1
|
Xin H, Yang B, Jia Y, Qi Q, Wang Y, Wang L, Chen X, Li F, Lu J, Chen N. Graph Metrics Reveal Brain Network Topological Property in Neuropathic Pain Patients: A Systematic Review. J Pain Res 2024; 17:3277-3286. [PMID: 39411193 PMCID: PMC11474538 DOI: 10.2147/jpr.s483466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Neuropathic pain (NP) is a common and persistent disease that leads to immense suffering and serious social burden. Incomplete understanding of the underlying neural basis makes it difficult to achieve significant breakthroughs in the treatment of NP. We aimed to review the functional and structural brain topological properties in patients with NP and consider how graph measures reveal potential mechanisms and are applied to clinical practice. Related studies were searched in PubMed and Web of Science databases. Topological property changes in patients with NP, including small-worldness, functional separation, integration, and centrality metrics, were reviewed. The findings suggest that NP was characterized by retained but declined small-worldness, indicating an insidious imbalance between network integration and segregation. The global-level measures revealed decreased global and local efficiency in the NP, implying decreased information transfer efficiency for both long- and short-range connections. Altered nodal centrality measures involve various brain regions, mostly those associated with pain, cognition, and emotion. Graph theory is a powerful tool for identifying topological properties of patients with NP. These specific brain changes in patients with NP are very helpful in revealing the potential mechanisms of NP, developing new treatment strategies, and evaluating the efficacy and prognosis of NP.
Collapse
Affiliation(s)
- Haotian Xin
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Yulong Jia
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Qunya Qi
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Yu Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Fang Li
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, 100053, People’s Republic of China
| |
Collapse
|
2
|
Muñoz-Gómez E, Aguilar-Rodríguez M, Mollà-Casanova S, Sempere-Rubio N, Inglés M, Serra-Añó P. A randomized controlled trial on the effectiveness of mirror therapy in improving strength, range of movement and muscle activity, in people with carpal tunnel syndrome. J Hand Ther 2024; 37:534-543. [PMID: 38458950 DOI: 10.1016/j.jht.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND There is little information on the potential effects of mirror therapy (MT) on motor recovery in individuals with Carpal Tunnel Syndrome (CTS). PURPOSE To compare the effectiveness of a MT protocol versus a therapeutic exercise (TE) protocol, in improving strength, range of motion (ROM), muscle activity, pain, and functionality in patients with CTS. STUDY DESIGN Randomized clinical trial. METHODS Thirty-nine participants with unilateral CTS were divided into two groups: (i) MT group (n = 20) that followed an exercise protocol applied to the unaffected hand reflected in a mirror, and (ii) TE group (n = 19) that followed the same exercise protocol using the unaffected hand but without a mirror. Strength, wrist ROM, muscle activity, pain and functionality, were assessed at baseline (T0), after treatment (T1) and one month after treatment (T2). RESULTS At T1, the MT group showed significantly higher wrist flexion-extension ROM compared to TE (p = 0.04, d = 0.8), maintained at T2 (p = 0.02, d = 0.8). No significant changes were observed in ulnar-radius deviation, pronosupination, or fatigue following either MT or TE (p > 0.05). MT exhibited enhanced handgrip strength at T1 (p = 0.001, d = 0.7), as well as an increase in the extensor carpi radialis (ECR) and flexor carpi radialis (FCR) maximum muscle activity (p = 0.04, d = 1.0; p = 0.03, d = 0.4). At T1, both groups decreased pain (p = 0.002, d = 1.1; p = 0.02, d = 0.7), and improved functionality (p < 0.001, d = 0.8; p = 0.01, d = 0.5) (MT and TE respectively). DISCUSSION MT led to enhancements in wrist flexion-extension movement, handgrip strength and functionality unlike TE. MT notably increased muscle activity, particularly in the ECR and FCR muscles. CONCLUSIONS MT is a favorable strategy to improve wrist flexion-extension ROM, handgrip strength, ECR and FCR muscle activity, and functionality in people with unilateral CTS.
Collapse
Affiliation(s)
- Elena Muñoz-Gómez
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Marta Aguilar-Rodríguez
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain.
| | - Sara Mollà-Casanova
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Nuria Sempere-Rubio
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Marta Inglés
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Pilar Serra-Añó
- Research Unit in Clinical Biomechanics (UBIC), Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Gu SY, Shi FC, Wang S, Wang CY, Yao XX, Sun YF, Luo CX, Liu WT, Hu JB, Chen F, Pan PL, Li WH. Altered cortical thickness and structural covariance networks in chronic low back pain. Brain Res Bull 2024; 212:110968. [PMID: 38679110 DOI: 10.1016/j.brainresbull.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Despite regional brain structural changes having been reported in patients with chronic low back pain (CLBP), the topological properties of structural covariance networks (SCNs), which refer to the organization of the SCNs, remain unclear. This study applied graph theoretical analysis to explore the alterations of the topological properties of SCNs, aiming to comprehend the integration and separation of SCNs in patients with CLBP. METHODS A total of 38 patients with CLBP and 38 healthy controls (HCs), balanced for age and sex, were scanned using three-dimensional T1-weighted magnetic resonance imaging. The cortical thickness was extracted from 68 brain regions, according to the Desikan-Killiany atlas, and used to reconstruct the SCNs. Subsequently, graph theoretical analysis was employed to evaluate the alterations of the topological properties in the SCNs of patients with CLBP. RESULTS In comparison to HCs, patients with CLBP had less cortical thickness in the left superior frontal cortex. Additionally, the cortical thickness of the left superior frontal cortex was negatively correlated with the Visual Analogue Scale scores of patients with CLBP. Furthermore, patients with CLBP, relative to HCs, exhibited lower global efficiency and small-worldness, as well as a longer characteristic path length. This indicates a decline in the brain's capacity to transmit and process information, potentially impacting the processing of pain signals in patients with CLBP and contributing to the development of CLBP. In contrast, there were no significant differences in the clustering coefficient, local efficiency, nodal efficiency, nodal betweenness centrality, or nodal degree between the two groups. CONCLUSIONS From the regional cortical thickness to the complex brain network level, our study demonstrated changes in the cortical thickness and topological properties of the SCNs in patients with CLBP, thus aiding in a better understanding of the pathophysiological mechanisms of CLBP.
Collapse
Affiliation(s)
- Si-Yu Gu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Feng-Chao Shi
- Department of Orthopedics, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Shu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Cheng-Yu Wang
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Xin-Xin Yao
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Yi-Fan Sun
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Chuan-Xu Luo
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Wan-Ting Liu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Jian-Bin Hu
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Fei Chen
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Ping-Lei Pan
- Department of Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China
| | - Wen-Hui Li
- Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, PR China; The Affiliated Yancheng Maternity&Child Health Hospital of Yangzhou University Medical School, PR China.
| |
Collapse
|
4
|
Li Y, Wu J, Hua X, Zheng M, Xu J. The promotion-like effect of the M1-STN hyperdirect pathway induced by ccPAS enhanced balance performances: From the perspective of brain connectivity. CNS Neurosci Ther 2024; 30:e14710. [PMID: 38615363 PMCID: PMC11016345 DOI: 10.1111/cns.14710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS The present study aimed to explore the effect of cortico-cortical paired-associative stimulation (ccPAS) in modulating hyperdirect pathway and its influence on balance performance. METHODS Forty healthy participants were randomly allocated to the active ccPAS group (n = 20) or the sham ccPAS group (n = 20). The primary motor cortex and subthalamic nucleus were stimulated sequentially with ccPAS. Unlike the active ccPAS group, one wing of coil was tilted to form a 90° angle with scalp of stimulation locations for the sham ccPAS group. Magnetic resonance imaging, functional reach test (FRT), timed up and go (TUG) test, and limit of stability (LOS) test were performed, and correlation between them was also analyzed. RESULTS Three participants in the sham ccPAS group were excluded because of poor quality of NIfTI images. The active group had strengthened hyperdirect pathway, increased functional connectivity (FC) between orbital part of frontal cortex and bilateral precuneus, and decreased FC among basal ganglia (all p < 0.05). Regional network properties of triangular and orbital parts of IFG, middle cingulate cortex, and hippocampus increased. The active group performed better in FRT and LOS (all p < 0.05). FRT positively correlated with FC of the hyperdirect pathway (r = 0.439, p = 0.007) and FCs between orbital part of frontal cortex and bilateral precuneus (all p < 0.05). CONCLUSION The ccPAS enhanced balance performance by promotion-like plasticity mechanisms through the hyperdirect pathway.
Collapse
Affiliation(s)
- Yu‐Lin Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Jia‐Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mou‐Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
5
|
Sobeeh MG, Benmelouka A, Metwally E, Abuhassira MJ, Abdeljalil AM, Nasr SA, El-Helw GO, Doheim MF. Altered brain function and structure in carpal tunnel syndrome: a systematic review and meta-analysis of structural and functional brain imaging. Brain Struct Funct 2024; 229:257-272. [PMID: 38165482 DOI: 10.1007/s00429-023-02737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
This systematic review with a meta-analysis aimed to identify the altered brain structure and function in carpal tunnel syndrome (CTS) by summarizing the literature about magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG) outcomes compared to healthy controls (HC). CTS is the most common nerve entrapment in the arm associated with altered peripheral and central nociceptive system. PRISMA guidelines were used to report the outcomes. Six databases were searched for relevant literature (Web of Science, Scopus, PubMed, Sage, EBSCO host, and Cochrane). Eligible studies comparing MRI, fMRI, and MEG findings in people with CTS (present for at least 2 months) and HC through the following parameters: (1) interdigit cortical separation distance, (2) white and grey matter changes, (3) peak latency of M20 wave and recovery function of N20 from the somatosensory cortex (SI), and (4) surface area of activated digit cortical representation. The results from different studies were pooled and a meta-analysis was done. From 17 included, there was a significant reduction of interdigit cortical separation distance of index-middle and index-little fingers in the CTS (SMD = - 0.869, 95% CI (- 1.325, - 0.413), p-value = 0.000) and (SMD = - 0.79, 95% CI (- 1.217, - 0.364), p-value = 0.000), respectively. Middle-little fingers interdigit separation showed no difference (SMD = - 0.2, 95% CI (- 0.903, 1.309), p-value = 0.718). There is evidence supporting the altered brain structure and function in CTS as evidenced by reduction of interdigit cortical separation distance, and excessive blurring and disinhibition of SI, with low resting state functional connectivity. Thus, centrally directed therapeutic approaches might complement peripheral treatments.
Collapse
Affiliation(s)
- Mohamed Gomaa Sobeeh
- Department of Physical Therapy for Musculoskeletal Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Giza, Egypt.
- Department of Physical Therapy for Orthopedics and Orthopedic Surgery, Faculty of Physical Therapy, Sinai University, Ismailia, Egypt.
| | | | | | | | | | - Sara Amr Nasr
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | |
Collapse
|
6
|
Li YL, Wu JJ, Li WK, Gao X, Wei D, Xue X, Hua XY, Zheng MX, Xu JG. Effects of individual metabolic brain network changes co-affected by T2DM and aging on the probabilities of T2DM: protective and risk factors. Cereb Cortex 2024; 34:bhad439. [PMID: 37991271 DOI: 10.1093/cercor/bhad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Neuroimaging markers for risk and protective factors related to type 2 diabetes mellitus are critical for clinical prevention and intervention. In this work, the individual metabolic brain networks were constructed with Jensen-Shannon divergence for 4 groups (elderly type 2 diabetes mellitus and healthy controls, and middle-aged type 2 diabetes mellitus and healthy controls). Regional network properties were used to identify hub regions. Rich-club, feeder, and local connections were subsequently obtained, intergroup differences in connections and correlations between them and age (or fasting plasma glucose) were analyzed. Multinomial logistic regression was performed to explore effects of network changes on the probability of type 2 diabetes mellitus. The elderly had increased rich-club and feeder connections, and decreased local connection than the middle-aged among type 2 diabetes mellitus; type 2 diabetes mellitus had decreased rich-club and feeder connections than healthy controls. Protective factors including glucose metabolism in triangle part of inferior frontal gyrus, metabolic connectivity between triangle of the inferior frontal gyrus and anterior cingulate cortex, degree centrality of putamen, and risk factors including metabolic connectivities between triangle of the inferior frontal gyrus and Heschl's gyri were identified for the probability of type 2 diabetes mellitus. Metabolic interactions among critical brain regions increased in type 2 diabetes mellitus with aging. Individual metabolic network changes co-affected by type 2 diabetes mellitus and aging were identified as protective and risk factors for the likelihood of type 2 diabetes mellitus, providing guiding evidence for clinical interventions.
Collapse
Affiliation(s)
- Yu-Lin Li
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wei-Kai Li
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai 200233, China
| | - Dong Wei
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Xue
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jian-Guang Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
7
|
Matesanz-García L, Fernández-Chamorro L, Rubio-Vallejo A, Cecilia-López D, Cuenca-Martínez F, Di-Bonaventura S, Fernández-Carnero J. Motor Imagery and Pain Processing in Patients With Entrapment Neuropathies: A Cross-sectional Study. Clin J Pain 2023; 39:620-627. [PMID: 37712289 DOI: 10.1097/ajp.0000000000001158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVES (1) To assess the ability to generate both kinesthetic and visual motor imagery in participants with carpal tunnel syndrome (CTS), compared with asymptomatic participants. (2) To assess the influence of psychophysiological and functional variables in the motor imagery process. METHODS Twenty patients with unilateral CTS and 18 pain-free individuals were recruited. An observational case-control study with a nonprobability sample was conducted to assess visual and kinesthetic movement imagery ability and psychophysiological variables in patients with CTS compared with asymptomatic participants in a control group. The trial was conducted in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology statement. RESULTS CTS patients have more difficulties in generating visual motor images compared with asymptomatic individuals ( t =-2.099; P <0.05; d=0.70). They need more time to complete the mental tasks (visual t =-2.424; P <0.05 and kinesthetic t =-2.200; P <0.05). A negative correlation was found between the ability to imagine and functional deficits ( r =-0.569; P =0.021) for the kinesthetic subscale and temporal summation ( r =-0.515; P <0.5). A positive correlation was found between pain pressure threshold homolateral (homolateral) and time to generate the visual mental images ( r =0.537; P <0.05). DISCUSSION CTS patients have greater difficulty generating motor images than asymptomatic individuals. Patients also spend more time during mental tasks. CTS patients present a relationship between temporal summation and the capacity to generate kinesthetic images. In addition, the CST patients presented a correlation between chronometry mental tasking and mechanical hyperalgesia.
Collapse
Affiliation(s)
- Luis Matesanz-García
- CranioSPain Research Group, Centro Superior de Estudios Universitarios La Salle
- Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Universidad Rey Juan Carlos
| | | | - Alberto Rubio-Vallejo
- Department of Physiotherapy, Centro superior de Estudios Universitarios (CSEU) La Salle, Universidad Autónoma de Madrid
| | - David Cecilia-López
- Unit of Elbow-Hand, Service de Traumatología, Hospital 12 de Octubre
- Complutense University of Madrid
- Department of Surgery, Hospital Vithas La Milagrosa
- Hospital Viamed Santa Elena
| | | | - Silvia Di-Bonaventura
- Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Universidad Rey Juan Carlos
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University
| | - Josué Fernández-Carnero
- Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Universidad Rey Juan Carlos
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University
- La Paz Hospital Institute for Health Research, IdiPAZ
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Li YL, Zheng MX, Hua XY, Gao X, Wu JJ, Shan CL, Zhang JP, Wei D, Xu JG. Cross-modality comparison between structural and metabolic networks in individual brain based on the Jensen-Shannon divergence method: a healthy Chinese population study. Brain Struct Funct 2023; 228:761-773. [PMID: 36749387 DOI: 10.1007/s00429-023-02616-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
The study aimed to investigate the consistency and diversity between metabolic and structural brain networks at individual level constructed with divergence-based method in healthy Chinese population. The 18F-FDG PET and T1-weighted images of brain were collected from 209 healthy participants. The Jensen-Shannon divergence (JSD) was used to calculate metabolic or structural connectivities between any pair of brain regions and then individual brain networks were constructed. The global and regional topological properties of both networks were analyzed with graph theoretical analysis. Regional properties including nodal efficiency, degree, and betweenness centrality were used to define hub regions of networks. Cross-modality similarity of brain connectivity was analyzed with differential power (DP) analysis. The default mode network (DMN) had the largest number of brain connectivities with high DP values. The small-worldness indexes of metabolic and structural networks in all participants were greater than 1. The structural network showed higher assortativity and local efficiency than metabolic network, while hierarchy and global efficiency were greater in the metabolic network (all P < 0.001). Most of hubs in both networks were symmetrically spatial distributed in the regions of the DMN and subcortical nuclei including thalamus and amygdala, etc. The human brain presented small-world architecture both in perspective of individual metabolic and structural networks. There was a structural substrate that supported the brain to globally and efficiently integrate and process metabolic interaction across brain regions. The cross-modality cooperation or specialization in both networks might imply mechanisms of achieving higher-order brain functions.
Collapse
Affiliation(s)
- Yu-Lin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, China
| | - Dong Wei
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, China. .,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Vetrano IG, Devigili G, Nazzi V. Minimally Invasive Carpal Tunnel Release: A Technical Note and a 20-Year Retrospective Series. Cureus 2022; 14:e21426. [PMID: 35103221 PMCID: PMC8782209 DOI: 10.7759/cureus.21426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction The surgical treatment of carpal tunnel syndrome (CTS) has been enriched, during the last years, by different minimally invasive techniques to decompress the median nerve at the wrist as the endoscopic approaches or modified open technique. However, controversy remains about their safety and complication rate. We present the results of our minimally-invasive technique to median nerve release at the wrist. We will discuss the instrumental preoperative assessment, surgical steps, post-operative management, and complications. Methods We retrospectively reviewed clinical and neurophysiological data of all patients admitted at our institution between January 2001 and December 2020 for CTS surgery. The technique, performed under local anesthesia, is based on a single, small, linear transverse incision proximal to the wrist fold. After unsharpened dissection of subcutaneous tissues, a grooved guide is inserted in a slightly medial direction towards the fourth finger; this strategy prevents possible damages of nerve branches that could originate at this level. A second small incision over the guide’s tip allows a wide corridor in the context of the ligament. The carpalotome is then inserted into the guide; the two minor wounds are closed with 5-0 prolene sutures. The final result is a wide release of the nerve. Results A total of 1568 operations on 1371 patients were performed using the described technique at our institution. The patients’ cohort showed a higher prevalence of women (68%), with a mean age of 56.4 years (range 24-88 years). Paresthesia and numbness of the first three fingers were the most frequent signs and symptoms. All patients were submitted to a preoperative electrophysiological evaluation, which revealed the typical signs of CTS in most patients. The US evaluation of the median nerve at the wrist was a more recent introduction, dating from 2018. In 47 patients, despite an electromyography (EMG) not showing marked neurophysiological signs of severe CTS, the ultrasonographic evaluation was strongly consistent with the clinical diagnosis. In such patients, carpal tunnel release determined the resolution of symptoms. In 99.8% of total cases, we obtained a complete symptoms remission, with the disappearance of acroparesthesia and numbness. Conclusion The use of this technique has become widespread at our institution due to fewer local complications, a very low rate of recurrence, faster functional recovery, and reduced surgical time if compared to traditional open surgery and to endoscopic release too.
Collapse
|