2023; 15:cancers15072173. [PMID: 37046834 PMCID: PMC10093517 DOI: 10.3390/cancers15072173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Gliomas are infiltrative primary brain tumors that often invade functional cortical and subcortical regions, and they mandate individualized brain mapping strategies to avoid postoperative neurological deficits. It is well known that maximal safe resection significantly improves survival, while postoperative deficits minimize the benefits associated with aggressive resections and diminish patients’ quality of life. Although non-invasive imaging tools serve as useful adjuncts, intraoperative stimulation mapping (ISM) is the gold standard for identifying functional cortical and subcortical regions and minimizing morbidity during these challenging resections. Current mapping methods rely on the use of low-frequency and high-frequency stimulation, delivered with monopolar or bipolar probes either directly to the cortical surface or to the subcortical white matter structures. Stimulation effects can be monitored through patient responses during awake mapping procedures and/or with motor-evoked and somatosensory-evoked potentials in patients who are asleep. Depending on the patient’s preoperative status and tumor location and size, neurosurgeons may choose to employ these mapping methods during awake or asleep craniotomies, both of which have their own benefits and challenges. Regardless of which method is used, the goal of intraoperative stimulation is to identify areas of non-functional tissue that can be safely removed to facilitate an approach trajectory to the equator, or center, of the tumor. Recent technological advances have improved ISM’s utility in identifying subcortical structures and minimized the seizure risk associated with cortical stimulation. In this review, we summarize the salient technical aspects of which neurosurgeons should be aware in order to implement intraoperative stimulation mapping effectively and safely during glioma surgery.
Collapse
Affiliation(s)
- Nadeem N. Al-Adli
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
- School of Medicine, Texas Christian University, Fort Worth, TX 76109, USA
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| | - Youssef E. Sibih
- School of Medicine, University of California, San Francisco, CA 94131, USA
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94131, USA
| |
Collapse
|
12
|
Kabir SS, Jahangiri FR, Rinesmith C, Vilches CS, Chakarvarty S. Intraoperative Testing During the Mapping of the Language Cortex. Cureus 2023; 15:e36718. [PMID: 37123781 PMCID: PMC10139678 DOI: 10.7759/cureus.36718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 03/28/2023] Open
Abstract
Intracranial lesions, particularly in the language-eloquent areas of the brain, can affect one's speaking ability. Despite advances in surgery, the excision of these lesions can be challenging. Intraoperative neurophysiological monitoring (IONM) during awake craniotomies can help identify language-eloquent areas and minimize postoperative impairments. Preoperative language testing is performed to establish a baseline before intraoperative language testing. This involves subjecting patients to predetermined tasks in the operating room to evaluate their phonological, semantic, and syntactic capabilities. The current state and future directions of intraoperative language testing procedures are discussed in this paper. The most common intraoperative tasks are counting and picture naming. However, some experts recommend utilizing more nuanced tasks that involve regions affected by infrequently occurring tumor patterns. Low-frequency bipolar Penfield stimulation is optimal for language mapping. Exception cases are discussed where awake craniotomies are not feasible. When dealing with multilingual patients, the patient's age of learning and skill level can be accounted for in terms of making informed task choices and mapping techniques to avoid any damage to language areas.
Collapse
|
13
|
Virtual Reality-Assisted Awake Craniotomy: A Retrospective Study. Cancers (Basel) 2023; 15:cancers15030949. [PMID: 36765906 PMCID: PMC9913455 DOI: 10.3390/cancers15030949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Awake craniotomy (AC) with brain mapping for language and motor functions is often performed for tumors within or adjacent to eloquent brain regions. However, other important functions, such as vision and visuospatial and social cognition, are less frequently mapped, at least partly due to the difficulty of defining tasks suitable for the constrained AC environment. OBJECTIVE The aim of this retrospective study was to demonstrate, through illustrative cases, how a virtual reality headset (VRH) equipped with eye tracking can open up new possibilities for the mapping of language, the visual field and complex cognitive functions in the operating room. METHODS Virtual reality (VR) tasks performed during 69 ACs were evaluated retrospectively. Three types of VR tasks were used: VR-DO80 for language evaluation, VR-Esterman for visual field assessment and VR-TANGO for the evaluation of visuospatial and social functions. RESULTS Surgery was performed on the right hemisphere for 29 of the 69 ACs performed (42.0%). One AC (1.5%) was performed with all three VR tasks, 14 ACs (20.3%) were performed with two VR tasks and 54 ACs (78.3%) were performed with one VR task. The median duration of VRH use per patient was 15.5 min. None of the patients had "VR sickness". Only transitory focal seizures of no consequence and unrelated to VRH use were observed during AC. Patients were able to perform all VR tasks. Eye tracking was functional, enabling the medical team to analyze the patients' attention and exploration of the visual field of the VRH directly. CONCLUSIONS This preliminary experiment shows that VR approaches can provide neurosurgeons with a way of investigating various functions, including social cognition during AC. Given the rapid advances in VR technology and the unbelievable sense of immersion provided by the most recent devices, there is a need for ongoing reflection and discussions of the ethical and methodological considerations associated with the use of these advanced technologies in AC and brain mapping procedures.
Collapse
|
14
|
Mofatteh M, Mashayekhi MS, Arfaie S, Chen Y, Mirza AB, Fares J, Bandyopadhyay S, Henich E, Liao X, Bernstein M. Augmented and virtual reality usage in awake craniotomy: a systematic review. Neurosurg Rev 2022; 46:19. [PMID: 36529827 PMCID: PMC9760592 DOI: 10.1007/s10143-022-01929-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Augmented and virtual reality (AR, VR) are becoming promising tools in neurosurgery. AR and VR can reduce challenges associated with conventional approaches via the simulation and mimicry of specific environments of choice for surgeons. Awake craniotomy (AC) enables the resection of lesions from eloquent brain areas while monitoring higher cortical and subcortical functions. Evidence suggests that both surgeons and patients benefit from the various applications of AR and VR in AC. This paper investigates the application of AR and VR in AC and assesses its prospective utility in neurosurgery. A systematic review of the literature was performed using PubMed, Scopus, and Web of Science databases in accordance with the PRISMA guidelines. Our search results yielded 220 articles. A total of six articles consisting of 118 patients have been included in this review. VR was used in four papers, and the other two used AR. Tumour was the most common pathology in 108 patients, followed by vascular lesions in eight patients. VR was used for intraoperative mapping of language, vision, and social cognition, while AR was incorporated in preoperative training of white matter dissection and intraoperative visualisation and navigation. Overall, patients and surgeons were satisfied with the applications of AR and VR in their cases. AR and VR can be safely incorporated during AC to supplement, augment, or even replace conventional approaches in neurosurgery. Future investigations are required to assess the feasibility of AR and VR in various phases of AC.
Collapse
Affiliation(s)
- Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Saman Arfaie
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Yimin Chen
- Department of Neurology, Foshan Sanshui District People's Hospital, Foshan, China
| | | | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Feinberg School of Medicine, Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Soham Bandyopadhyay
- Nuffield Department of Surgical Sciences, Oxford University Global Surgery Group, University of Oxford, Oxford, UK
- Clinical Neurosciences, Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Edy Henich
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Xuxing Liao
- Department of Neurosurgery, Foshan Sanshui District People's Hospital, Foshan, China
| | - Mark Bernstein
- Division of Neurosurgery, Department of Surgery, University of Toronto, University Health Network, Toronto, Ontario, Canada
- Temmy Latner Center for Palliative Care, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Drosos E, Maye H, Youshani AS, Ehsan S, Burnand C, D’Urso PI. Awake brain surgery for autistic patients: Is it possible? Surg Neurol Int 2022; 13:543. [DOI: 10.25259/sni_719_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background:
Awake neurosurgery is currently the mainstay for eloquent brain lesions. Opting for an awake operation is affected by a number of patient-related factors. We present a case of a patient with autistic spectrum disorder (ASD) that was successfully operated for a brain tumor through awake craniotomy. To the best of our knowledge, this is the first reported case in the literature.
Case Description:
A 42-year-old patient, with known ASD since his childhood, underwent awake craniotomy for a left supplementary motor area tumor. Detailed preoperative preparation of the patient was done to identify special requirements and establish a good patient-team relationship. Intraoperatively, continuous language and motor testing were performed. Conversation and music were the main distractors used. Throughout the operation, the patient remained calm and cooperative, even during a focal seizure. Mapping allowed for >80% resection of the tumor. Postoperatively, the patient recovered without any deficits.
Conclusion:
This case shows that with growing experience and meticulous preparation, the limits of awake craniotomy can be expanded to include more patients that were previously considered unfit.
Collapse
Affiliation(s)
- Evangelos Drosos
- Department of Neurosurgery, Manchester Center for Clinical Neurosciences, Salford, United Kingdom
| | - Helen Maye
- Department of Neurosurgery, Manchester Center for Clinical Neurosciences, Salford, United Kingdom
| | - Amir Saam Youshani
- Department of Neurosurgery, Manchester Center for Clinical Neurosciences, Salford, United Kingdom
| | - Sheeba Ehsan
- Department of Neuropsyhology, Manchester Center for Clinical Neurosciences, Salford, United Kingdom
| | - Cally Burnand
- Department of Anesthesiology, Manchester Center for Clinical Neurosciences, Salford, United Kingdom
| | - Pietro Ivo D’Urso
- Department of Neurosurgery, Manchester Center for Clinical Neurosciences, Salford, United Kingdom
| |
Collapse
|
16
|
Axelson HW, Latini F, Jemstedt M, Ryttlefors M, Zetterling M. Continuous subcortical language mapping in awake glioma surgery. Front Oncol 2022; 12:947119. [PMID: 36033478 PMCID: PMC9416475 DOI: 10.3389/fonc.2022.947119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Repetitive monopolar short-train stimulation (STS) delivered from a suction probe enables continuous mapping and distance assessment of corticospinal tracts during asleep glioma resection. In this study, we explored this stimulation technique in awake glioma surgery. Fourteen patients with glioma involving language-related tracts were prospectively included. Continuous (3-Hz) cathodal monopolar STS (five pulses, 250 Hz) was delivered via the tip of a suction probe throughout tumor resection while testing language performance. At 70 subcortical locations, surgery was paused to deliver STS in a steady suction probe position. Monopolar STS influence on language performance at different subcortical locations was separated into three groups. Group 1 represented locations where STS did not produce language disturbance. Groups 2 and 3 represented subcortical locations where STS produced language interference at different threshold intensities (≥7.5 and ≤5 mA, respectively). For validation, bipolar Penfield stimulation (PS; 60 Hz for 3 s) was used as a “gold standard” comparison method to detect close proximity to language-related tracts and classified as positive or negative regarding language interference. There was no language interference from STS in 28 locations (Group 1), and PS was negative for all sites. In Group 2 (STS threshold ≥ 7.5 mA; median, 10 mA), there was language interference at 18 locations, and PS (median, 4 mA) was positive in only one location. In Group 3 (STS threshold ≤ 5 mA; median, 5 mA), there was language interference at 24 locations, and positive PS (median 4 mA) was significantly (p < 0.01) more common (15 out of 24 locations) compared with Groups 1 and 2. Despite the continuous stimulation throughout tumor resection, there were no seizures in any of the patients. In five patients, temporary current spread to the facial nerve was observed. We conclude that continuous subcortical STS is feasibly also in awake glioma surgery and that no language interference from STS or interference at ≥7.5 mA seems to indicate safe distance to language tracts as judged by PS comparisons. STS language interference at STS ≤ 5 mA was not consistently confirmed by PS, which needs to be addressed.
Collapse
Affiliation(s)
- Hans W. Axelson
- Department of Medical Sciences, Section of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Hans W. Axelson,
| | - Francesco Latini
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Malin Jemstedt
- Department of Medical Sciences, Speech-Language Pathology, Uppsala University, Uppsala, Sweden
| | - Mats Ryttlefors
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Maria Zetterling
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Aabedi AA, Young JS, Chang EF, Berger MS, Hervey-Jumper SL. Involvement of White Matter Language Tracts in Glioma: Clinical Implications, Operative Management, and Functional Recovery After Injury. Front Neurosci 2022; 16:932478. [PMID: 35898410 PMCID: PMC9309688 DOI: 10.3389/fnins.2022.932478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
To achieve optimal survival and quality of life outcomes in patients with glioma, the extent of tumor resection must be maximized without causing injury to eloquent structures. Preservation of language function is of particular importance to patients and requires careful mapping to reveal the locations of cortical language hubs and their structural and functional connections. Within this language network, accurate mapping of eloquent white matter tracts is critical, given the high risk of permanent neurological impairment if they are injured during surgery. In this review, we start by describing the clinical implications of gliomas involving white matter language tracts. Next, we highlight the advantages and limitations of methods commonly used to identify these tracts during surgery including structural imaging techniques, functional imaging, non-invasive stimulation, and finally, awake craniotomy. We provide a rationale for combining these complementary techniques as part of a multimodal mapping paradigm to optimize postoperative language outcomes. Next, we review local and long-range adaptations that take place as the language network undergoes remodeling after tumor growth and surgical resection. We discuss the probable cellular mechanisms underlying this plasticity with emphasis on the white matter, which until recently was thought to have a limited role in adults. Finally, we provide an overview of emerging developments in targeting the glioma-neuronal network interface to achieve better disease control and promote recovery after injury.
Collapse
Affiliation(s)
| | | | | | | | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Orillac C, Orringer DA. In Reply: Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2022; 90:e139. [PMID: 35238813 PMCID: PMC9514724 DOI: 10.1227/neu.0000000000001917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Cordelia Orillac
- Department of Neurosurgery, NYU Langone Health, New York, New York, USA
| | | |
Collapse
|
19
|
Aabedi AA, Young JS, Zhang Y, Ammanuel S, Morshed RA, Dalle Ore C, Brown D, Phillips JJ, Oberheim Bush NA, Taylor JW, Butowski N, Clarke J, Chang SM, Aghi M, Molinaro AM, Berger MS, Hervey-Jumper SL. Association of Neurological Impairment on the Relative Benefit of Maximal Extent of Resection in Chemoradiation-Treated Newly Diagnosed Isocitrate Dehydrogenase Wild-Type Glioblastoma. Neurosurgery 2022; 90:124-130. [PMID: 34982879 PMCID: PMC9514750 DOI: 10.1227/neu.0000000000001753] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Increases in the extent of resection of both contrast-enhanced (CE) and non-contrast-enhanced (NCE) tissue are associated with substantial survival benefits in patients with isocitrate dehydrogenase wild-type glioblastoma. The fact, however, remains that these lesions exist within the framework of complex neural circuitry subserving cognition, movement, and behavior, all of which affect the ultimate survival outcome. The prognostic significance of the interplay between CE and NCE cytoreduction and neurological morbidity is poorly understood. OBJECTIVE To identify a clinically homogenous population of 228 patients with newly diagnosed isocitrate dehydrogenase wild-type glioblastoma, all of whom underwent maximal safe resection of CE and NCE tissue and adjuvant chemoradiation. We then set out to delineate the competing interactions between resection of CE and NCE tissue and postoperative neurological impairment with respect to overall survival. METHODS Nonparametric multivariate models of survival were generated via recursive partitioning to provide a clinically intuitive framework for the prognostication and surgical management of such patients. RESULTS We demonstrated that the presence of a new postoperative neurological impairment was the key factor in predicting survival outcomes across the entire cohort. Patients older than 60 yr who suffered from at least one new impairment had the worst survival outcome regardless of extent of resection (median of 11.6 mo), whereas those who did not develop a new impairment had the best outcome (median of 28.4 mo) so long as all CE tissue was resected. CONCLUSION Our data provide novel evidence for management strategies that prioritize safe and complete resection of CE tissue.
Collapse
Affiliation(s)
- Alexander A Aabedi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Yalan Zhang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Simon Ammanuel
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Cecilia Dalle Ore
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Desmond Brown
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | - Nancy Ann Oberheim Bush
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Jennie W Taylor
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Butowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jennifer Clarke
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.,Department of Neurology, University of California, San Francisco, San Francisco, California, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Manish Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
20
|
Takami H, Venkatraghavan L, Bernstein M. Perioperative Factors Affecting Readmission After Awake Craniotomy: Analysis of 609 Consecutive Cases. World Neurosurg 2021; 158:e476-e487. [PMID: 34800731 DOI: 10.1016/j.wneu.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Awake craniotomy is being used widely for tumors near eloquent areas of the brain and also to facilitate early discharge from the hospital. Although most of the complications occur early in the postoperative period, there is a certain risk of delayed postoperative adverse events after discharge. This study investigated the incidence and the risk factors for postdischarge readmission after awake surgeries. METHODS This was a single-institution cohort study of 609 awake craniotomies by one surgeon at Toronto Western Hospital, 2006-2018. RESULTS Of 609 cases, 562 cases were available for analyses on postoperative readmission. In total, 6.0% (34 cases) were readmitted for medical reasons within 30 days after surgery, including neurologic decline (n = 9, 1.6%), infection at the surgical site (n = 8, 1.4%), followed by seizure (n = 5, 0.9%). Preoperative history of seizure (generalized or complex) was associated with readmission (P = 0.02). Eight of these plus 6 other cases experienced reoperation, and all the cases were due to infection but one (intraventricular hemorrhage). Investigations on correlations between perioperative factors and the reoperation found that redo surgery and findings of hemorrhage on postoperative imaging were significantly associated with reoperation (P = 0.0032, 0.0104 on multivariate analyses, respectively). CONCLUSIONS Although age, malignancy, or preoperative performance status were not related to readmission or reoperation, redo surgery cases and cases with postoperative hematoma were found to be at an increased risk for reoperation. Special attention and care need to be paid to these cases for potential complications after discharge, especially in situations in which patients tend to be discharged early after awake surgeries.
Collapse
Affiliation(s)
- Hirokazu Takami
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | - Mark Bernstein
- Division of Neurosurgery, Toronto Western Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
21
|
Functional alterations in cortical processing of speech in glioma-infiltrated cortex. Proc Natl Acad Sci U S A 2021; 118:2108959118. [PMID: 34753819 DOI: 10.1073/pnas.2108959118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Recent developments in the biology of malignant gliomas have demonstrated that glioma cells interact with neurons through both paracrine signaling and electrochemical synapses. Glioma-neuron interactions consequently modulate the excitability of local neuronal circuits, and it is unclear the extent to which glioma-infiltrated cortex can meaningfully participate in neural computations. For example, gliomas may result in a local disorganization of activity that impedes the transient synchronization of neural oscillations. Alternatively, glioma-infiltrated cortex may retain the ability to engage in synchronized activity in a manner similar to normal-appearing cortex but exhibit other altered spatiotemporal patterns of activity with subsequent impact on cognitive processing. Here, we use subdural electrocorticography to sample both normal-appearing and glioma-infiltrated cortex during speech. We find that glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex but recruits a diffuse spatial network. On a temporal scale, we show that signals from glioma-infiltrated cortex have decreased entropy, which may affect its ability to encode information during nuanced tasks such as production of monosyllabic versus polysyllabic words. Furthermore, we show that temporal decoding strategies for distinguishing monosyllabic from polysyllabic words were feasible for signals arising from normal-appearing cortex but not from glioma-infiltrated cortex. These findings inform our understanding of cognitive processing in chronic disease states and have implications for neuromodulation and prosthetics in patients with malignant gliomas.
Collapse
|
22
|
Aaronson DM, Martinez Del Campo E, Boerger TF, Conway B, Cornell S, Tate M, Mueller WM, Chang EF, Krucoff MO. Understanding Variable Motor Responses to Direct Electrical Stimulation of the Human Motor Cortex During Brain Surgery. Front Surg 2021; 8:730367. [PMID: 34660677 PMCID: PMC8517489 DOI: 10.3389/fsurg.2021.730367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/02/2021] [Indexed: 11/23/2022] Open
Abstract
Direct electrical stimulation of the brain is the gold standard technique used to define functional-anatomical relationships during neurosurgical procedures. Areas that respond to stimulation are considered “critical nodes” of circuits that must remain intact for the subject to maintain the ability to perform certain functions, like moving and speaking. Despite its routine use, the neurophysiology underlying downstream motor responses to electrical stimulation of the brain, such as muscle contraction or movement arrest, is poorly understood. Furthermore, varying and sometimes counterintuitive responses can be seen depending on how and where the stimulation is applied, even within the human primary motor cortex. Therefore, here we review relevant neuroanatomy of the human motor system, provide a brief historical perspective on electrical brain stimulation, explore mechanistic variations in stimulation applications, examine neurophysiological properties of different parts of the motor system, and suggest areas of future research that can promote a better understanding of the interaction between electrical stimulation of the brain and its function.
Collapse
Affiliation(s)
- Daniel M Aaronson
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Timothy F Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brian Conway
- Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sarah Cornell
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew Tate
- Department of Neurosurgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Edward F Chang
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, United States
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
23
|
Busan P, Moret B, Masina F, Del Ben G, Campana G. Speech Fluency Improvement in Developmental Stuttering Using Non-invasive Brain Stimulation: Insights From Available Evidence. Front Hum Neurosci 2021; 15:662016. [PMID: 34456692 PMCID: PMC8386014 DOI: 10.3389/fnhum.2021.662016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Developmental stuttering (DS) is a disturbance of the normal rhythm of speech that may be interpreted as very debilitating in the most affected cases. Interventions for DS are historically based on the behavioral modifications of speech patterns (e.g., through speech therapy), which are useful to regain a better speech fluency. However, a great variability in intervention outcomes is normally observed, and no definitive evidence is currently available to resolve stuttering, especially in the case of its persistence in adulthood. In the last few decades, DS has been increasingly considered as a functional disturbance, affecting the correct programming of complex motor sequences such as speech. Compatibly, understanding of the neurophysiological bases of DS has dramatically improved, thanks to neuroimaging, and techniques able to interact with neural tissue functioning [e.g., non-invasive brain stimulation (NIBS)]. In this context, the dysfunctional activity of the cortico-basal-thalamo-cortical networks, as well as the defective patterns of connectivity, seems to play a key role, especially in sensorimotor networks. As a consequence, a direct action on the functionality of "defective" or "impaired" brain circuits may help people who stutter to manage dysfluencies in a better way. This may also "potentiate" available interventions, thus favoring more stable outcomes of speech fluency. Attempts aiming at modulating (and improving) brain functioning of people who stutter, realized by using NIBS, are quickly increasing. Here, we will review these recent advancements being applied to the treatment of DS. Insights will be useful not only to assess whether the speech fluency of people who stutter may be ameliorated by acting directly on brain functioning but also will provide further suggestions about the complex and dynamic pathophysiology of DS, where causal effects and "adaptive''/''maladaptive" compensation mechanisms may be strongly overlapped. In conclusion, this review focuses future research toward more specific, targeted, and effective interventions for DS, based on neuromodulation of brain functioning.
Collapse
Affiliation(s)
| | | | | | - Giovanni Del Ben
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gianluca Campana
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
24
|
Bu L, Lu J, Zhang J, Wu J. Intraoperative Cognitive Mapping Tasks for Direct Electrical Stimulation in Clinical and Neuroscientific Contexts. Front Hum Neurosci 2021; 15:612891. [PMID: 33762913 PMCID: PMC7982856 DOI: 10.3389/fnhum.2021.612891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Direct electrical stimulation (DES) has been widely applied in both guidance of lesion resection and scientific research; however, the design and selection of intraoperative cognitive mapping tasks have not been updated in a very long time. We introduce updated mapping tasks for language and non-language functions and provide recommendations for optimal design and selection of intraoperative mapping tasks. In addition, with DES becoming more critical in current neuroscientific research, a task design that has not been widely used in DES yet (subtraction and conjunction paradigms) was introduced for more delicate mapping of brain functions especially for research purposes. We also illustrate the importance of designing a common task series for DES and other non-invasive mapping techniques. This review gives practical updated guidelines for advanced application of DES in clinical and neuroscientific research.
Collapse
Affiliation(s)
- Linghao Bu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China.,Zhangjiang Lab, Institute of Brain-Intelligence Technology, Shanghai, China.,Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.,Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|