1
|
Cho NS, Wang C, Van Dyk K, Sanvito F, Oshima S, Yao J, Lai A, Salamon N, Cloughesy TF, Nghiemphu PL, Ellingson BM. Pseudo-Resting-State Functional MRI Derived from Dynamic Susceptibility Contrast Perfusion MRI Can Predict Cognitive Impairment in Glioma. AJNR Am J Neuroradiol 2024; 45:1552-1561. [PMID: 38719607 PMCID: PMC11448991 DOI: 10.3174/ajnr.a8327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND AND PURPOSE Resting-state functional MRI (rs-fMRI) can be used to estimate functional connectivity (FC) between different brain regions, which may be of value for identifying cognitive impairment in patients with brain tumors. Unfortunately, neither rs-fMRI nor neurocognitive assessments are routinely assessed clinically, mostly due to limitations in examination time and cost. Since DSC perfusion MRI is often used clinically to assess tumor vascularity and similarly uses a gradient-echo-EPI sequence for T2*-sensitivity, we theorized a "pseudo-rs-fMRI" signal could be derived from DSC perfusion to simultaneously quantify FC and perfusion metrics, and these metrics can be used to estimate cognitive impairment in patients with brain tumors. MATERIALS AND METHODS Twenty-four consecutive patients with gliomas were enrolled in a prospective study that included DSC perfusion MRI, resting-sate functional MRI (rs-fMRI), and neurocognitive assessment. Voxelwise modeling of contrast bolus dynamics during DSC acquisition was performed and then subtracted from the original signal to generate a residual "pseudo-rs-fMRI" signal. Following the preprocessing of pseudo-rs-fMRI, full rs-fMRI, and a truncated version of the full rs-fMRI (first 100 timepoints) data, the default mode, motor, and language network maps were generated with atlas-based ROIs, Dice scores were calculated for the resting-state network maps from pseudo-rs-fMRI and truncated rs-fMRI using the full rs-fMRI maps as reference. Seed-to-voxel and ROI-to-ROI analyses were performed to assess FC differences between cognitively impaired and nonimpaired patients. RESULTS Dice scores for the group-level and patient-level (mean±SD) default mode, motor, and language network maps using pseudo-rs-fMRI were 0.905/0.689 ± 0.118 (group/patient), 0.973/0.730 ± 0.124, and 0.935/0.665 ± 0.142, respectively. There was no significant difference in Dice scores between pseudo-rs-fMRI and the truncated rs-fMRI default mode (P = .97) or language networks (P = .30), but there was a difference in motor networks (P = .02). A multiple logistic regression classifier applied to ROI-to-ROI FC networks using pseudo-rs-fMRI could identify cognitively impaired patients (sensitivity = 84.6%, specificity = 63.6%, receiver operating characteristic area under the curve (AUC) = 0.7762 ± 0.0954 (standard error), P = .0221) and performance was not significantly different from full rs-fMRI predictions (AUC = 0.8881 ± 0.0733 (standard error), P = .0013, P = .29 compared with pseudo-rs-fMRI). CONCLUSIONS DSC perfusion MRI-derived pseudo-rs-fMRI data can be used to perform typical rs-fMRI FC analyses that may identify cognitive decline in patients with brain tumors while still simultaneously performing perfusion analyses.
Collapse
Affiliation(s)
- Nicholas S. Cho
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (N.S.C., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
- Medical Scientist Training Program (N.S.C.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Chencai Wang
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Kathleen Van Dyk
- Department of Psychiatry and Biobehavioral Sciences (K.V.D, B.M.E.), David Geffen School of Medicine, Semel Institute, University of California Los Angeles, Los Angeles, California
| | - Francesco Sanvito
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sonoko Oshima
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jingwen Yao
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Albert Lai
- UCLA Neuro-Oncology Program (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Neurology (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Noriko Salamon
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Timothy F. Cloughesy
- UCLA Neuro-Oncology Program (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Neurology (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Phioanh L. Nghiemphu
- UCLA Neuro-Oncology Program (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Neurology (A.L., T.F.C., P.L.N.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Benjamin M. Ellingson
- From the UCLA Brain Tumor Imaging Laboratory (BTIL) (N.S.C., C.W., F.S., S.O., J.Y., B.M.E.), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, California
- Department of Radiological Sciences (N.S.C., C.W., F.S., S.O., J.Y., N.S., B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering (N.S.C., B.M.E.), Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California
- Department of Psychiatry and Biobehavioral Sciences (K.V.D, B.M.E.), David Geffen School of Medicine, Semel Institute, University of California Los Angeles, Los Angeles, California
- Department of Neurosurgery (B.M.E.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
3
|
Succop B, Richardson DR, Rauf Y, Higgins D, Catalino M. Understanding treatment preferences and cognitive outcomes in patients with gliomas. Support Care Cancer 2024; 32:673. [PMID: 39292365 DOI: 10.1007/s00520-024-08876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE Understanding how glioma patients value cognitive outcomes is essential to personalizing their treatment plans. The purpose of this study was to identify the modifiable cognitive functions most affected by treatment and most important to patient quality of life. METHODS Patients with gliomas were prospectively enrolled in focus groups and individual interviews using a standardized guide focusing on cognitive functions until saturation was achieved. Patient values and treatment preferences were elicited and compared to the frequency of reported deficits. NVivo natural language processing software was used to perform thematic qualitative analyses. Quantitative analysis with Fischer's exact test was used for each cognitive function to assess for an association between experiencing a deficit and rating that function as important to quality of life. RESULTS Twenty participants participated, of whom 60% were female. Racial identification consisted of 75% White, 15% Black/African American, and 10% Other Racial Identification. The cognitive functions most essential to the quality of life in this cohort were sense of self (80% of participants), memory (70% of participants), and communication (25% of participants). The functions that experienced the most deficits because of treatment were memory (65% of participants), concentration (65% of participants), and special senses (40% of participants). "Dealbreakers" to treatment were complete loss of independence, sense of self, and/or the ability to interact with loved ones. Fischer's exact test showed no associations between experiencing a cognitive function deficit and rating that function as important to quality of life. CONCLUSIONS Glioma patients in this study prioritized cognitive functions according to memory, personal identity, and their ability to communicate with loved ones independently of experiencing deficits in these functions. Further study should compare patient prioritization and decision-making between surgically curable and noncurable grade gliomas as well as investigate the quality of life benefits of incorporating the connectomics of highly valued cognitive functions in surgical planning.
Collapse
Affiliation(s)
- Benjamin Succop
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| | - Daniel R Richardson
- Department of Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yasmeen Rauf
- Department of Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dominique Higgins
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Catalino
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Herbet G, Duffau H, Mandonnet E. Predictors of cognition after glioma surgery: connectotomy, structure-function phenotype, plasticity. Brain 2024; 147:2621-2635. [PMID: 38573324 DOI: 10.1093/brain/awae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Determining preoperatively the maximal extent of resection that would preserve cognitive functions is the core challenge of brain tumour surgery. Over the past decade, the methodological framework to achieve this goal has been thoroughly renewed: the population-level topographically-focused voxel-based lesion-symptom mapping has been progressively overshadowed by machine learning (ML) algorithmics, in which the problem is framed as predicting cognitive outcomes in a patient-specific manner from a typically large set of variables. However, the choice of these predictors is of utmost importance, as they should be both informative and parsimonious. In this perspective, we first introduce the concept of connectotomy: instead of parameterizing resection topography through the status (intact/resected) of a huge number of voxels (or parcels) paving the whole brain in the Cartesian 3D-space, the connectotomy models the resection in the connectivity space, by computing a handful number of networks disconnection indices, measuring how the structural connectivity sustaining each network of interest was hit by the resection. This connectivity-informed reduction of dimensionality is a necessary step for efficiently implementing ML tools, given the relatively small number of patient-examples in available training datasets. We further argue that two other major sources of interindividual variability must be considered to improve the accuracy with which outcomes are predicted: the underlying structure-function phenotype and neuroplasticity, for which we provide an in-depth review and propose new ways of determining relevant predictors. We finally discuss the benefits of our approach for precision surgery of glioma.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Praxiling lab, UMR5267 CNRS & Paul Valéry University, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Institut Universitaire de France, Paris 75000, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Team 'Plasticity of Central Nervous System, Stem Cells and Glial Tumors', U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier 34000, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, AP-HP, Paris 75010, France
- Frontlab, CNRS UMR 7225, INSERM U1127, Paris Brain Institute (ICM), Paris 75013, France
- Université de Paris Cité, UFR de médecine, Paris 75005, France
| |
Collapse
|
5
|
Noll KR, Bradshaw M, Sheppard D, Wefel JS. Perioperative Neurocognitive Function in Glioma Surgery. Curr Oncol Rep 2024; 26:466-476. [PMID: 38573439 DOI: 10.1007/s11912-024-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review provides a concise overview of the recent literature regarding preoperative and postoperative neurocognitive functioning (NCF) in patients with glioma. Brief discussion also covers contemporary intraoperative brain mapping work, with a focus on potential influence of mapping upon NCF outcomes following awake surgery. RECENT FINDINGS Most patients with glioma exhibit preoperative NCF impairment, with severity varying by germ line and tumoral genetics, tumor grade, and lesion location, among other characteristics. Literature regarding postoperative NCF changes is mixed, though numerous studies indicate a majority of patients exhibit immediate and short-term worsening. This is often followed by recovery over several months; however, a substantial portion of patients harbor persisting declines. Decline appears related to surgically-induced structural and functional brain alterations, both local and distal to the tumor and resection cavity. Importantly, NCF decline may be mitigated to some extent by intraoperative brain mapping, including mapping of both language-mediated and nonverbal functions. Research regarding perioperative NCF in patients with glioma has flourished over recent years. While this has increased our understanding of contributors to NCF and risk of decline associated with surgical intervention, more work is needed to better preserve NCF throughout the disease course.
Collapse
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA.
| | - Mariana Bradshaw
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - David Sheppard
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
6
|
Seitzman BA, Anandarajah H, Dworetsky A, McMichael A, Coalson RS, Agamah AM, Jiang C, Gu H, Barbour DL, Schlaggar BL, Limbrick DD, Rubin JB, Shimony JS, Perkins SM. Cognitive deficits and altered functional brain network organization in pediatric brain tumor patients. Brain Imaging Behav 2023; 17:689-701. [PMID: 37695507 PMCID: PMC10942739 DOI: 10.1007/s11682-023-00798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Survivors of pediatric brain tumors experience significant cognitive deficits from their diagnosis and treatment. The exact mechanisms of cognitive injury are poorly understood, and validated predictors of long-term cognitive outcome are lacking. Resting state functional magnetic resonance imaging allows for the study of the spontaneous fluctuations in bulk neural activity, providing insight into brain organization and function. Here, we evaluated cognitive performance and functional network architecture in pediatric brain tumor patients. Forty-nine patients (7-18 years old) with a primary brain tumor diagnosis underwent resting state imaging during regularly scheduled clinical visits. All patients were tested with a battery of cognitive assessments. Extant data from 139 typically developing children were used as controls. We found that obtaining high-quality imaging data during routine clinical scanning was feasible. Functional network organization was significantly altered in patients, with the largest disruptions observed in patients who received propofol sedation. Awake patients demonstrated significant decreases in association network segregation compared to controls. Interestingly, there was no difference in the segregation of sensorimotor networks. With a median follow-up of 3.1 years, patients demonstrated cognitive deficits in multiple domains of executive function. Finally, there was a weak correlation between decreased default mode network segregation and poor picture vocabulary score. Future work with longer follow-up, longitudinal analyses, and a larger cohort will provide further insight into this potential predictor.
Collapse
Affiliation(s)
- Benjamin A Seitzman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hari Anandarajah
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
| | - Ally Dworetsky
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alana McMichael
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca S Coalson
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - A Miriam Agamah
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Jiang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hongjie Gu
- Department of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis L Barbour
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David D Limbrick
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie M Perkins
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
van Lingen MR, Breedt LC, Geurts JJG, Hillebrand A, Klein M, Kouwenhoven MCM, Kulik SD, Reijneveld JC, Stam CJ, De Witt Hamer PC, Zimmermann MLM, Santos FAN, Douw L. The longitudinal relation between executive functioning and multilayer network topology in glioma patients. Brain Imaging Behav 2023; 17:425-435. [PMID: 37067658 PMCID: PMC10435610 DOI: 10.1007/s11682-023-00770-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
Many patients with glioma, primary brain tumors, suffer from poorly understood executive functioning deficits before and/or after tumor resection. We aimed to test whether frontoparietal network centrality of multilayer networks, allowing for integration across multiple frequencies, relates to and predicts executive functioning in glioma. Patients with glioma (n = 37) underwent resting-state magnetoencephalography and neuropsychological tests assessing word fluency, inhibition, and set shifting before (T1) and one year after tumor resection (T2). We constructed binary multilayer networks comprising six layers, with each layer representing frequency-specific functional connectivity between source-localized time series of 78 cortical regions. Average frontoparietal network multilayer eigenvector centrality, a measure for network integration, was calculated at both time points. Regression analyses were used to investigate associations with executive functioning. At T1, lower multilayer integration (p = 0.017) and epilepsy (p = 0.006) associated with poorer set shifting (adj. R2 = 0.269). Decreasing multilayer integration (p = 0.022) and not undergoing chemotherapy at T2 (p = 0.004) related to deteriorating set shifting over time (adj. R2 = 0.283). No significant associations were found for word fluency or inhibition, nor did T1 multilayer integration predict changes in executive functioning. As expected, our results establish multilayer integration of the frontoparietal network as a cross-sectional and longitudinal correlate of executive functioning in glioma patients. However, multilayer integration did not predict postoperative changes in executive functioning, which together with the fact that this correlate is also found in health and other diseases, limits its specific clinical relevance in glioma.
Collapse
Affiliation(s)
- Marike R van Lingen
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Amsterdam, the Netherlands.
| | - Lucas C Breedt
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
| | - Jeroen J G Geurts
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Martin Klein
- Department of Medical Psychology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Mathilde C M Kouwenhoven
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Shanna D Kulik
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
| | - Jaap C Reijneveld
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Mona L M Zimmermann
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Fernando A N Santos
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands
- Institute of Advanced Studies, University of Amsterdam, Amsterdam, the Netherlands
| | - Linda Douw
- Department of Anatomy and Neurosciences, Amsterdam UMC location Vrije Universiteit Amsterdam, de Boelelaan 1108, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Brain Imaging, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Systems & Network Neurosciences, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Zhang X, Zhang G, Wang Y, Huang H, Li H, Li M, Yang C, Li M, Chen H, Jing B, Lin S. Alteration of default mode network: association with executive dysfunction in frontal glioma patients. J Neurosurg 2023; 138:1512-1521. [PMID: 36242576 DOI: 10.3171/2022.8.jns22591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with frontal gliomas often experience executive dysfunction (EF-D) before surgery, and the changes in brain plasticity underlying this effect remain obscure. In this study, the authors aimed to assess whole-brain structural and functional alterations by using structural MRI and resting-state functional MRI (rs-fMRI) in frontal glioma patients with or without EF-D. METHODS Fifty-seven patients with frontal gliomas were admitted prospectively to the authors' institution and assigned to one of two groups: 1) the normal executive function (EF-N) group and 2) the EF-D group, based on patient results for the Trail Making Test, Part B and Stroop Color-Word Test, Part C. Twenty-nine baseline-matched healthy controls were also recruited. All participants underwent multimodal MRI examination. Cortical surface thickness, surface-based resting-state activity (fractional amplitude of low-frequency fluctuation [fALFF] and regional homogeneity [ReHo]), and edge-based network functional connectivity (FC) were measured with FreeSurfer and fMRIPrep. The correlation between altered MRI parameters and executive function (EF) was assessed using Pearson correlation and receiver operating characteristic (ROC) analysis. RESULTS Demographic characteristics (sex, age, and education level) and clinical characteristics (location, volume, grade of tumor, and preoperative epilepsy) were not significantly different between the groups, but the Karnofsky Performance Scale score was worse in the EF-D group. There was no significant difference in cortical surface thickness between the EF-D and EF-N groups. In both low-grade and high-grade glioma patients the fALFF value (permutation test + threshold-free cluster enhancement, p value after family-wise error correction < 0.05) and ReHo value (t-test, p < 0.001) of the left precuneus cortex in the EF-D group were greater than those in the EF-N group, which were negatively correlated with EF (p < 0.05) and enabled prediction of EF (area under the ROC curve 0.826 for fALFF and 0.855 for ReHo, p < 0.001). Compared with the EF-N group, the FCs between the default mode network (DMN) from DMN node to DMN node (DMN-DMN) and from the DMN to the central executive network (DMN-CEN) in the EF-D group were increased significantly (network-based statistics corrected p < 0.05) and negatively correlated with EF (Pearson correlation, p < 0.05). CONCLUSIONS Apart from local disruption, the abnormally activated DMN in the resting state is related to EF-D in frontal glioma patients. DMN activity should be considered during preoperative planning and postoperative neurorehabilitation for frontal glioma patients to preserve EF. Clinical trial registration no.: NCT03087838 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Xiaokang Zhang
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Guobin Zhang
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 4Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | - Yonggang Wang
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 4Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | | | - Haoyi Li
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Mingxiao Li
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Chuanwei Yang
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Ming Li
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Hongyan Chen
- 6Department of Radiology, Beijing Tiantan Hospital, Capital Medical University; and
| | - Bin Jing
- 7School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Song Lin
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 4Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| |
Collapse
|
9
|
Kirkman MA, Hunn BHM, Thomas MSC, Tolmie AK. Influences on cognitive outcomes in adult patients with gliomas: A systematic review. Front Oncol 2022; 12:943600. [PMID: 36033458 PMCID: PMC9407441 DOI: 10.3389/fonc.2022.943600] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
People with brain tumors, including those previously treated, are commonly affected by a range of neurocognitive impairments involving executive function, memory, attention, and social/emotional functioning. Several factors are postulated to underlie this relationship, but evidence relating to many of these factors is conflicting and does not fully explain the variation in cognitive outcomes seen in the literature and in clinical practice. To address this, we performed a systematic literature review to identify and describe the range of factors that can influence cognitive outcomes in adult patients with gliomas. A literature search was performed of Ovid MEDLINE, PsychINFO, and PsycTESTS from commencement until September 2021. Of 9,998 articles identified through the search strategy, and an additional 39 articles identified through other sources, 142 were included in our review. The results confirmed that multiple factors influence cognitive outcomes in patients with gliomas. The effects of tumor characteristics (including location) and treatments administered are some of the most studied variables but the evidence for these is conflicting, which may be the result of methodological and study population differences. Tumor location and laterality overall appear to influence cognitive outcomes, and detection of such an effect is contingent upon administration of appropriate cognitive tests. Surgery appears to have an overall initial deleterious effect on cognition with a recovery in most cases over several months. A large body of evidence supports the adverse effects of radiotherapy on cognition, but the role of chemotherapy is less clear. To contrast, baseline cognitive status appears to be a consistent factor that influences cognitive outcomes, with worse baseline cognition at diagnosis/pre-treatment correlated with worse long-term outcomes. Similarly, much evidence indicates that anti-epileptic drugs have a negative effect on cognition and genetics also appear to have a role. Evidence regarding the effect of age on cognitive outcomes in glioma patients is conflicting, and there is insufficient evidence for gender and fatigue. Cognitive reserve, brain reserve, socioeconomic status, and several other variables discussed in this review, and their influence on cognition and recovery, have not been well-studied in the context of gliomas and are areas for focus in future research. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42017072976.
Collapse
Affiliation(s)
- Matthew A. Kirkman
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
- Department of Neurosurgery, Queen’s Medical Centre, Nottingham University Hospitals National Health Service (NHS) Trust, Nottingham, United Kingdom
| | - Benjamin H. M. Hunn
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neurosurgery, Royal Hobart Hospital, Hobart, TAS, Australia
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Michael S. C. Thomas
- Department of Psychological Sciences, Birkbeck, University of London, London, United Kingdom
| | - Andrew K. Tolmie
- Department of Psychology and Human Development, University College London (UCL) Institute of Education, UCL, London, United Kingdom
| |
Collapse
|
10
|
What Can Resting-State fMRI Data Analysis Explain about the Functional Brain Connectivity in Glioma Patients? Tomography 2022; 8:267-280. [PMID: 35202187 PMCID: PMC8878995 DOI: 10.3390/tomography8010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Resting-state functional MRI has been increasingly implemented in imaging protocols for the study of functional connectivity in glioma patients as a sequence able to capture the activity of brain networks and to investigate their properties without requiring the patients’ cooperation. The present review aims at describing the most recent results obtained through the analysis of resting-state fMRI data in different contexts of interest for brain gliomas: the identification and localization of functional networks, the characterization of altered functional connectivity, and the evaluation of functional plasticity in relation to the resection of the glioma. An analysis of the literature showed that significant and promising results could be achieved through this technique in all the aspects under investigation. Nevertheless, there is room for improvement, especially in terms of stability and generalizability of the outcomes. Further research should be conducted on homogeneous samples of glioma patients and at fixed time points to reduce the considerable variability in the results obtained across and within studies. Future works should also aim at establishing robust metrics for the assessment of the disruption of functional connectivity and its recovery at the single-subject level.
Collapse
|
11
|
Haldbo-Classen L, Amidi A, Wu L, Lukacova S, Oettingen G, Lassen-Ramshad Y, Zachariae R, Kallehauge J, Høyer M. Associations between patient-reported outcomes and radiation dose in patients treated with radiation therapy for primary brain tumours. Clin Transl Radiat Oncol 2021; 31:86-92. [PMID: 34693039 PMCID: PMC8515293 DOI: 10.1016/j.ctro.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
AIM This study aimed to explore associations between radiation dose and patient-reported outcomes in patients with a primary non-glioblastoma brain tumour treated with radiation therapy (RT), with a focus on health-related quality-of-life (HRQoL) and self-reported cognitive function. METHODS In this cross-sectional study, 78 patients who had received RT for a non-glioblastoma primary brain tumour, underwent neuropsychological testing and completed questionnaires on HRQoL, cognitive function, fatigue, depression, anxiety and perceived stress. The study explores the association between HRQoL scores, self-reported cognitive function and radiation doses to total brain, brainstem, hippocampus, thalamus, temporal lobes and frontal lobes. In addition, we examined correlations between neuropsychological test scores and self-reported cognitive function. RESULTS The median time between RT and testing was 4.6 years (range 1-9 years). Patients who had received high mean radiation doses to the total brain had low HRQoL scores (Cohen's d = 0.50, p = 0.04), brainstem (d = 0.65, p = 0.01) and hippocampus (d = 0.66, p = 0.01). High mean doses to the total brain were also associated with low scores on self-reported cognitive functioning (Cohen's d = 0.64, p = 0.02), brainstem (d = 0.55, p = 0.03), hippocampus (d = 0.76, p < 0.01), temporal lobes (d = 0.70, p < 0.01) and thalamus (d = 0.64, p = 0.01). Self-reported cognitive function correlated well with neuropsychological test scores (correlation range 0.27-0.54.). CONCLUSIONS High radiation doses to specific brain structures may be associated with impaired HRQoL and self-reported cognitive function with potentially negative implications to patients' daily lives. Patient-reported outcomes of treatment-related side-effects and their associations with radiation doses to the brain and its sub-structures may provide important information on radiation tolerance to the brain and sub-structures.
Collapse
Affiliation(s)
| | - A. Amidi
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Unit for Psychooncology and Health Psychology, Department of Psychology and Behavioural Sciences, Aarhus University, Denmark
| | - L.M. Wu
- Unit for Psychooncology and Health Psychology, Department of Psychology and Behavioural Sciences, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Denmark
| | - S. Lukacova
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - G. Oettingen
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Y. Lassen-Ramshad
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - R. Zachariae
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Unit for Psychooncology and Health Psychology, Department of Psychology and Behavioural Sciences, Aarhus University, Denmark
| | - J.F. Kallehauge
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - M. Høyer
- Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Wang C, Van Dyk K, Cho N, Raymond C, Choi J, Salamon N, Pope WB, Lai A, Cloughesy TF, Nghiemphu PL, Ellingson BM. Characterization of cognitive function in survivors of diffuse gliomas using resting-state functional MRI (rs-fMRI). Brain Imaging Behav 2021; 16:239-251. [PMID: 34350525 PMCID: PMC8825610 DOI: 10.1007/s11682-021-00497-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 11/29/2022]
Abstract
As treatments for diffuse gliomas have advanced, survival for patients with gliomas has also increased. However, there remains limited knowledge on the relationships between brain connectivity and the lasting changes to cognitive function that glioma survivors often experience long after completing treatment. This resting-state functional magnetic resonance imaging (rs-fMRI) study explored functional connectivity (FC) alterations associated with cognitive function in survivors of gliomas. In this pilot study, 22 patients (mean age 43.8 ± 11.9) with diffuse gliomas who completed treatment within the past 10 years were evaluated using rs-fMRI and neuropsychological measures. Novel rs-fMRI analysis methods were used to account for missing brain in the resection cavity. FC relationships were assessed between cognitively impaired and non-impaired glioma patients, along with self-reported cognitive impairment, non-work daily functioning, and time with surgery. In the cognitively non-impaired patients, FC was stronger in the medial prefrontal cortex, rostral prefrontal cortex, and intraparietal sulcus compared to the impaired survivors. When examining non-work daily functioning, a positive correlation with FC was observed between the accumbens and the intracalcarine cortices, while a negative correlation with FC was observed between the parietal operculum cortex and the cerebellum. Additionally, worse self-reported cognitive impairment and worse non-work daily functioning were associated with increased FC between regions involved in cognition and sensorimotor processing. These preliminary findings suggest that neural correlates for cognitive and daily functioning in glioma patients can be revealed using rs-fMRI. Resting-state network alterations may serve as a biomarker for patients’ cognition and functioning.
Collapse
Affiliation(s)
- Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kathleen Van Dyk
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Nicholas Cho
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Medical Scientist Training Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Justin Choi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Albert Lai
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA. .,Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|