1
|
Suero Molina E, Azemi G, Özdemir Z, Russo C, Krähling H, Valls Chavarria A, Liu S, Stummer W, Di Ieva A. Predicting intraoperative 5-ALA-induced tumor fluorescence via MRI and deep learning in gliomas with radiographic lower-grade characteristics. J Neurooncol 2025; 171:589-598. [PMID: 39560696 PMCID: PMC11729117 DOI: 10.1007/s11060-024-04875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
PURPOSE Lower-grade gliomas typically exhibit 5-aminolevulinic acid (5-ALA)-induced fluorescence in only 20-30% of cases, a rate that can be increased by doubling the administered dose of 5-ALA. Fluorescence can depict anaplastic foci, which can be precisely sampled to avoid undergrading. We aimed to analyze whether a deep learning model could predict intraoperative fluorescence based on preoperative magnetic resonance imaging (MRI). METHODS We evaluated a cohort of 163 glioma patients categorized intraoperatively as fluorescent (n = 83) or non-fluorescent (n = 80). The preoperative MR images of gliomas lacking high-grade characteristics (e.g., necrosis or irregular ring contrast-enhancement) consisted of T1, T1-post gadolinium, and FLAIR sequences. The preprocessed MRIs were fed into an encoder-decoder convolutional neural network (U-Net), pre-trained for tumor segmentation using those three MRI sequences. We used the outputs of the bottleneck layer of the U-Net in the Variational Autoencoder (VAE) as features for classification. We identified and utilized the most effective features in a Random Forest classifier using the principal component analysis (PCA) and the partial least square discriminant analysis (PLS-DA) algorithms. We evaluated the performance of the classifier using a tenfold cross-validation procedure. RESULTS Our proposed approach's performance was assessed using mean balanced accuracy, mean sensitivity, and mean specificity. The optimal results were obtained by employing top-performing features selected by PCA, resulting in a mean balanced accuracy of 80% and mean sensitivity and specificity of 84% and 76%, respectively. CONCLUSIONS Our findings highlight the potential of a U-Net model, coupled with a Random Forest classifier, for pre-operative prediction of intraoperative fluorescence. We achieved high accuracy using the features extracted by the U-Net model pre-trained for brain tumor segmentation. While the model can still be improved, it has the potential for evaluating when to administer 5-ALA to gliomas lacking typical high-grade radiographic features.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- Macquarie Neurosurgery & Spine, Macquarie University Hospital, Sydney, Australia.
| | - Ghasem Azemi
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Zeynep Özdemir
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Carlo Russo
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Hermann Krähling
- Clinic for Radiology, University Hospital Münster, Münster, Germany
| | - Alexandra Valls Chavarria
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Sidong Liu
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Antonio Di Ieva
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
- Macquarie Neurosurgery & Spine, Macquarie University Hospital, Sydney, Australia
| |
Collapse
|
2
|
Maegawa H, Kohashi M, Harada Y, Tanaka A, Kajiwara S, Fujimoto T, Atagi H, Kaneda K. Antitumor immunostimulatory effect via cell-killing action of a novel extracorporeal blood circulating photodynamic therapy system using 5-aminolevulinic acid. Sci Rep 2025; 15:1064. [PMID: 39775122 PMCID: PMC11707032 DOI: 10.1038/s41598-024-84861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated whether intravenous administration of tumor cells killed by photodynamic therapy (PDT) with 5-aminolevulinic acid (5-ALA) had antitumor effects on distal tumors. Furthermore, a novel extracorporeal blood circulating 5-ALA/PDT system was developed. 5-ALA/PDT- (low or high irradiation) or anticancer drug-treated cells were intravenously administered to rats in a glioma cancer model. CD8+ T cell infiltration into the tumor and expression of calreticulin were examined. The cell-killing effect in the circulating PDT system and protoporphyrin IX (PpIX) accumulation were evaluated. An antitumor effect was observed only with preadministration of low-irradiated 5-ALA/PDT-treated cells and was characterized by the infiltration of CD8+ T cells into the tumor. In low-irradiated cells, several types of cell death were observed, and cell surface calreticulin expression increased over time. A method for the intravenous administration of 5-ALA/PDT-treated cells along with extracorporeal blood circulation was then developed to target hematologic malignancies. Gradually cell death in the circulating PDT system and tumor-specific PpIX accumulation was confirmed using hematopoietic tumor cells. Thus, the extracorporeal blood circulating 5-ALA/PDT system has a direct cell-killing effect and an antitumor effect via induced immune activity and illustrates a new therapeutic strategy for hematologic malignancies.
Collapse
Affiliation(s)
| | - Masayuki Kohashi
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan.
- Department of Medical Innovations for Drug Discovery, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan.
| | - Yasuo Harada
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Osaka, Japan
| | - Akira Tanaka
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Shimpei Kajiwara
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Takashi Fujimoto
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Hidehiro Atagi
- Medical Equipment Development Department, Development Division, Otsuka Electronics Co., Ltd., 3-26-3 Shodai-Tajika, Hirakata, Osaka, 573-1132, Japan
| | - Kenta Kaneda
- Research Division, JIMRO Co., Ltd., Takasaki, Japan
| |
Collapse
|
3
|
Cozzens JW, Lokaitis BC, Delfino K, Hoeft A, Moore BE, Fifer AS, Amin DV, Espinosa JA, Jones BA, Acakpo-Satchivi L. A Phase 2 Sensitivity and Selectivity Study of High-Dose 5-Aminolevulinic Acid in Adult Patients Undergoing Resection of a Newly Diagnosed or Recurrent Glioblastoma. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01394. [PMID: 39526779 DOI: 10.1227/ons.0000000000001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The utility of oral 5-aminolevulinic acid (5-ALA)/protoporphyrin fluorescence for the resection of high-grade gliomas is well documented, but the problem of false-negative observations remains. This study compares high-grade glioma visualization with low/standard dose 5-ALA (<30 mg/kg) to high-dose 5-ALA (>40 mg/kg) to see if by using this higher dose, it is possible to reduce the rate of false-negative observations without increasing the rate of false-positive (FP) observations and therefore increase the sensitivity. METHODS This is a prospective study of consecutive patients with radiological evidence of presumed high-grade glioma. We reviewed the data from patients who received preoperative low/standard doses and patients who received a preoperative high dose of 5-ALA. Adverse events, dose to observation time, intensity of tumor fluorescence, and results of biopsies in areas of tumor and tumor bed under deep blue light were recorded. RESULTS A total of 22 patients with high-grade glioma received a dose >40 mg/kg (high-dose) and 9 patients received <30 mg/kg (low/standard dose). There were no serious adverse events related to 5-ALA in any subject. There was a very high sensitivity and specificity of 5-ALA for the presence of tumor in both groups. There were no FP observations (fluorescence with no tumor) in either group. The specificity and the positive predictive value were 100% in both groups. The sensitivity and the negative predictive value were 53.3% and 30.0% in the low/standard dose group and 59.5% and 31.8% in the high-dose group, respectively. CONCLUSION High-dose oral 5-aminolevulinic/protoporphyrin fluorescence is a safe and effective aid to the intraoperative detection of high-grade gliomas with high sensitivity and specificity. False-negative observations with a high dose do not seem to be less than that with a low/standard dose. The rate of FP observations with both groups remains very low.
Collapse
Affiliation(s)
- Jeffrey W Cozzens
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Barbara C Lokaitis
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Kristin Delfino
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Ava Hoeft
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Brian E Moore
- Department of Pathology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Amber S Fifer
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Devin V Amin
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - José A Espinosa
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Breck A Jones
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leslie Acakpo-Satchivi
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Springfield Clinic, Springfield, Illinois, USA
| |
Collapse
|
4
|
Cossu G, Le Van T, Kerherve L, Houidi SA, Morlaix E, Bonneville F, Chapon R, Baland O, Cao C, Lleu M, Farah W, El Cadhi A, Beaurain J, Picart T, Xu B, Berhouma M. Enlightening the invisible: Applications, limits and perspectives of intraoperative fluorescence in neurosurgery. BRAIN & SPINE 2024; 4:103928. [PMID: 39823065 PMCID: PMC11735926 DOI: 10.1016/j.bas.2024.103928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 01/19/2025]
Abstract
Introduction The introduction of intraoperative fluorophores represented a significant advancement in neurosurgical practice. Nowadays they found different applications: in oncology to improve the visualization of tumoral tissue and optimize resection rates and in vascular neurosurgery to assess the exclusion of vascular malformations or the permeability of bypasses, with real-time intraoperative evaluations. Research question A comprehensive knowledge of how fluorophores work is crucial to maximize their benefits and to incorporate them into daily neurosurgical practice. We would like to revise here their applications and clinical relevance. Material and methods A focused literature review of relevant articles dealing with the versatile applications of fluorophores in neurosurgery was performed. Results The fundamental mechanisms of action of intraoperative fluorophores are enlightened, examining their interactions with target tissues and the principles driving fluorescence-guided surgery. The clinical applications of the principal fluorophores, namely fluorescein sodium, 5-ALA and indocyanine green, are detailed, in regards to the management of vascular malformations, brain tumors and pathologies treated through endoscopic endonasal approaches. Discussion and conclusion Future perspective dealing with the development of new technologies or of new molecules are discussed. By critically assessing the efficacy and applications of the different fluorophores, as well as charting their potential future uses, this paper seeks to guide clinicians in their practice and provide insights for driving innovation and progress in fluorescence-based surgery and research.
Collapse
Affiliation(s)
- Giulia Cossu
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Tuan Le Van
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Luc Kerherve
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Sayda A. Houidi
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Edouard Morlaix
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Florent Bonneville
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Renan Chapon
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Olivier Baland
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Catherine Cao
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Maxime Lleu
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Walid Farah
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Ahmed El Cadhi
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Jacques Beaurain
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Thiebaud Picart
- Department of Neurosurgery, Groupe Hospitalier Est, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
- Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, Villeurbanne, France
- Cancer Research Centre of Lyon (CRCL), INSERM 1052, CNRS 5286, 28 Rue Laennec, Lyon, France
| | - Bin Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
- Functional and Molecular Imaging Team (CNRS 6302), Molecular Chemistry Institute (ICMUB), University of Burgundy, France
| |
Collapse
|
5
|
Schusteff RA, Slavin KV, Roth S. 5-Aminolevulonic Acid, a New Tumor Contrast Agent: Anesthesia Considerations in Patients Undergoing Craniotomy. J Neurosurg Anesthesiol 2024; 36:294-302. [DOI: 10.1097/ana.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2025]
Abstract
5-aminolevulinic acid (ALA) is used during resection of malignant gliomas due to its fluorescence properties and has been shown to render resection more effective than resection without ALA guidance. The aim of this narrative review is to categorize the adverse effects of ALA relevant to anesthesia providers. Intraoperative hypotension, porphyria-related side effects, alterations in blood chemistry and coagulation, photosensitivity, and increased levels of liver enzymes have all been reported. We also sought to examine the impact of dosage and timing of oral administration on efficacy of ALA and on these side effects. Twenty-seven studies met our inclusion criteria of patients undergoing craniotomy for glioma resection using ALA and occurrence of at least one adverse effect. The results of these studies showed that there was heterogeneity in levels of intraoperative hypotension, with some reporting an incidence as high as 32%, and that hypotension was associated with antihypertensive medication use. Clinical symptoms of porphyria, such as gastrointestinal disturbance, were less commonly reported. Photosensitivity of the skin after 5-ALA administration was well documented particularly in patients exposed to light; however, adverse effects on the eye were not adequately studied. Elevation in liver enzymes was a common finding postoperatively but was often clinically insignificant. The timing of oral administration presents practical issues for the preoperative management of patients undergoing resection with ALA. We provide guidance for perioperative management of patients who receive ALA for brain tumor resection. Controlled studies with adequate statistical power are required to further understand and prevent the adverse effects of ALA.
Collapse
Affiliation(s)
- Rachel A. Schusteff
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| | - Konstantin V. Slavin
- Department of Neurosurgery, University of Illinois at Chicago College of Medicine, and Neurology Section, Jesse Brown Veterans Administration Medical Center, Chicago, IL
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| |
Collapse
|
6
|
Campbell JM, Gosnell M, Agha A, Handley S, Knab A, Anwer AG, Bhargava A, Goldys EM. Label-Free Assessment of Key Biological Autofluorophores: Material Characteristics and Opportunities for Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403761. [PMID: 38775184 DOI: 10.1002/adma.202403761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/04/2024] [Indexed: 06/13/2024]
Abstract
Autofluorophores are endogenous fluorescent compounds that naturally occur in the intra and extracellular spaces of all tissues and organs. Most have vital biological functions - like the metabolic cofactors NAD(P)H and FAD+, as well as the structural protein collagen. Others are considered to be waste products - like lipofuscin and advanced glycation end products - which accumulate with age and are associated with cellular dysfunction. Due to their natural fluorescence, these materials have great utility for enabling non-invasive, label-free assays with direct ties to biological function. Numerous technologies, with different advantages and drawbacks, are applied to their assessment, including fluorescence lifetime imaging microscopy, hyperspectral microscopy, and flow cytometry. Here, the applications of label-free autofluorophore assessment are reviewed for clinical and health-research applications, with specific attention to biomaterials, disease detection, surgical guidance, treatment monitoring, and tissue assessment - fields that greatly benefit from non-invasive methodologies capable of continuous, in vivo characterization.
Collapse
Affiliation(s)
- Jared M Campbell
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | | | - Adnan Agha
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Shannon Handley
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Aline Knab
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ayad G Anwer
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Akanksha Bhargava
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| | - Ewa M Goldys
- Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2033, Australia
| |
Collapse
|
7
|
Chen Y, Guo P, Chen L, He D. 5-aminolevulinic acid induced photodynamic reactions in diagnosis and therapy for female lower genital tract diseases. Front Med (Lausanne) 2024; 11:1370396. [PMID: 39076768 PMCID: PMC11284047 DOI: 10.3389/fmed.2024.1370396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Since the patients suffering from female lower genital tract diseases are getting younger and younger and the human papilloma virus (HPV) infection is becoming more widespread, the novel non-invasive precise modalities of diagnosis and therapy are required to remain structures of the organ and tissue, and fertility as well, by which the less damage to normal tissue and fewer adverse effects are able to be achieved. In all nucleated mammalian cells, 5-Aminolevulinic acid (5-ALA) is an amino acid that occurs spontaneously, which further synthesizes in the heme biosynthetic pathway into protoporphyrin IX (PpIX) as a porphyrin precursor and photosensitizing agent. Exogenous 5-ALA avoids the rate-limiting step in the process, causing PpIX buildup in tumor tissues. This tumor-selective PpIX distribution after 5-ALA application has been used successfully for tumor photodynamic diagnosis (PDD) and photodynamic therapy (PDT). Several ALA-based drugs have been used for ALA-PDD and ALA-PDT in treating many (pre)cancerous diseases, including the female lower genital tract diseases, yet the ALA-induced fluorescent theranostics is needed to be explored further. In this paper, we are going to review the studies of the mechanisms and applications mainly on ALA-mediated photodynamic reactions and its effectiveness in treating female lower genital tract diseases.
Collapse
Affiliation(s)
- Yuqing Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| | - Lihong Chen
- Department of Obstetrics and Gynecology, Shaanxi Provincial People’s Hospital, Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Peciu-Florianu I, Vannod-Michel Q, Vauleon E, Bonneterre ME, Reyns N. Long term follow-up of patients with newly diagnosed glioblastoma treated by intraoperative photodynamic therapy: an update from the INDYGO trial (NCT03048240). J Neurooncol 2024; 168:495-505. [PMID: 38753093 PMCID: PMC11186870 DOI: 10.1007/s11060-024-04693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE Glioblastoma remains incurable despite optimal multimodal management. The interim analysis of open label, single arm INDYGO pilot trial showed actuarial 12-months progression-free survival (PFS) of 60% (median 17.1 months), actuarial 12-months overall survival (OS) of 80% (median 23.1 months). We report updated, exploratory analyses of OS, PFS, and health-related quality of life (HRQOL) for patients receiving intraoperative photodynamic therapy (PDT) with 5-aminolevulinic acid hydrochloride (5-ALA HCl). METHODS Ten patients were included (May 2017 - April 2021) for standardized therapeutic approach including 5-ALA HCl fluorescence-guided surgery (FGS), followed by intraoperative PDT with a single 200 J/cm2 dose of light. Postoperatively, patients received adjuvant therapy (Stupp protocol) then followed every 3 months (clinical and cerebral MRI) and until disease progression and/or death. Procedure safety and toxicity occurring during the first four weeks after PDT were assessed. Data concerning relapse, HRQOL and survival were prospectively collected and analyzed. RESULTS At the cut-off date (i.e., November 1st 2023), median follow-up was 23 months (9,7-71,4). No unacceptable or unexpected toxicities and no treatment-related deaths occurred during the study. Kaplan-Meier estimated 23.4 months median OS, actuarial 12-month PFS rate 60%, actuarial 12-month, 24-month, and 5-year OS rates 80%, 50% and 40%, respectively. Four patients were still alive (1 patient free of recurrence). CONCLUSION At 5 years-follow-up, intraoperative PDT with surgical maximal excision as initial therapy and standard adjuvant treatment suggests an increase of time to recurrence and overall survival in a high proportion of patients. Quality of life was maintained without any severe side effects. TRIAL REGISTRATION NCT NUMBER NCT03048240. EudraCT number: 2016-002706-39.
Collapse
Affiliation(s)
| | | | - Enora Vauleon
- Neuro-Oncology Department, CHU-Lille, F-59000, Lille, France
| | | | - Nicolas Reyns
- Neurosurgery Department, CHU-Lille, F-59000, Lille, France.
- U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, University of Lille, INSERM, CHU-Lille, F-59000, Lille, France.
| |
Collapse
|
9
|
Garufi G, Conti A, Chaurasia B, Cardali SM. Exoscopic versus Microscopic Surgery in 5-ALA-Guided Resection of High-Grade Gliomas. J Clin Med 2024; 13:3493. [PMID: 38930021 PMCID: PMC11205195 DOI: 10.3390/jcm13123493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Glioma surgery has been remarkably enhanced in the past 2 decades, with improved safety and limited but improved life expectations. The fluorescence-guided resection of high-grade gliomas (HGGs) plays a central role in this sense, allowing a greater extent of resection (EOR). The introduction of exoscopic-guided surgery may be considered in implementing fluorescence techniques over traditional microscopes. We present the application and the advantages of exoscopic-guided surgery compared to microscopic surgery in tumor resection guided by 5-ALA fluorescence in patients with HGGs. Methods: Ten consecutive patients underwent surgery for HGG resection. The surgery was performed via an exoscopic-guided procedure (Olympus ORBEYE) and after the oral administration of Gliolan 5 h before the procedure. During surgery, the procedure shifted to using a microscopic (Kinevo 900, Zeiss) view. The intensity of the fluorescence under the two different procedures was subjectively measured in different picture samples during the surgery on a 1 to 5 (from minimum to maximum) scale. The brightness of the surgical field and the detailing of the anatomy were also analyzed comparatively. Results: Among the ten patients, the histopathological diagnosis was an high-grade glioma in all cases. In nine cases, it was possible to achieve gross total resection. There was no perioperative mortality. The median fluorescence intensity, on a scale of 1-5, was 4.5 in the exoscope group and 3.5 in the microscope group (p < 0.01). Conclusions: The exoscopic-guided surgery adds advantages to traditional fluorescence-guided surgery with 5-aminolevulinic acid. Beyond the important advantage of low cost and the possibility to perform collaborative surgeries, it adds a plain and continuous visualization of the tumor and offers advantages in the surgical field of fluorescence-guided glioma surgery compared to the microscopic-guided one.
Collapse
Affiliation(s)
- Giada Garufi
- Department of Neurosurgery, Azienda Ospedaliera Papardo, University of Messina, 98158 Messina, Italy;
| | - Alfredo Conti
- Department of Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy;
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Alma Mater Studiorum Università di Bologna, Via Altura 3, 40123 Bologna, Italy
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Salvatore Massimiliano Cardali
- Department of Neurosurgery, Azienda Ospedaliera Papardo, University of Messina, 98158 Messina, Italy;
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
10
|
Gibson C, Wang SC, Phoon A, Thalanki Anantha N, Ottolino-Perry K, Petropoulos S, Qureshi Z, Subramanian V, Shahid A, O'Brien C, Carcone S, Chung S, Tsui T, Son V, Sukhram M, Meng F, Done SJ, Easson AM, Cil T, Reedijk M, Leong WL, DaCosta RS. A handheld device for intra-cavity and ex vivo fluorescence imaging of breast conserving surgery margins with 5-aminolevulinic acid. BMC Biomed Eng 2024; 6:5. [PMID: 38822389 PMCID: PMC11143723 DOI: 10.1186/s42490-024-00079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Visualization of cancer during breast conserving surgery (BCS) remains challenging; the BCS reoperation rate is reported to be 20-70% of patients. An urgent clinical need exists for real-time intraoperative visualization of breast carcinomas during BCS. We previously demonstrated the ability of a prototype imaging device to identify breast carcinoma in excised surgical specimens following 5-aminolevulinic acid (5-ALA) administration. However, this prototype device was not designed to image the surgical cavity for remaining carcinoma after the excised lumpectomy specimen is removed. A new handheld fluorescence (FL) imaging prototype device, designed to image both excised specimens and within the surgical cavity, was assessed in a clinical trial to evaluate its clinical utility for first-in-human, real-time intraoperative imaging during index BCS. RESULTS The imaging device combines consumer-grade imaging sensory technology with miniature light-emitting diodes (LEDs) and multiband optical filtering to capture high-resolution white light (WL) and FL digital images and videos. The technology allows for visualization of protoporphyrin IX (PpIX), which fluoresces red when excited by violet-blue light. To date, n = 17 patients have received 20 mg kg bodyweight (BW) 5-ALA orally 2-4 h before imaging to facilitate the accumulation of PpIX within tumour cells. Tissue types were identified based on their colour appearance. Breast tumours in sectioned lumpectomies appeared red, which contrasted against the green connective tissues and orange-brown adipose tissues. In addition, ductal carcinoma in situ (DCIS) that was missed during intraoperative standard of care was identified at the surgical margin at <1 mm depth. In addition, artifacts due to the surgical drape, illumination, and blood within the surgical cavity were discovered. CONCLUSIONS This study has demonstrated the detection of a grossly occult positive margin intraoperatively. Artifacts from imaging within the surgical cavity have been identified, and potential mitigations have been proposed. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01837225 (Trial start date is September 2010. It was registered to ClinicalTrials.gov retrospectively on April 23, 2013, then later updated on April 9, 2020, to reflect the introduction of the new imaging device.).
Collapse
Affiliation(s)
- Christopher Gibson
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, M5G 1L7, Toronto, Canada
| | - Shirley C Wang
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
| | - Arcturus Phoon
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
| | - Nayana Thalanki Anantha
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
| | - Kathryn Ottolino-Perry
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
| | - Stephen Petropoulos
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
| | - Zuha Qureshi
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
| | - Vasanth Subramanian
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
| | - Anam Shahid
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
| | - Cristiana O'Brien
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
| | - Steven Carcone
- The Toronto Health Economics and Technology Assessment (THETA) Collaborative, University Health Network, 200 Elizabeth Street, 10th Floor Eaton Wing, M5G 2C4, Toronto, Canada
| | - Suzanne Chung
- The Toronto Health Economics and Technology Assessment (THETA) Collaborative, University Health Network, 200 Elizabeth Street, 10th Floor Eaton Wing, M5G 2C4, Toronto, Canada
| | - Teresa Tsui
- The Toronto Health Economics and Technology Assessment (THETA) Collaborative, University Health Network, 200 Elizabeth Street, 10th Floor Eaton Wing, M5G 2C4, Toronto, Canada
| | - Viktor Son
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, 11th Floor Eaton Wing, M5G 2C4, Toronto, Canada
| | - Mayleen Sukhram
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, 11th Floor Eaton Wing, M5G 2C4, Toronto, Canada
| | - Fannong Meng
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, 11th Floor Eaton Wing, M5G 2C4, Toronto, Canada
| | - Susan J Done
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, 11th Floor Eaton Wing, M5G 2C4, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, M5S 1A8, Toronto, Canada
| | - Alexandra M Easson
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
- Surgical Oncology Department, Princess Margaret Cancer Centre, University Health Network, 610 University Ave, M5T 2M9, Toronto, Canada
| | - Tulin Cil
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
- Surgical Oncology Department, Princess Margaret Cancer Centre, University Health Network, 610 University Ave, M5T 2M9, Toronto, Canada
| | - Michael Reedijk
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
- Surgical Oncology Department, Princess Margaret Cancer Centre, University Health Network, 610 University Ave, M5T 2M9, Toronto, Canada
| | - Wey L Leong
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada
- Surgical Oncology Department, Princess Margaret Cancer Centre, University Health Network, 610 University Ave, M5T 2M9, Toronto, Canada
| | - Ralph S DaCosta
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, M5G 1L7, Toronto, Canada.
- Department of Medical Biophysics, University of Toronto, 101 College Street, M5G 1L7, Toronto, Canada.
- Techna Institute, University Health Network, 124-100 College Street, M5G 1P5, Toronto, Canada.
| |
Collapse
|
11
|
Walke A, Krone C, Stummer W, König S, Suero Molina E. Protoporphyrin IX in serum of high-grade glioma patients: A novel target for disease monitoring via liquid biopsy. Sci Rep 2024; 14:4297. [PMID: 38383693 PMCID: PMC10881484 DOI: 10.1038/s41598-024-54478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
High-grade gliomas (HGG) carry a dismal prognosis. Diagnosis comprises MRI followed by histopathological evaluation of tissue; no blood biomarker is available. Patients are subjected to serial MRIs and, if unclear, surgery for monitoring of tumor recurrence, which is laborious. MRI provides only limited diagnostic information regarding the differentiation of true tumor progression from therapy-associated side effects. 5-aminolevulinic acid (5-ALA) is routinely used for induction of protoporphyrin IX (PpIX) accumulation in malignant glioma tissue, enabling improved tumor visualization during fluorescence-guided resection (FGR). We investigated whether PpIX can also serve as a serum HGG marker to monitor relapse. Patients (HGG: n = 23 primary, pHGG; n = 5 recurrent, rHGG) undergoing FGR received 5-ALA following standard clinical procedure. The control group of eight healthy volunteers (HCTR) also received 5-ALA. Serum was collected before and repeatedly up to 72 h after drug administration. Significant PpIX accumulation in HGG was observed after 5-ALA administration (ANOVA: p = 0.005, post-hoc: HCTR vs. pHGG p = 0.029, HCTR vs. rHGG p = 0.006). Separation of HCTR from pHGG was possible when maximum serum PpIX levels were reached (CI95% of tMax). ROC analysis of serum PpIX within CI95% of tMax showed successful classification of HCTR and pHGG (AUCROC 0.943, CI95% 0.884-1.000, p < 0.001); the optimal cut-off for diagnosis was 1275 pmol PpIX/ml serum, reaching 87.0% accuracy, 90.5% positive predictive and 84.0% negative predictive value. Baseline PpIX level was similar in patient and control groups. Thus, 5-ALA is required for PpIX induction, which is safe at the standard clinical dosage. PpIX is a new target for liquid biopsy in glioma. More extensive clinical studies are required to characterize its full potential.
Collapse
Affiliation(s)
- Anna Walke
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany.
| | - Christopher Krone
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| |
Collapse
|
12
|
Özdemir Z, Suero Molina E, Hellwig SJ, Stepp H, Stummer W. Second-Generation Wide-Field Visualization Devices for 5-ALA-Induced Fluorescence and Concepts for Validation in Neurosurgery-A Systematic Review. NEUROSURGERY PRACTICE 2023; 4:e00059. [PMID: 39959385 PMCID: PMC11809958 DOI: 10.1227/neuprac.0000000000000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/27/2023] [Indexed: 02/18/2025]
Abstract
BACKGROUND AND OBJECTIVES Fluorescence-guided resection (FGR) of malignant gliomas with five-aminolevulinic acid (5-ALA) is an established method using surgical microscopes equipped with filter systems for observing fluorescence. Over the past decade, new technologies have been introduced for the same purpose, with available publications evaluating their clinical efficacy based on varying criteria. This study aims to review technologies and concepts of validation in the context of 5-ALA-mediated FGR. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement was performed to identify devices capable of detecting 5-ALA-induced fluorescence. Articles found eligible for this review were analyzed, focusing on the methods of validation used for novel devices. A qualitative analysis is presented. RESULTS Using predefined eligibility criteria, 22 studies were analyzed. Publications on the following visualization devices were reviewed: FL400 (Leica Microsystems), Aeos (Aesculap), BLUE400 and BLUE400 AR Filter System (Carl Zeiss Meditec AG), Endoscope with D-Light C (Karl Storz), Fiberscope N-4L (Machida), ORBEYE 4K 3D Digital Video Microscope (Olympus), and several customized surgical loupe systems. In many cases, validation seemed unstandardized, with inherent biases and limited reproducibility. CONCLUSION This review illustrates the significance of device validation within the framework of FGR. It emphasizes the criticality of validating devices in accordance with established standard, i.e. the BLUE400 filter system, which was employed in the approval studies of 5-ALA. Furthermore, standardized concepts of validation are required to assess whether new devices are, in fact, a reliable or superior alternative in the field of FGR. Published guidelines should be considered when performing future studies.
Collapse
Affiliation(s)
- Zeynep Özdemir
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Sönke J. Hellwig
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Herbert Stepp
- Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Munich, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
13
|
Suero Molina E, Black D, Walke A, Azemi G, D’Alessandro F, König S, Stummer W. Unraveling the blue shift in porphyrin fluorescence in glioma: The 620 nm peak and its potential significance in tumor biology. Front Neurosci 2023; 17:1261679. [PMID: 38027504 PMCID: PMC10657867 DOI: 10.3389/fnins.2023.1261679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
In glioma surgery, the low-density infiltration zone of tumors is difficult to detect by any means. While, for instance, 5-aminolevulinic acid (5-ALA)-induced fluorescence is a well-established surgical procedure for maximizing resection of malignant gliomas, a cell density in tumor tissue of 20-30% is needed to observe visual fluorescence. Hyperspectral imaging is a powerful technique for the optical characterization of brain tissue, which accommodates the complex spectral properties of gliomas. Thereby, knowledge about the signal source is essential to generate specific separation (unmixing) procedures for the different spectral characteristics of analytes and estimate compound abundances. It was stated that protoporphyrin IX (PpIX) fluorescence consists mainly of emission peaks at 634 nm (PpIX634) and 620 nm (PpIX620). However, other members of the substance group of porphyrins fluoresce similarly to PpIX due to their common tetrapyrrole core structure. While the PpIX634 signal has reliably been assigned to PpIX, it has not yet been analyzed if PpIX620 might result from a different porphyrin rather than being a second photo state of PpIX. We thus reviewed more than 200,000 spectra from various tumors measured in almost 600 biopsies of 130 patients. Insufficient consideration of autofluorescence led to artificial inflation of the PpIX620 peak in the past. Recently, five basis spectra (PpIX634, PpIX620, flavin, lipofuscin, and NADH) were described and incorporated into the analysis algorithm, which allowed more accurate unmixing of spectral abundances. We used the improved algorithm to investigate the PpIX620 signal more precisely and investigated coproporphyrin III (CpIII) fluorescence phantoms for spectral unmixing. Our findings show that the PpIX634 peak was the primary source of the 5-ALA-induced fluorescence. CpIII had a similar spectral characteristic to PpIX620. The supplementation of 5-ALA may trigger the increased production of porphyrins other than PpIX within the heme biosynthesis pathway, including that of CpIII. It is essential to correctly separate autofluorescence from the main PpIX634 peak to analyze the fluorescence signal. This article highlights the need for a comprehensive understanding of the spectral complexity in gliomas and suggests less significance of the 620 nm fluorescence peak for PpIX analysis and visualization.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David Black
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Anna Walke
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Ghasem Azemi
- Computational NeuroSurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Fabio D’Alessandro
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Simone König
- Core Unit Proteomics, Interdisciplinary Centre for Clinical Research, University of Münster, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
14
|
Kwon MJ, House BJ, Barth CW, Solanki A, Jones JA, Davis SC, Gibbs SL. Dual probe difference specimen imaging for prostate cancer margin assessment. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:082806. [PMID: 37082104 PMCID: PMC10111791 DOI: 10.1117/1.jbo.28.8.082806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Significance Positive margin status due to incomplete removal of tumor tissue during radical prostatectomy for high-risk localized prostate cancer requires reoperation or adjuvant therapy, which increases morbidity and mortality. Adverse effects of prostate cancer treatments commonly include erectile dysfunction, urinary incontinence, and bowel dysfunction, making successful initial curative prostatectomy imperative. Aim Current intraoperative tumor margin assessment is largely limited to frozen section analysis, which is a lengthy, labor-intensive process that is obtrusive to the clinical workflow within the operating room (OR). Therefore, a rapid method for prostate cancer margin assessment in the OR could improve outcomes for patients. Approach Dual probe difference specimen imaging (DDSI), which uses paired antibody-based probes that are labeled with spectrally distinct fluorophores, was shown herein for prostate cancer margin assessment. The paired antibody-based probes consisted of a targeted probe to prostate-specific membrane antigen (PSMA) and an untargeted probe, which were used as a cocktail to stain resected murine tissue specimens including prostate tumor, adipose, muscle, and normal prostate. Ratiometric images (i.e., DDSI) of the difference between targeted and untargeted probe uptake were calculated and evaluated for accuracy using receiver operator characteristic curve analysis with area under the curve values used to evaluate the utility of the DDSI method to detect PSMA positive prostate cancer. Results Targeted and untargeted probe uptake was similar between the high and low PSMA expressing tumor due to nonspecific probe uptake after topical administration. The ratiometric DDSI approach showed substantial contrast difference between the PSMA positive tumors and their respective normal tissues (prostate, adipose, muscle). Furthermore, DDSI showed substantial contrast difference between the high PSMA expressing tumors and the minimally PSMA expressing tumors due to the ratiometric correction for the nonspecific uptake patterns in resected tissues. Conclusions Previous work has shown that ratiometic imaging has strong predictive value for breast cancer margin status using topical administration. Translation of the ratiometric DDSI methodology herein from breast to prostate cancers demonstrates it as a robust, ratiometric technique that provides a molecularly specific imaging modality for intraoperative margin detection. Using the validated DDSI protocol on resected prostate cancers permitted rapid and accurate assessment of PSMA status as a surrogate for prostate cancer margin status. Future studies will further evaluate the utility of this technology to quantitatively characterize prostate margin status using PSMA as a biomarker.
Collapse
Affiliation(s)
- Marcus J. Kwon
- Oregon Health & Science University, Biomedical Engineering Department, Portland, Oregon, United States
| | - Broderick J. House
- Oregon Health & Science University, Biomedical Engineering Department, Portland, Oregon, United States
| | - Connor W. Barth
- Oregon Health & Science University, Biomedical Engineering Department, Portland, Oregon, United States
| | - Allison Solanki
- Oregon Health & Science University, Biomedical Engineering Department, Portland, Oregon, United States
| | - Jocelyn A. Jones
- Oregon Health & Science University, Biomedical Engineering Department, Portland, Oregon, United States
| | - Scott C. Davis
- Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire, United States
| | - Summer L. Gibbs
- Oregon Health & Science University, Biomedical Engineering Department, Portland, Oregon, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States
- Address all correspondence to Summer L. Gibbs,
| |
Collapse
|
15
|
Qian Y, Wang J, Bu W, Zhu X, Zhang P, Zhu Y, Fan X, Wang C. Targeted implementation strategies of precise photodynamic therapy based on clinical and technical demands. Biomater Sci 2023; 11:704-718. [PMID: 36472233 DOI: 10.1039/d2bm01384c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
With the development of materials science, photodynamic-based treatments have gradually entered clinics. Photodynamic therapy is ideal for cancer treatment due to its non-invasive and spatiotemporal properties and is the first to be widely promoted in clinical practice. However, the shortcomings resulting from the gap between technical and clinical demands, such as phototoxicity, low tissue permeability, and tissue hypoxia, limit its wide applications. This article reviews the available data regarding the pharmacological and clinical factors affecting the efficacy of photodynamic therapy, such as photosensitizers and oxygen supply, disease diagnosis, and other aspects of photodynamic therapy. In addition, the synergistic treatment of photodynamic therapy with surgery and nanotechnology is also discussed, which is expected to provide inspiration for the design of photodynamic therapy strategies.
Collapse
Affiliation(s)
- Yun Qian
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Jialun Wang
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
| | - Wenbo Bu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Xiaoyan Zhu
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Ping Zhang
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Yun Zhu
- Department of Gastroenterology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China. .,Department of Pharmacy, Nanjing Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.,Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu Province, China
| | - Xiaoli Fan
- Dermatologic Surgery Department, Institute of dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, China.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| |
Collapse
|
16
|
Maswikiti EP, Yu Y, Li H, Wang C, Ma H, Xu B, He P, Ma Y, Wang B, Ma B, Yang J, Ma Z, Zhu J, Chen H. Application of intraoperative photodynamic therapy in patients suspected of recurrence post radical surgery: A single center experience. Photodiagnosis Photodyn Ther 2022; 40:103047. [PMID: 35931356 DOI: 10.1016/j.pdpdt.2022.103047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Difficult to resect tumors may be treated with a combination of radical surgery and photodynamic therapy to try to reduce recurrence. The aim of this single center study is to present results from a combined application of radical surgery with intraoperative PDT for patients with various cancers suspected of high risk for post-operative local recurrence. METHODS Radical surgery combined with intraoperative PDT was performed in each and every patient under study at different time points from June 2020 to July 2021, and the PDT irradiation time ranged from 10, 20, 25 and 30 min. Hematoporphyrin, as a photo synthesizer, was administered intravenously 48 h before surgery and during the operative period respectively, at a 3 mg/kg dose. In addition, the mean and median survival times for each of these patients were also evaluated. Patient's overall disease-Free Survival (DFS) and survival (OS) were immensely evaluated. RESULTS 12 patients (33.3% female and 66.7 % male) underwent radical surgery and PDT simultaneously. No photosensitivity events were reported in the included patients, except for one case with a moderate to severe erythema. Intraoperative PDT was tolerated in all included patients without serious liver and kidney damages. As from the time these patients underwent radical surgery and PDT, three mortalities were recorded and the remaining 9 patients had some remarkable outcomes with less or no recurrences. CONCLUSIONS Intraoperative PDT is a potentially safe therapeutic strategy for various tumor patients who undergo operation. Intraoperative PDT combined with surgery may improve local tumor control but this needs to be tested in a larger patient population.
Collapse
Affiliation(s)
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Huixia Li
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Caijuan Wang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Huanhuan Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Bo Xu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Puyi He
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Yanling Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Bin Ma
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jinwei Yang
- The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Zhen Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Jingyu Zhu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
| | - Hao Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China; The Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China.
| |
Collapse
|
17
|
Suero Molina E, Black D, Kaneko S, Müther M, Stummer W. Double dose of 5-aminolevulinic acid and its effect on protoporphyrin IX accumulation in low-grade glioma. J Neurosurg 2022; 137:943-952. [PMID: 35213830 DOI: 10.3171/2021.12.jns211724] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Administration of 5-aminolevulinic acid (5-ALA) does not regularly elicit fluorescence in low-grade glioma (LGG) at currently established doses and timing of administration. One explanation may be differences in blood-brain barrier (BBB) integrity compared to high-grade glioma. The authors hypothesized that for a BBB semipermeable to 5-ALA there might be a relationship between plasma 5-ALA concentration and its movement into the brain. A higher dose would elicit more 5-ALA conversion into protoporphyrin IX (PPIX). The authors present a case series of patients harboring LGG who received higher doses of 5-ALA. METHODS Patients undergoing surgery for indeterminate glioma later diagnosed as LGG were included in this study. 5-ALA was administered at a standard dose of 20 mg/kg body weight (bw) 4 hours prior to induction of anesthesia. A subgroup of patients received a higher dose of 40 mg/kg bw. Fluorescence was evaluated visually and PPIX concentration (cPPIX) was determined ex vivo by hyperspectral measurements in freshly extracted tissue. All adverse events were recorded. RESULTS A total of 23 patients harboring diffuse low-grade astrocytomas (n = 19) and oligodendrogliomas (n = 4) were analyzed. Thirteen patients received 20 mg/kg bw, and 10 patients received 40 mg/kg bw of 5-ALA. In the 20 mg/kg group, 30.8% (4 of 13) of tumors harbored areas of visible fluorescence, compared to 60% of cases (n = 6 of 10) with 40 mg/kg bw. The threshold to visibility was 1 μg/ml in both groups. Measured over all biopsies, the mean cPPIX was significantly higher in the double-dose group (1.8 vs 0.45 μg/ml; p < 0.001). In non-visibly fluorescent tissue the mean cPPIX was 0.146 μg/ml in the 20 mg/kg and 0.347 μg/ml in the 40 mg/kg group, indicating an increase of 138% (p < 0.001). CONCLUSIONS These observations demonstrate different regions with different levels of PPIX accumulation in LGG. With higher 5-ALA doses cPPIX increases, leading to more regions surpassing the visibility threshold of 1 μg/ml. These observations can be explained by the fact that the BBB in LGG is semipermeable to 5-ALA. Higher 5-ALA doses result in more PPIX conversion, an observation with implications for future dosing in LGG.
Collapse
Affiliation(s)
| | - David Black
- 2Carl Zeiss Meditec AG, Oberkochen, Germany
- 3Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Sadahiro Kaneko
- 1Department of Neurosurgery, University Hospital of Münster
- 4Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Michael Müther
- 1Department of Neurosurgery, University Hospital of Münster
| | - Walter Stummer
- 1Department of Neurosurgery, University Hospital of Münster
| |
Collapse
|
18
|
Kaniyala Melanthota S, Kistenev YV, Borisova E, Ivanov D, Zakharova O, Boyko A, Vrazhnov D, Gopal D, Chakrabarti S, K SP, Mazumder N. Types of spectroscopy and microscopy techniques for cancer diagnosis: a review. Lasers Med Sci 2022; 37:3067-3084. [PMID: 35834141 PMCID: PMC9525344 DOI: 10.1007/s10103-022-03610-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Cancer is a life-threatening disease that has claimed the lives of many people worldwide. With the current diagnostic methods, it is hard to determine cancer at an early stage, due to its versatile nature and lack of genomic biomarkers. The rapid development of biophotonics has emerged as a potential tool in cancer detection and diagnosis. Using the fluorescence, scattering, and absorption characteristics of cells and tissues, it is possible to detect cancer at an early stage. The diagnostic techniques addressed in this review are highly sensitive to the chemical and morphological changes in the cell and tissue during disease progression. These changes alter the fluorescence signal of the cell/tissue and are detected using spectroscopy and microscopy techniques including confocal and two-photon fluorescence (TPF). Further, second harmonic generation (SHG) microscopy reveals the morphological changes that occurred in non-centrosymmetric structures in the tissue, such as collagen. Again, Raman spectroscopy is a non-destructive method that provides a fingerprinting technique to differentiate benign and malignant tissue based on Raman signal. Photoacoustic microscopy and spectroscopy of tissue allow molecule-specific detection with high spatial resolution and penetration depth. In addition, terahertz spectroscopic studies reveal the variation of tissue water content during disease progression. In this review, we address the applications of spectroscopic and microscopic techniques for cancer detection based on the optical properties of the tissue. The discussed state-of-the-art techniques successfully determines malignancy to its rapid diagnosis.
Collapse
Affiliation(s)
- Sindhoora Kaniyala Melanthota
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Yury V Kistenev
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
- Central Research Laboratory, Siberian State Medical University, Tomsk, 634050, Russia
| | - Ekaterina Borisova
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria.
- Biology Faculty, Saratov State University, 83, Astrakhanskaya Str, 410012, Saratov, Russia.
| | - Deyan Ivanov
- Laboratory of Biophotonics, Institute of Electronics, Bulgarian Academy of Sciences, Tsarigradsko Chaussee Blvd, 72, 1784, Sofia, Bulgaria
| | - Olga Zakharova
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Andrey Boyko
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Denis Vrazhnov
- Laboratory of Biophotonics, Tomsk State University, Tomsk, 634050, Russia
| | - Dharshini Gopal
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shweta Chakrabarti
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Shama Prasada K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
19
|
Li G, Rodrigues A, Kim L, Garcia C, Jain S, Zhang M, Hayden-Gephart M. 5-Aminolevulinic Acid Imaging of Malignant Glioma. Surg Oncol Clin N Am 2022; 31:581-593. [DOI: 10.1016/j.soc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Suero Molina E, Hellwig SJ, Walke A, Jeibmann A, Stepp H, Stummer W. Development and validation of a triple-LED surgical loupe device for fluorescence-guided resections with 5-ALA. J Neurosurg 2022; 137:582-590. [PMID: 34972076 DOI: 10.3171/2021.10.jns211911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Fluorescence-guided resections performed using 5-aminolevulinic acid (5-ALA) have been studied extensively using the BLUE400 system. The authors introduce a triple-light-emitting diode (LED) headlight/loupe device for visualizing fluorescence, and compare this to the BLUE400 gold standard in order to assure similar and not more or less sensitive protoporphyrin-IX visualization. METHODS The authors defined the spectral requirements for a triple-LED headlight/loupe device for reproducing the xenon-based BLUE400 module. The system consisted of a white LED (normal surgery), a 409-nm LED for excitation, a 450-nm LED for background illumination, and appropriate observation filters. The prototype's excitation and emission spectra, illumination and detection intensities, and spot homogeneity were determined. The authors further performed a prospectively randomized and blinded study for fluorescence assessments of fresh, marginal, fluorescing and nonfluorescing tumor samples comparing the LED/loupe device with BLUE400 in patients with malignant glioma treated with 20 mg/kg body weight 5-ALA. Tumor samples were immediately assessed in turn, both with a Kinevo and with a novel triple-LED/loupe device by different surgeons. RESULTS Seven triple-LED/loupe devices were analyzed. Illumination intensities in the 409- and 450-nm range were comparable to BLUE400, with high spot homogeneity. Fluorescence intensities measured distally to microscope oculars/loupes were 9.9-fold higher with the loupe device. For validation 26 patients with malignant gliomas with 240 biopsies were analyzed. With BLUE400 results as the reference, sensitivity for reproducing fluorescence findings was 100%, specificity was 95%, positive predictive value was 98%, negative predictive value was 100%, and accuracy was 95%. This study reached its primary aim, with agreement in 226 of 240 (94.2%, 95% CI 0.904-0.968). CONCLUSIONS The authors observed only minor differences regarding spectra and illumination intensities during evaluation. Fluorescence intensities available to surgeons were 9.9-fold higher with the loupe device. Importantly, the independent perception of fluorescence achieved using the new system and BLUE400 was statistically equivalent. The authors believe the triple-LED/loupe device to be a useful and safe option for surgeons who prefer loupes to the microscope for resections in appropriate patients.
Collapse
Affiliation(s)
| | | | - Anna Walke
- 1Department of Neurosurgery, University Hospital of Münster
- 2Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster
| | - Astrid Jeibmann
- 3Institute of Neuropathology, University Hospital of Münster; and
| | - Herbert Stepp
- 4Laser-Forschungslabor, LIFE Center, University Hospital, LMU Munich, Germany
| | - Walter Stummer
- 1Department of Neurosurgery, University Hospital of Münster
| |
Collapse
|
21
|
Zhou Y, Mo M, Luo D, Yang Y, Hu J, Ye C, Lin L, Xu C, Chen W. Evolutionary Trend Analysis of Research on 5-ALA Delivery and Theranostic Applications Based on a Scientometrics Study. Pharmaceutics 2022; 14:pharmaceutics14071477. [PMID: 35890373 PMCID: PMC9320574 DOI: 10.3390/pharmaceutics14071477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
5-aminolevulinic acid (5-ALA) has been extensively studied for its sustainability and broad-spectrum applications in medical research and theranostics, as well as other areas. It’s a precursor of protoporphyrin IX (PpIX), a sustainable endogenous and naturally-existing photosensitizer. However, to the best of our knowledge, a scientometrics study based on the scientific knowledge assay of the overall situation on 5-ALA research has not been reported so far, which would be of major importance to the relevant researchers. In this study, we collected all the research articles published in the last two decades from the Web of Science Core Collection database and employed bibliometric methods to comprehensively analyze the dataset from different perspectives using CiteSpace. A total of 1595 articles were identified. The analysis results showed that China published the largest number of articles, and SBI Pharmaceuticals Co., Ltd. was the most productive institution that sponsored several of the most productive authors. The cluster analysis and burst detections indicated that the improvement of photodynamic efficacy theranostics is the up-to-date key direction in 5-ALA research. Furthermore, we emphatically studied nanotechnology involvement in 5-ALA delivery and theranostics research. We envision that our results will be beneficial for researchers to have a panorama of and deep insights into this area, thus inspiring further exploitations, especially of the nanomaterial-based systems for 5-ALA delivery and theranostic applications.
Collapse
Affiliation(s)
- You Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Mulan Mo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Dexu Luo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Yi Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Jialin Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
| | - Chenqing Ye
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde 352100, China;
| | - Longxiang Lin
- Shenzhen Osteomore Biotechnology Co., Ltd., Shenzhen 518118, China;
| | - Chuanshan Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- Correspondence: (C.X.); (W.C.)
| | - Wenjie Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China; (Y.Z.); (M.M.); (D.L.); (Y.Y.); (J.H.)
- State Key Laboratory of Respiratory Disease, Guangdong-Hongkong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510182, China
- Sydney Vital Translational Cancer Research Centre, Westbourne St., Sydney, NSW 2065, Australia
- Correspondence: (C.X.); (W.C.)
| |
Collapse
|
22
|
Netufo O, Connor K, Shiels LP, Sweeney KJ, Wu D, O’Shea DF, Byrne AT, Miller IS. Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents. Pharmaceuticals (Basel) 2022; 15:550. [PMID: 35631376 PMCID: PMC9143023 DOI: 10.3390/ph15050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive adult brain tumour with a dismal 2-year survival rate of 26-33%. Maximal safe resection plays a crucial role in improving patient progression-free survival (PFS). Neurosurgeons have the significant challenge of delineating normal tissue from brain tumour to achieve the optimal extent of resection (EOR), with 5-Aminolevulinic Acid (5-ALA) the only clinically approved intra-operative fluorophore for GBM. This review aims to highlight the requirement for improved intra-operative imaging techniques, focusing on fluorescence-guided imaging (FGS) and the use of novel dyes with the potential to overcome the limitations of current FGS. The review was performed based on articles found in PubMed an.d Google Scholar, as well as articles identified in searched bibliographies between 2001 and 2022. Key words for searches included 'Glioblastoma' + 'Fluorophore'+ 'Novel' + 'Fluorescence Guided Surgery'. Current literature has favoured the approach of using targeted fluorophores to achieve specific accumulation in the tumour microenvironment, with biological conjugates leading the way. These conjugates target specific parts overexpressed in the tumour. The positive results in breast, ovarian and colorectal tissue are promising and may, therefore, be applied to intracranial neoplasms. Therefore, this design has the potential to produce favourable results in GBM by reducing the residual tumour, which translates to decreased tumour recurrence, morbidity and ultimately, mortality in GBM patients. Several preclinical studies have shown positive results with targeted dyes in distinguishing GBM cells from normal brain parenchyma, and targeted dyes in the Near-Infrared (NIR) emission range offer promising results, which may be valuable future alternatives.
Collapse
Affiliation(s)
- Oluwakanyinsolami Netufo
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kate Connor
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Liam P. Shiels
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kieron J. Sweeney
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Centre for Neurosurgery, Beaumont Hospital, 9, D09 V2N0 Dublin, Ireland
| | - Dan Wu
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Donal F. O’Shea
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Annette T. Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| | - Ian S. Miller
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
23
|
Wach J, Güresir Á, Hamed M, Vatter H, Herrlinger U, Güresir E. Impact of Levetiracetam Treatment on 5-Aminolevulinic Acid Fluorescence Expression in IDH1 Wild-Type Glioblastoma. Cancers (Basel) 2022; 14:cancers14092134. [PMID: 35565263 PMCID: PMC9099986 DOI: 10.3390/cancers14092134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The amino acid 5-aminolevulinic acid (5-ALA) is the benchmark regarding intraoperative imaging tools for glioblastoma (GB) surgery, and is known to facilitate the extent of resection, which results in an enhanced 6 month progression-free survival rate. Recent in vitro studies suggest that antiepileptic drugs (AEDs) result in a reduction in the fluorescence quality in gliomas. To date, there is no large clinical series investigating this issue in a homogeneous cohort. Approximately 25% of all GB patients have a symptomatic epilepsy as the initial symptom at presentation. Hence, this potential dilemma is of paramount importance. We found that the preoperative intake of levetiracetam is a significant risk factor for reduced intraoperative fluorescence in IDH1 wild-type GBs. We believe that this issue must be considered in future external validations, and physicians must carefully evaluate the indication of levetiracetam and avoid a prophylactic levetiracetam treatment in terms of the suspected diagnosis of glioblastoma. Abstract The amino acid 5-aminolevulinic acid (5-ALA) is the most established neurosurgical fluorescent dye and facilitates the achievement of gross total resection. In vitro studies raised concerns that antiepileptic drugs (AED) reduce the quality of fluorescence. Between 2013 and 2018, 175 IDH1 wild-type glioblastoma (GB) patients underwent 5-ALA guided surgery. Patients’ data were retrospectively reviewed regarding demographics, comorbidities, medications, tumor morphology, neuropathological characteristics, and their association with intraoperative 5-ALA fluorescence. The fluorescence of 5-ALA was graded in a three point scaling system (grade 0 = no; grade 1 = weak; grade 2 = strong). Univariable analysis shows that the intake of dexamethasone or levetiracetam, and larger preoperative tumor area significantly reduce the intraoperative fluorescence activity (fluorescence grade: 0 + 1). Multivariable binary logistic regression analysis demonstrates the preoperative intake of levetiracetam (adjusted odds ratio: 12.05, 95% confidence interval: 3.91–37.16, p = 0.001) as the only independent and significant risk factor for reduced fluorescence quality. Preoperative levetiracetam intake significantly reduced intraoperative fluorescence. The indication for levetiracetam in suspected GB should be carefully reviewed and prophylactic treatment avoided for this tumor entity. Future comparative trials of neurosurgical fluorescent dyes need a special focus on the influence of levetiracetam on fluorescence intensity. Further trials must validate our findings.
Collapse
Affiliation(s)
- Johannes Wach
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (Á.G.); (M.H.); (H.V.); (E.G.)
- Correspondence: ; Tel.: +49-228-287-16521
| | - Ági Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (Á.G.); (M.H.); (H.V.); (E.G.)
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (Á.G.); (M.H.); (H.V.); (E.G.)
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (Á.G.); (M.H.); (H.V.); (E.G.)
| | - Ulrich Herrlinger
- Division of Clinical Neurooncology, Department of Neurology and Centre of Integrated Oncology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Erdem Güresir
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany; (Á.G.); (M.H.); (H.V.); (E.G.)
| |
Collapse
|
24
|
Haider S, Hamilton TM, Hunt RJ, Lee IY, Robin AM. Clinically useful tumor fluorescence greater than 24 hours after 5-aminolevulinic acid administration. Surg Neurol Int 2022; 13:99. [PMID: 35399905 PMCID: PMC8986640 DOI: 10.25259/sni_836_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: 5-aminolevulinic acid (5-ALA) is a valuable surgical adjuvant used for the resection of glioblastoma multiforme (GBM). Since Food and Drug Administration approval in 2017, 5-ALA has been used in over 37,000 cases. The current recommendation for peak efficacy and intraoperative fluorescence is within 4 h after administration. This narrow time window imposes a perioperative time constraint which may complicate or preclude the use of 5-ALA in GBM surgery. Case Description: This case report describes the prolonged activity of 5-ALA in a 66-year-old patient with a newly diagnosed GBM lesion within the left supramarginal gyrus. An awake craniotomy with language and sensorimotor mapping was planned along with 5-ALA fluorescence guidance. Shortly, after receiving the preoperative 5-ALA dose, the patient developed a fever. Surgery was postponed for an infectious disease workup which proved negative. The patient was taken to surgery the following day, 36 h after 5-ALA administration. Despite the delay, intraoperative fluorescence within the tumor remained and was sufficient to guide resection. Postoperative imaging confirmed a gross total resection of the tumor. Conclusion: The use of 5-ALA as an intraoperative adjuvant may still be effective for patients beyond the recommended 4-h window after initial administration. Reconsideration of current use of 5-ALA is warranted.
Collapse
|
25
|
Suero Molina E, Kaneko S, Black D, Stummer W. 5-Aminolevulinic Acid-Induced Porphyrin Contents in Various Brain Tumors: Implications Regarding Imaging Device Design and Their Validation. Neurosurgery 2021; 89:1132-1140. [PMID: 34670277 DOI: 10.1093/neuros/nyab361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Fluorescence-guided resections using 5-aminolevulinic acid (5-ALA)-induced tumor porphyrins have been established as an adjunct for malignant glioma surgery based on a phase III study using specifically adapted microscopes for visualizing fluorescing protoporphyrin IX (PPIX). New hardware technologies are being introduced, which claim the same performance as the original technology for visualizing fluorescence. This assumes that qualitative fluorescence detection is equivalent to the established standard, an assumption that needs to be critically assessed. OBJECTIVE To determine PPIX concentrations (cPPIX) in tissue that can be detected visually using the established BLUE400 filter system (Carl Zeiss Meditec, Oberkochen, Germany) as a basis for defining the performance of this system. METHODS Utilizing a hyperspectral imaging system, tumor samples from patients harboring different tumor tissues, with or without visible fluorescence, were analyzed. Absolute values of cPPIX were calculated after calibrating the system with fluorescence phantoms with known cPPIX. RESULTS A total of 524 tumor samples from 162 patients were analyzed. Visual fluorescence under the BLUE400 filter was documented by experienced neurosurgeons. A 0.9 μg/ml threshold of cPPIX was defined as the minimal concentration required to detect and discriminate visual fluorescence. CONCLUSION This is the first report providing data on the threshold of cPPIX, which is visually detected using the current generation of microscopes, thus defining the specificity and sensitivity of this technology as initially tested in a randomized trial. Novel technologies should show similar characteristics in order to be used safely and effectively. If more sensitive, such technologies require further assessments of tumor selectivity.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Sadahiro Kaneko
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.,Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - David Black
- Carl Zeiss Meditec AG, Oberkochen, Germany.,University of British Columbia, Vancouver, Canada
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
26
|
Identification of risk factors associated with oral 5-aminolevulinic acid-induced hypotension in photodynamic diagnosis for non-muscle invasive bladder cancer: a multicenter retrospective study. BMC Cancer 2021; 21:1223. [PMID: 34774000 PMCID: PMC8590750 DOI: 10.1186/s12885-021-08976-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Background To investigate risk factors for orally administered 5-aminolevulinic acid (ALA)-induced hypotension for bladder cancer patients receiving photodynamic diagnosis (PDD)-assisted transurethral resection of bladder tumor (TURBT). Methods Patients were categorized into two groups intraoperatively: a hypotensive group (minimum systolic blood pressure (SBP) ≤80 mmHg) and a non-hypotensive group (minimum SBP > 80 mmHg). We examined differences between the hypotensive group and non-hypotensive groups to identify clinical risk of ALA-induced hypotension using multivariate logistic regression analysis and decision tree analysis. Results Among 282 cases with ALA-PDD-assisted TURBT from three institutions who were screened, 245 patients were included in the final analysis. In total, 156 patients (63.7%) showed any grade of hypotension during ALA-PDD-assisted TURBT. General anesthesia and spinal anesthesia were induced intraoperatively in 113 patients (46.1%) and 132 patients (53.9%), respectively. Median SBP at baseline (before taking ALA) and at the beginning of anesthesia was 127 mmHg (range, 69–186 mmHg) and 124 mmHg (range, 69–186 mmHg), respectively. Median minimum SBP during ALA-PDD-assisted TURBT was 75 mmHg (range, 43–140 mmHg). Multivariate logistic regression analysis revealed that history of hypertension (odds ratio (OR) 7.568, p < 0.05) and general anesthesia (OR 14.435, p < 0.05) as significantly associated with an increased risk of hypotension incidence. Use of calcium antagonist showed significant negative associations with hypotension (OR 0.183, p < 0.05). Decision tree analysis showed presence of general anesthesia, age ≥ 74 years and American Society of Anesthesiologists physical status (ASA-PS) ≥2 as the most important discriminators. Conclusions General anesthesia and hypertension were independent risk factors related to ALA-induced hypotension. In contrast, use of calcium antagonists was identified as a factor associated with reduced risk of ALA-induced hypotension.
Collapse
|
27
|
Abramov I, Dru AB, Belykh E, Park MT, Bardonova L, Preul MC. Redosing of Fluorescein Sodium Improves Image Interpretation During Intraoperative Ex Vivo Confocal Laser Endomicroscopy of Brain Tumors. Front Oncol 2021; 11:668661. [PMID: 34660258 PMCID: PMC8514872 DOI: 10.3389/fonc.2021.668661] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
Background Fluorescein sodium (FNa) is a fluorescence agent used with a wide-field operating microscope for intraoperative guidance and with confocal laser endomicroscopy (CLE) to evaluate brain tissue. Susceptibility of FNa to degradation over time may affect CLE image quality during prolonged surgeries. This study describes improved characteristics of CLE images after intraoperative redosing with FNa. Methods A retrospective analysis was performed using CLE images obtained ex vivo from samples obtained during tumor resections with FNa-based fluorescence guidance with a wide-field operating microscope. The comparison groups included CLE images acquired after FNa redosing (redose imaging group), images from the same patients acquired after the initial FNa dose (initial-dose imaging group), and images from patients in whom redosing was not used (single-dose imaging group). A detailed assessment of image quality and interpretation regarding different FNa dosage and timing of imaging after FNa administration was conducted for all comparison groups. Results The brightest and most contrasting images were observed in the redose group compared to the initial-dose and single-dose groups (P<0.001). The decay of FNa signal negatively correlated with brightness (rho = -0.52, P<0.001) and contrast (rho = -0.57, P<0.001). Different doses of FNa did not significantly affect the brightness (P=0.15) or contrast (P=0.09) in CLE images. As the mean timing of imaging increased, the percentage of accurately diagnosed images decreased (P=0.03). Conclusions The decay of the FNa signal is directly associated with image brightness and contrast. The qualitative interpretation scores of images were highest for the FNa redose imaging group. Redosing with FNa to improve the utility of CLE imaging should be considered a safe and beneficial strategy during prolonged surgeries.
Collapse
Affiliation(s)
- Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Alexander B Dru
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Marian T Park
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Liudmila Bardonova
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
28
|
Livermore LJ, Isabelle M, Bell IM, Edgar O, Voets NL, Stacey R, Ansorge O, Vallance C, Plaha P. Raman spectroscopy to differentiate between fresh tissue samples of glioma and normal brain: a comparison with 5-ALA-induced fluorescence-guided surgery. J Neurosurg 2021; 135:469-479. [PMID: 33007757 DOI: 10.3171/2020.5.jns20376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/22/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Raman spectroscopy is a biophotonic tool that can be used to differentiate between different tissue types. It is nondestructive and no sample preparation is required. The aim of this study was to evaluate the ability of Raman spectroscopy to differentiate between glioma and normal brain when using fresh biopsy samples and, in the case of glioblastomas, to compare the performance of Raman spectroscopy to predict the presence or absence of tumor with that of 5-aminolevulinic acid (5-ALA)-induced fluorescence. METHODS A principal component analysis (PCA)-fed linear discriminant analysis (LDA) machine learning predictive model was built using Raman spectra, acquired ex vivo, from fresh tissue samples of 62 patients with glioma and 11 glioma-free brain samples from individuals undergoing temporal lobectomy for epilepsy. This model was then used to classify Raman spectra from fresh biopsies from resection cavities after functional guided, supramaximal glioma resection. In cases of glioblastoma, 5-ALA-induced fluorescence at the resection cavity biopsy site was recorded, and this was compared with the Raman spectral model prediction for the presence of tumor. RESULTS The PCA-LDA predictive model demonstrated 0.96 sensitivity, 0.99 specificity, and 0.99 accuracy for differentiating tumor from normal brain. Twenty-three resection cavity biopsies were taken from 8 patients after supramaximal resection (6 glioblastomas, 2 oligodendrogliomas). Raman spectroscopy showed 1.00 sensitivity, 1.00 specificity, and 1.00 accuracy for predicting tumor versus normal brain in these samples. In the glioblastoma cases, where 5-ALA-induced fluorescence was used, the performance of Raman spectroscopy was significantly better than the predictive value of 5-ALA-induced fluorescence, which showed 0.07 sensitivity, 1.00 specificity, and 0.24 accuracy (p = 0.0009). CONCLUSIONS Raman spectroscopy can accurately classify fresh tissue samples into tumor versus normal brain and is superior to 5-ALA-induced fluorescence. Raman spectroscopy could become an important intraoperative tool used in conjunction with 5-ALA-induced fluorescence to guide extent of resection in glioma surgery.
Collapse
Affiliation(s)
- Laurent J Livermore
- 1Nuffield Department of Clinical Neurosciences, and
- 3Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford
| | - Martin Isabelle
- 4Renishaw plc, Spectroscopy Products Division, Gloucestershire
| | - Ian M Bell
- 4Renishaw plc, Spectroscopy Products Division, Gloucestershire
| | - Oliver Edgar
- 1Nuffield Department of Clinical Neurosciences, and
| | - Natalie L Voets
- 2Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford
- 6FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard Stacey
- 3Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford
| | - Olaf Ansorge
- 1Nuffield Department of Clinical Neurosciences, and
| | | | - Puneet Plaha
- 2Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford
- 3Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford
| |
Collapse
|
29
|
Intraoperative fluorescence imaging with aminolevulinic acid detects grossly occult breast cancer: a phase II randomized controlled trial. Breast Cancer Res 2021; 23:72. [PMID: 34253233 PMCID: PMC8276412 DOI: 10.1186/s13058-021-01442-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Re-excision due to positive margins following breast-conserving surgery (BCS) negatively affects patient outcomes and healthcare costs. The inability to visualize margin involvement is a significant challenge in BCS. 5-Aminolevulinic acid hydrochloride (5-ALA HCl), a non-fluorescent oral prodrug, causes intracellular accumulation of fluorescent porphyrins in cancer cells. This single-center Phase II randomized controlled trial evaluated the safety, feasibility, and diagnostic accuracy of a prototype handheld fluorescence imaging device plus 5-ALA for intraoperative visualization of invasive breast carcinomas during BCS. METHODS Fifty-four patients were enrolled and randomized to receive no 5-ALA or oral 5-ALA HCl (15 or 30 mg/kg). Forty-five patients (n = 15/group) were included in the analysis. Fluorescence imaging of the excised surgical specimen was performed, and biopsies were collected from within and outside the clinically demarcated tumor border of the gross specimen for blinded histopathology. RESULTS In the absence of 5-ALA, tissue autofluorescence imaging lacked tumor-specific fluorescent contrast. Both 5-ALA doses caused bright red tumor fluorescence, with improved visualization of tumor contrasted against normal tissue autofluorescence. In the 15 mg/kg 5-ALA group, the positive predictive value (PPV) for detecting breast cancer inside and outside the grossly demarcated tumor border was 100.0% and 55.6%, respectively. In the 30 mg/kg 5-ALA group, the PPV was 100.0% and 50.0% inside and outside the demarcated tumor border, respectively. No adverse events were observed, and clinical feasibility of this imaging device-5-ALA combination approach was confirmed. CONCLUSIONS This is the first known clinical report of visualization of 5-ALA-induced fluorescence in invasive breast carcinoma using a real-time handheld intraoperative fluorescence imaging device. TRIAL REGISTRATION Clinicaltrials.gov identifier NCT01837225 . Registered 23 April 2013.
Collapse
|
30
|
Palmieri G, Cofano F, Salvati LF, Monticelli M, Zeppa P, Perna GD, Melcarne A, Altieri R, La Rocca G, Sabatino G, Barbagallo GM, Tartara F, Zenga F, Garbossa D. Fluorescence-Guided Surgery for High-Grade Gliomas: State of the Art and New Perspectives. Technol Cancer Res Treat 2021; 20:15330338211021605. [PMID: 34212784 PMCID: PMC8255554 DOI: 10.1177/15330338211021605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas are aggressive tumors that require multimodal management and gross total resection is considered to be the first crucial step of treatment. Because of their infiltrative nature, intraoperative differentiation of neoplastic tissue from normal parenchyma can be challenging. For these reasons, in the recent years, neurosurgeons have increasingly performed this surgery under the guidance of tissue fluorescence. Sodium fluoresceine and 5-aminolevulinic acid represent the 2 main compounds that allow real-time identification of residual malignant tissue and have been associated with improved gross total resection and radiological outcomes. Though presenting different profiles of sensitivity and specificity and further investigations concerning cost-effectiveness are need, Sodium fluoresceine, 5-aminolevulinic acid and new phluorophores, such as Indocyanine green, represent some of the most important tools in the neurosurgeon’s hands to achieve gross total resection.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Fabio Cofano
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy.,Neurosurgery/Spine Surgery, Humanitas Gradenigo Hospital, Turin, Italy
| | - Luca Francesco Salvati
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Matteo Monticelli
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Pietro Zeppa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Giuseppe Di Perna
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Antonio Melcarne
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giuseppe Maria Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Fulvio Tartara
- Unit of Neurosurgery, Istituto Clinico Città Studi, Milan, Italy
| | - Francesco Zenga
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Diego Garbossa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| |
Collapse
|
31
|
Kaneko S, Suero Molina E, Sporns P, Schipmann S, Black D, Stummer W. Fluorescence real-time kinetics of protoporphyrin IX after 5-ALA administration in low-grade glioma. J Neurosurg 2021; 136:9-15. [PMID: 34144512 DOI: 10.3171/2020.10.jns202881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE 5-Aminolevulinic acid (5-ALA) induces fluorescence in high-grade glioma (HGG), which is used for resection. However, the value of 5-ALA-induced fluorescence in low-grade glioma (LGG) is unclear. Time dependency and time kinetics have not yet been investigated. The purpose of this study was to investigate real-time kinetics of protoporphyrin IX (PpIX) in LGG based on hyperspectral fluorescence-based measurements and identify factors that predict fluorescence. METHODS Patients with grade II gliomas and imaging from which HGGs could not be completely ruled out received 5-ALA at 20 mg/kg body weight 4 hours prior to surgery. Fluorescence intensity (FI) and PpIX concentration (CPpIX) were measured in tumor tissue utilizing a hyperspectral camera. Apparent diffusion coefficient (ADC)-based tumor cell density, Ki-67/MIB-1 index, chromosomal 1p/19q codeletion, and 18F-fluoroethyl-l-tyrosine (18F-FET) PET values and their role for predicting fluorescence were evaluated. RESULTS Eighty-one biopsies from 25 patients were included. Tissues with fluorescence demonstrated FI and CPpIX maxima between 7 and 8 hours after administration. When visible fluorescence was observed, peaks of FI and CPpIX were observed within this 7- to 8-hour time frame, regardless of any MRI gadolinium contrast enhancement. Gadolinium enhancement (p = 0.008), Ki-67/MIB-1 index (p < 0.001), 18F-FET PET uptake ratio (p = 0.004), and ADC-based tumor cellularity (p = 0.017) significantly differed between fluorescing and nonfluorescing tissue, but not 1p/19q codeletions. Logistic regression demonstrated that 18F-FET PET uptake and Ki-67/MIB-1 index were independently related to fluorescence. CONCLUSIONS This study reports a fluorescence-based assessment of CPpIX in human LGG tissues related to 18F-FET PET uptake and Ki-67/MIB-1. As in HGGs, fluorescence in LGGs peaked between 7 and 8 hours after 5-ALA application, which has consequences for the timing of administration.
Collapse
Affiliation(s)
- Sadahiro Kaneko
- 1Department of Neurosurgery, University Hospital of Münster, Germany.,2Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Eric Suero Molina
- 1Department of Neurosurgery, University Hospital of Münster, Germany
| | - Peter Sporns
- 3Department of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Switzerland.,4Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - David Black
- 5Carl Zeiss Meditec AG, Oberkochen, Germany; and.,6University of British Columbia, Vancouver, British Columbia, Canada
| | - Walter Stummer
- 1Department of Neurosurgery, University Hospital of Münster, Germany
| |
Collapse
|
32
|
Let Me See: Correlation between 5-ALA Fluorescence and Molecular Pathways in Glioblastoma: A Single Center Experience. Brain Sci 2021; 11:brainsci11060795. [PMID: 34208653 PMCID: PMC8235669 DOI: 10.3390/brainsci11060795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Despite the aggressiveness of multimodal treatment, glioblastoma (GBM) is still a challenge for neurosurgeons, neurooncologists, and radiotherapists. A surgical approach is still a cornerstone in GBM therapeutic management, as the extent of resection is strongly related both to overall survival and progression-free survival. From this perspective, the use of photodynamic molecules could represent an interesting tool to achieve maximal and safe resection. Being able to trace the lesion’s edges, indeed, could allow to improve the extent of resection and to minimize residual tumor while sparing normal tissue. The use of 5-aminolevulinic acid (5-ALA) as a photodynamic tracer is well established due to its strict correlation both with cellularity and metabolic activity of the GBM cell clones. Objective: Our study aims to define whether a different molecular asset of GBM (especially investigating IDH 1/2 mutation, proliferation index, and MGMT promoter methylation) results in different fluorescence expression, possibly because of differences in metabolic pathways due to different genotypes. Methods: Patients undergoing surgery for GBM removal at our Institute (Dep. Of Neurosurgery, Ospedale Città della Salute e della Scienza, University of Turin, Italy) were retrospectively reviewed. Patients with histological diagnosis confirmation and to whom 5-ALA was given before surgery were included. The whole surgical procedure was recorded and then analyzed by three different people (a medical student, a resident, and a senior surgeon with an interest in neurooncology and experience in using 5-ALA) and a score was assigned to the different degrees of intraoperative fluorescence. The degree of fluorescence was then matched with the genotype. Results: A trend of grade 2 fluorescence (i.e., ”strong”) was observed in the IDH 1/2 wild-type (WT) genotype, suggesting a more intense metabolic activity in this particular subgroup, while, no or weak fluorescence was observed more often in the IDH 1/2 mutated tumors, suggesting a lower metabolic activity. No relations were found between fluorescence grade and MGMT promoter methylation or, interestingly, cellularity. As a secondary analysis, more epileptogenicity of the IDH 1/2 mutated GBM was noticed, similarly to other recent literature. Conclusion: Our results do not support the use of 5-ALA as a diagnostic tool, or a way to substitute the molecular profiling, but confirm 5-ALA as a powerful metabolic tracer, able to easily detect the pathological cells, especially in the IDH WT genotype, and in this perspective, further studies will be necessary to better describe the metabolic activity of GBM cells.
Collapse
|
33
|
Staartjes VE, Volokitin A, Regli L, Konukoglu E, Serra C. Machine Vision for Real-Time Intraoperative Anatomic Guidance: A Proof-of-Concept Study in Endoscopic Pituitary Surgery. Oper Neurosurg (Hagerstown) 2021; 21:242-247. [PMID: 34131753 DOI: 10.1093/ons/opab187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Current intraoperative orientation methods either rely on preoperative imaging, are resource-intensive to implement, or difficult to interpret. Real-time, reliable anatomic recognition would constitute another strong pillar on which neurosurgeons could rest for intraoperative orientation. OBJECTIVE To assess the feasibility of machine vision algorithms to identify anatomic structures using only the endoscopic camera without prior explicit anatomo-topographic knowledge in a proof-of-concept study. METHODS We developed and validated a deep learning algorithm to detect the nasal septum, the middle turbinate, and the inferior turbinate during endoscopic endonasal approaches based on endoscopy videos from 23 different patients. The model was trained in a weakly supervised manner on 18 and validated on 5 patients. Performance was compared against a baseline consisting of the average positions of the training ground truth labels using a semiquantitative 3-tiered system. RESULTS We used 367 images extracted from the videos of 18 patients for training, as well as 182 test images extracted from the videos of another 5 patients for testing the fully developed model. The prototype machine vision algorithm was able to identify the 3 endonasal structures qualitatively well. Compared to the baseline model based on location priors, the algorithm demonstrated slightly but statistically significantly (P < .001) improved annotation performance. CONCLUSION Automated recognition of anatomic structures in endoscopic videos by means of a machine vision model using only the endoscopic camera without prior explicit anatomo-topographic knowledge is feasible. This proof of concept encourages further development of fully automated software for real-time intraoperative anatomic guidance during surgery.
Collapse
Affiliation(s)
- Victor E Staartjes
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, University Hospital Zurich, Clinical Neuroscience Centre, University of Zurich, Zurich, Switzerland
| | - Anna Volokitin
- Computer Vision Lab (CVL), ETH Zurich, Zurich, Switzerland
| | - Luca Regli
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, University Hospital Zurich, Clinical Neuroscience Centre, University of Zurich, Zurich, Switzerland
| | | | - Carlo Serra
- Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Department of Neurosurgery, University Hospital Zurich, Clinical Neuroscience Centre, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Dadario NB, Khatri D, Reichman N, Nwagwu CD, D'Amico RS. 5-Aminolevulinic Acid-Shedding Light on Where to Focus. World Neurosurg 2021; 150:9-16. [PMID: 33684574 DOI: 10.1016/j.wneu.2021.02.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Surgical management of gliomas is predicated on "safe maximal resection" across all histopathologic grades because progression-free survival and overall survival are positively affected by the increasing extent of resection. Administration of the prodrug 5-aminolevulinic acid (5-ALA) induces tumor fluorescence with high specificity and sensitivity for malignant high-grade glioma (HGG). Fluorescence-guided surgery (FGS) using 5-ALA improves the extent of resection in the contrast-enhancing and nonenhancing tumor components in HGG. It has also shown preliminary usefulness in other central nervous system tumors, but with certain limitations. METHODS We review and discuss the state of 5-ALA FGS for central nervous system tumors and identify the limitations in its use as a guide for future clinical optimization. RESULTS 5-ALA FGS provides maximum clinical benefits in the treatment of newly diagnosed glioblastoma. 5-ALA fluorescence specificity is limited in low-grade glioma, recurrent HGG, and non-glial tumors. Several promising intraoperative adjuncts to 5-ALA FGS have been developed to expand its indications and improve the clinical efficacy and usefulness of 5-ALA FGS. CONCLUSIONS 5-ALA FGS improves the clinical outcomes in HGG. However, further optimization of the diagnostic performance and clinical use of 5-ALA FGS is necessary for low-grade glioma and recurrent HGG tumors. Neurosurgical oncology will benefit from the novel use of advanced technologies and intraoperative visualization techniques outlined in this review, such as machine learning, hand-held fibe-optic probes, augmented reality, and three-dimensional exoscope assistance, to optimize the clinical usefulness and operative outcomes of 5-ALA FGS.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA; Rutgers Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, New Jersey, USA
| | - Deepak Khatri
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Noah Reichman
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Chibueze D Nwagwu
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA.
| |
Collapse
|
35
|
Staartjes VE, Broggi M, Zattra CM, Vasella F, Velz J, Schiavolin S, Serra C, Bartek J, Fletcher-Sandersjöö A, Förander P, Kalasauskas D, Renovanz M, Ringel F, Brawanski KR, Kerschbaumer J, Freyschlag CF, Jakola AS, Sjåvik K, Solheim O, Schatlo B, Sachkova A, Bock HC, Hussein A, Rohde V, Broekman MLD, Nogarede CO, Lemmens CMC, Kernbach JM, Neuloh G, Bozinov O, Krayenbühl N, Sarnthein J, Ferroli P, Regli L, Stienen MN. Development and external validation of a clinical prediction model for functional impairment after intracranial tumor surgery. J Neurosurg 2021; 134:1743-1750. [PMID: 32534490 DOI: 10.3171/2020.4.jns20643] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Decision-making for intracranial tumor surgery requires balancing the oncological benefit against the risk for resection-related impairment. Risk estimates are commonly based on subjective experience and generalized numbers from the literature, but even experienced surgeons overestimate functional outcome after surgery. Today, there is no reliable and objective way to preoperatively predict an individual patient's risk of experiencing any functional impairment. METHODS The authors developed a prediction model for functional impairment at 3 to 6 months after microsurgical resection, defined as a decrease in Karnofsky Performance Status of ≥ 10 points. Two prospective registries in Switzerland and Italy were used for development. External validation was performed in 7 cohorts from Sweden, Norway, Germany, Austria, and the Netherlands. Age, sex, prior surgery, tumor histology and maximum diameter, expected major brain vessel or cranial nerve manipulation, resection in eloquent areas and the posterior fossa, and surgical approach were recorded. Discrimination and calibration metrics were evaluated. RESULTS In the development (2437 patients, 48.2% male; mean age ± SD: 55 ± 15 years) and external validation (2427 patients, 42.4% male; mean age ± SD: 58 ± 13 years) cohorts, functional impairment rates were 21.5% and 28.5%, respectively. In the development cohort, area under the curve (AUC) values of 0.72 (95% CI 0.69-0.74) were observed. In the pooled external validation cohort, the AUC was 0.72 (95% CI 0.69-0.74), confirming generalizability. Calibration plots indicated fair calibration in both cohorts. The tool has been incorporated into a web-based application available at https://neurosurgery.shinyapps.io/impairment/. CONCLUSIONS Functional impairment after intracranial tumor surgery remains extraordinarily difficult to predict, although machine learning can help quantify risk. This externally validated prediction tool can serve as the basis for case-by-case discussions and risk-to-benefit estimation of surgical treatment in the individual patient.
Collapse
Affiliation(s)
- Victor E Staartjes
- 1Department of Neurosurgery and Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
- 2Amsterdam UMC, Vrije Universiteit Amsterdam, Neurosurgery, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Morgan Broggi
- 3Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan
| | - Costanza Maria Zattra
- 3Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan
| | - Flavio Vasella
- 1Department of Neurosurgery and Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Julia Velz
- 1Department of Neurosurgery and Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Silvia Schiavolin
- 4Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Serra
- 1Department of Neurosurgery and Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Jiri Bartek
- 5Department of Neurosurgery, Karolinska University Hospital, Stockholm
- 6Department of Clinical Neuroscience and Medicine, Karolinska Institutet, Stockholm, Sweden
- 7Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Alexander Fletcher-Sandersjöö
- 5Department of Neurosurgery, Karolinska University Hospital, Stockholm
- 6Department of Clinical Neuroscience and Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Petter Förander
- 5Department of Neurosurgery, Karolinska University Hospital, Stockholm
- 6Department of Clinical Neuroscience and Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Darius Kalasauskas
- 8Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Mirjam Renovanz
- 8Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | - Florian Ringel
- 8Department of Neurosurgery, University Medical Center, Johannes Gutenberg University Mainz, Germany
| | | | | | | | - Asgeir S Jakola
- 10Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg
- 11Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Kristin Sjåvik
- 12Department of Neurosurgery, University Hospital of North Norway, Tromsö
| | - Ole Solheim
- 13Department of Neurosurgery, St. Olav's University Hospital, Trondheim, Norway
| | - Bawarjan Schatlo
- 14Department of Neurosurgery, Georg August University, University Medical Center, Göttingen, Germany
| | - Alexandra Sachkova
- 14Department of Neurosurgery, Georg August University, University Medical Center, Göttingen, Germany
| | - Hans Christoph Bock
- 14Department of Neurosurgery, Georg August University, University Medical Center, Göttingen, Germany
| | - Abdelhalim Hussein
- 14Department of Neurosurgery, Georg August University, University Medical Center, Göttingen, Germany
| | - Veit Rohde
- 14Department of Neurosurgery, Georg August University, University Medical Center, Göttingen, Germany
| | - Marike L D Broekman
- 15Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 16Department of Neurosurgery, Leiden University Medical Center, Leiden
| | - Claudine O Nogarede
- 15Department of Neurosurgery, Haaglanden Medical Center, The Hague
- 16Department of Neurosurgery, Leiden University Medical Center, Leiden
| | - Cynthia M C Lemmens
- 17Department of Neurology, Haaglanden Medical Center, The Hague, The Netherlands; and
| | - Julius M Kernbach
- 18Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Georg Neuloh
- 18Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Oliver Bozinov
- 1Department of Neurosurgery and Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Niklaus Krayenbühl
- 1Department of Neurosurgery and Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Johannes Sarnthein
- 1Department of Neurosurgery and Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | - Paolo Ferroli
- 3Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan
| | - Luca Regli
- 1Department of Neurosurgery and Machine Intelligence in Clinical Neuroscience (MICN) Laboratory, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Switzerland
| | | |
Collapse
|
36
|
Yoon K, Kim K, Lee S. A Surgical Pen-Type Probe Design for Real-Time Optical Diagnosis of Tumor Status Using 5-Aminolevulinic Acid. Diagnostics (Basel) 2021; 11:diagnostics11061014. [PMID: 34206028 PMCID: PMC8228542 DOI: 10.3390/diagnostics11061014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022] Open
Abstract
A surgical microscope is large in size, which makes it impossible to be portable. The distance between the surgical microscope and the observation tissue is 15–30 cm, and the adjustment range of the right and left of the camera is a maximum of 30°. Therefore, the surgical microscope generates an attenuation (above 58%) of irradiation of the optical source owing to the long working distance (WD). Moreover, the observation of tissue is affected because of dazzling by ambient light as the optical source power is strong (55 to 160 mW/cm2). Further, observation blind spot phenomena will occur due to the limitations in adjusting the right and left of the camera. Therefore, it is difficult to clearly observe the tumor. To overcome these problems, several studies on the handheld surgical microscope have been reported. In this study, a compact pen-type probe with a portable surgical microscope is presented. The proposed surgical microscope comprises a small and portable pen-type probe that can adjust the WD between the probe and the observed tissue. In addition, it allows the adjustment of the viewing angle and fluorescence brightness. The proposed probe has no blind spots or optical density loss.
Collapse
Affiliation(s)
- Kicheol Yoon
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea;
- Medical Devices R&D Center, Gachon University Gil Hospital, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Korea
| | - Kwanggi Kim
- Department of Biomedical Engineering, College of Medicine, Gachon University, 38-13, Dokjom-ro 3, Namdong-gu, Incheon 21565, Korea;
- Medical Devices R&D Center, Gachon University Gil Hospital, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Korea
- Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon 21936, Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Dokjom-ro, Namdong-gu, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-458-2770
| | - Seunghoon Lee
- Department of Neurosurgery, Daejeon Eulji Medical Center (Eulji University Hospital), Dunsanseo-ro, Seo-gu, Daejeon 35233, Korea;
- School of Medicine, Eulji University, 77 Gyeryong-ro 771 Beon-gil, Jung-gu, Daejeon 34824, Korea
| |
Collapse
|
37
|
Owari T, Iwamoto T, Anai S, Miyake M, Nakai Y, Hori S, Hara T, Ishii T, Ota U, Torimoto K, Kuniyasu H, Fujii T, Tanaka N, Fujimoto K. The sustaining of fluorescence in photodynamic diagnosis after the administration of 5-aminolevulinic acid in carcinogen-induced bladder cancer orthotopic rat model and urothelial cancer cell lines. Photodiagnosis Photodyn Ther 2021; 34:102309. [PMID: 33901687 DOI: 10.1016/j.pdpdt.2021.102309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The administration of 5-aminolevulic acid hydrochloride (5-ALA·HCl) 3 h (range: 2-4 h) before photodynamic diagnosis (PDD) is recommended for detecting bladder tumors. However, there is insufficient evidence on the time duration for the fluorescence of PDD after oral administration of 5-ALA. We investigated the sustainability of the photodynamic effect and protoporphyrinⅨ (PpⅨ) after 5-ALA administration in a carcinogen-induced bladder tumor rat model and bladder cancer cell lines. METHODS The carcinogen-induced bladder tumor orthotopic rat model was established by the administration of N-butyl-N-(4-hydroxybutyl) nitrosamine. RESULTS Red fluorescence was visible 2-8 h after the oral administration of 5-ALA in the carcinogen-induced bladder tumor rat model. Plasma and intratissue PpⅨ (nM) progressed to a higher level at 2 h and remained almost constant 2-8 h after oral administration of 5-ALA. The peak fluorescence intensity of PpⅨ was observed 3-4 h after the administration of 5-ALA in bladder cancer cell lines. The accumulated PpⅨ remained for 4 h after the removal of 5-ALA in UMUC3 cells. It was not clearly visible 3 h after the removal of 5-ALA in MGHU3 and T24 cells. The expression level of ferrochelatase was significantly lower in UMUC3 cells than in other cells. Our findings suggest that 5-ALA-assisted PDD (ALA-PDD) can aid in detecting non-muscle-invasive bladder cancer 2-8 h after 5-ALA administration. CONCLUSION Urologists might not be required to make excess effort to start ALA-PDD-assisted transurethral resection of bladder tumor after the administration of 5-ALA.
Collapse
Affiliation(s)
- Takuya Owari
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Iwamoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Satoshi Anai
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Takeshi Hara
- SBI Pharmaceuticals Co., Ltd., Minato-ku, Tokyo, Japan
| | - Takuya Ishii
- SBI Pharmaceuticals Co., Ltd., Minato-ku, Tokyo, Japan
| | - Urara Ota
- SBI Pharmaceuticals Co., Ltd., Minato-ku, Tokyo, Japan
| | - Kazumasa Torimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Tomomi Fujii
- Department of Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
38
|
Maragkos GA, Schüpper AJ, Lakomkin N, Sideras P, Price G, Baron R, Hamilton T, Haider S, Lee IY, Hadjipanayis CG, Robin AM. Fluorescence-Guided High-Grade Glioma Surgery More Than Four Hours After 5-Aminolevulinic Acid Administration. Front Neurol 2021; 12:644804. [PMID: 33767664 PMCID: PMC7985355 DOI: 10.3389/fneur.2021.644804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Fluorescence-guided surgery (FGS) using 5-aminolevulic acid (5-ALA) is a widely used strategy for delineating tumor tissue from surrounding brain intraoperatively during high-grade glioma (HGG) resection. 5-ALA reaches peak plasma levels ~4 h after oral administration and is currently approved by the FDA for use 2–4 h prior to induction to anesthesia. Objective: To demonstrate that there is adequate intraoperative fluorescence in cases undergoing surgery more than 4 h after 5-ALA administration and compare survival and radiological recurrence to previous data. Methods: Retrospective analysis of HGG patients undergoing FGS more than 4 h after 5-ALA administration was performed at two institutions. Clinical, operative, and radiographic pre- and post-operative characteristics are presented. Results: Sixteen patients were identified, 6 of them female (37.5%), with mean (SD) age of 59.3 ± 11.5 years. Preoperative mean modified Rankin score (mRS) was 2 ± 1. All patients were dosed with 20 mg/kg 5-ALA the morning of surgery. Mean time to anesthesia induction was 425 ± 334 min. All cases had adequate intraoperative fluorescence. Eloquent cortex was involved in 12 cases (75%), and 13 cases (81.3%) had residual contrast enhancement on postoperative MRI. Mean progression-free survival was 5 ± 3 months. In the study period, 6 patients died (37.5%), mean mRS was 2.3 ± 1.3, Karnofsky score 71.9 ± 22.1, and NIHSS 3.9 ± 2.4. Conclusion: Here we demonstrate that 5-ALA-guided HGG resection can be performed safely more than 4 h after administration, with clinical results largely similar to previous reports. Relaxation of timing restrictions could improve procedure workflow in busy neurosurgical centers, without additional risk to patients.
Collapse
Affiliation(s)
- Georgios A Maragkos
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Alexander J Schüpper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Nikita Lakomkin
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Panagiotis Sideras
- Department of Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Gabrielle Price
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Rebecca Baron
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States
| | - Travis Hamilton
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Sameah Haider
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| | - Constantinos G Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, United States.,Department of Neurosurgery, Icahn School of Medicine, Mount Sinai Beth Israel, Mount Sinai Health System, New York, NY, United States
| | - Adam M Robin
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
39
|
Schipmann S, Müther M, Stögbauer L, Zimmer S, Brokinkel B, Holling M, Grauer O, Suero Molina E, Warneke N, Stummer W. Combination of ALA-induced fluorescence-guided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control. J Neurosurg 2021; 134:426-436. [PMID: 31978877 DOI: 10.3171/2019.11.jns192443] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/25/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE High-grade glioma (HGG) prognosis remains dismal, with inevitable, mostly local recurrence. Regimens for improving local tumor control are therefore needed. Photodynamic therapy (PDT) using porfimer sodium has been investigated but was abandoned due to side effects and lack of survival benefits. Intracellular porphyrins induced by 5-aminolevulinic acid (5-ALA) are approved for fluorescence-guided resections (FGRs), but are also photosensitizers. Activated by light, they generate reactive oxygen species with resultant cytotoxicity. The authors present a combined approach of 5-ALA FGR and PDT. METHODS After 5-ALA FGR in recurrent HGG, laser diffusors were strategically positioned inside the resection cavity. PDT was applied for 60 minutes (635 nm, 200 mW/cm diffusor, for 1 hour) under continuous irrigation for maintaining optical clarity and ventilation with 100% oxygen. MRI was performed at 24 hours, 14 days, and every 3 months after surgery, including diffusion tensor imaging and apparent diffusion coefficient maps. RESULTS Twenty patients were treated. One surgical site infection after treatment was noted at 6 months as the only adverse event. MRI revealed cytotoxic edema along resection margins in 16 (80%) of 20 cases, mostly annular around the cavity, corresponding to prior laser diffusor locations (mean volume 3.3 cm3). Edema appeared selective for infiltrated tissue or nonresected enhancing tumor. At the 14-day follow-up, enhancement developed in former regions of edema, in some cases vanishing after 4-5 months. Median progression-free survival (PFS) was 6 months (95% CI 4.8-7.2 months). CONCLUSIONS Combined 5-ALA FGR and PDT provides an innovative and safe method of local tumor control resulting in promising PFS. Further prospective studies are warranted to evaluate long-term therapeutic effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oliver Grauer
- 3Department of Neurology, University Hospital Münster, Germany
| | | | | | | |
Collapse
|
40
|
Daoust F, Nguyen T, Orsini P, Bismuth J, de Denus-Baillargeon MM, Veilleux I, Wetter A, Mckoy P, Dicaire I, Massabki M, Petrecca K, Leblond F. Handheld macroscopic Raman spectroscopy imaging instrument for machine-learning-based molecular tissue margins characterization. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200306SSR. [PMID: 33580641 PMCID: PMC7880244 DOI: 10.1117/1.jbo.26.2.022911] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/19/2021] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Raman spectroscopy has been developed for surgical guidance applications interrogating live tissue during tumor resection procedures to detect molecular contrast consistent with cancer pathophysiological changes. To date, the vibrational spectroscopy systems developed for medical applications include single-point measurement probes and intraoperative microscopes. There is a need to develop systems with larger fields of view (FOVs) for rapid intraoperative cancer margin detection during surgery. AIM We design a handheld macroscopic Raman imaging system for in vivo tissue margin characterization and test its performance in a model system. APPROACH The system is made of a sterilizable line scanner employing a coherent fiber bundle for relaying excitation light from a 785-nm laser to the tissue. A second coherent fiber bundle is used for hyperspectral detection of the fingerprint Raman signal over an area of 1 cm2. Machine learning classifiers were trained and validated on porcine adipose and muscle tissue. RESULTS Porcine adipose versus muscle margin detection was validated ex vivo with an accuracy of 99% over the FOV of 95 mm2 in ∼3 min using a support vector machine. CONCLUSIONS This system is the first large FOV Raman imaging system designed to be integrated in the workflow of surgical cancer resection. It will be further improved with the aim of discriminating brain cancer in a clinically acceptable timeframe during glioma surgery.
Collapse
Affiliation(s)
- François Daoust
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | - Tien Nguyen
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | - Israel Veilleux
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | - Kevin Petrecca
- McGill University, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, Montreal, Quebec, Canada
| | - Frédéric Leblond
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Quebec, Canada
- Centre de recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Address all correspondence to Frédéric Leblond,
| |
Collapse
|
41
|
Fountain DM, Bryant A, Barone DG, Waqar M, Hart MG, Bulbeck H, Kernohan A, Watts C, Jenkinson MD. Intraoperative imaging technology to maximise extent of resection for glioma: a network meta-analysis. Cochrane Database Syst Rev 2021; 1:CD013630. [PMID: 33428222 PMCID: PMC8094975 DOI: 10.1002/14651858.cd013630.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple studies have identified the prognostic relevance of extent of resection in the management of glioma. Different intraoperative technologies have emerged in recent years with unknown comparative efficacy in optimising extent of resection. One previous Cochrane Review provided low- to very low-certainty evidence in single trial analyses and synthesis of results was not possible. The role of intraoperative technology in maximising extent of resection remains uncertain. Due to the multiple complementary technologies available, this research question is amenable to a network meta-analysis methodological approach. OBJECTIVES To establish the comparative effectiveness and risk profile of specific intraoperative imaging technologies using a network meta-analysis and to identify cost analyses and economic evaluations as part of a brief economic commentary. SEARCH METHODS We searched CENTRAL (2020, Issue 5), MEDLINE via Ovid to May week 2 2020, and Embase via Ovid to 2020 week 20. We performed backward searching of all identified studies. We handsearched two journals, Neuro-oncology and the Journal of Neuro-oncology from 1990 to 2019 including all conference abstracts. Finally, we contacted recognised experts in neuro-oncology to identify any additional eligible studies and acquire information on ongoing randomised controlled trials (RCTs). SELECTION CRITERIA RCTs evaluating people of all ages with presumed new or recurrent glial tumours (of any location or histology) from clinical examination and imaging (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Additional imaging modalities (e.g. positron emission tomography, magnetic resonance spectroscopy) were not mandatory. Interventions included fluorescence-guided surgery, intraoperative ultrasound, neuronavigation (with or without additional image processing, e.g. tractography), and intraoperative MRI. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the search results for relevance, undertook critical appraisal according to known guidelines, and extracted data using a prespecified pro forma. MAIN RESULTS We identified four RCTs, using different intraoperative imaging technologies: intraoperative magnetic resonance imaging (iMRI) (2 trials, with 58 and 14 participants); fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) (1 trial, 322 participants); and neuronavigation (1 trial, 45 participants). We identified one ongoing trial assessing iMRI with a planned sample size of 304 participants for which results are expected to be published around winter 2020. We identified no published trials for intraoperative ultrasound. Network meta-analyses or traditional meta-analyses were not appropriate due to absence of homogeneous trials across imaging technologies. Of the included trials, there was notable heterogeneity in tumour location and imaging technologies utilised in control arms. There were significant concerns regarding risk of bias in all the included studies. One trial of iMRI found increased extent of resection (risk ratio (RR) for incomplete resection was 0.13, 95% confidence interval (CI) 0.02 to 0.96; 49 participants; very low-certainty evidence) and one trial of 5-ALA (RR for incomplete resection was 0.55, 95% CI 0.42 to 0.71; 270 participants; low-certainty evidence). The other trial assessing iMRI was stopped early after an unplanned interim analysis including 14 participants; therefore, the trial provided very low-quality evidence. The trial of neuronavigation provided insufficient data to evaluate the effects on extent of resection. Reporting of adverse events was incomplete and suggestive of significant reporting bias (very low-certainty evidence). Overall, the proportion of reported events was low in most trials and, therefore, issues with power to detect differences in outcomes that may or may not have been present. Survival outcomes were not adequately reported, although one trial reported no evidence of improvement in overall survival with 5-ALA (hazard ratio (HR) 0.82, 95% CI 0.62 to 1.07; 270 participants; low-certainty evidence). Data for quality of life were only available for one study and there was significant attrition bias (very low-certainty evidence). AUTHORS' CONCLUSIONS Intraoperative imaging technologies, specifically 5-ALA and iMRI, may be of benefit in maximising extent of resection in participants with high-grade glioma. However, this is based on low- to very low-certainty evidence. Therefore, the short- and long-term neurological effects are uncertain. Effects of image-guided surgery on overall survival, progression-free survival, and quality of life are unclear. Network and traditional meta-analyses were not possible due to the identified high risk of bias, heterogeneity, and small trials included in this review. A brief economic commentary found limited economic evidence for the equivocal use of iMRI compared with conventional surgery. In terms of costs, one non-systematic review of economic studies suggested that, compared with standard surgery, use of image-guided surgery has an uncertain effect on costs and that 5-ALA was more costly. Further research, including completion of ongoing trials of ultrasound-guided surgery, is needed.
Collapse
Affiliation(s)
- Daniel M Fountain
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Andrew Bryant
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Damiano Giuseppe Barone
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mueez Waqar
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Michael G Hart
- Academic Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, Cambridge, UK
| | | | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Colin Watts
- Chair Birmingham Brain Cancer Program, University of Birmingham, Edgbaston, UK
| | - Michael D Jenkinson
- Department of Neurosurgery & Institute of Systems Molecular and Integrative Biology, The Walton Centre & University of Liverpool, Liverpool, UK
| |
Collapse
|
42
|
Nordmann NJ, Michael AP. 5-Aminolevulinic acid radiodynamic therapy for treatment of high-grade gliomas: A systematic review. Clin Neurol Neurosurg 2020; 201:106430. [PMID: 33360951 DOI: 10.1016/j.clineuro.2020.106430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Radiodynamic therapy (RDT) involves administration of a radiosensitizing agent and its subsequent activation by ionizing radiation for destruction of neoplastic cells. MATERIALS AND METHODS A comprehensive evaluation of the literature was performed to review the history of RDT using porphyrins for solid tumors, the cellular mechanisms of action, immunomodulatory effects, and both preclinical and clinical studies for use in high-grade gliomas (HGGs). This manuscript was prepared in accordance with the PRISMA guidelines. RESULTS A total of 271 articles were considered for initial review. After removal of duplicates, articles not unrelated to specific topic, and exclusion of commentary articles, a total of 11 articles were subject to full analysis that included in vivo, in vitro, and human studies. Porphyrins such as 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) selectively accumulate in neoplastic cells and are currently used for fluorescent-guided surgical resection and photodynamic therapy (PDT) of HGG and other brain tumors. 5-ALA is also shown to act as a radiosensitizer by increasing oxidative stress in neoplastic cell mitochondria and enhancing the host immune response. Postoperative radiation therapy is currently the standard of care for treatment of HGG. CONCLUSION RDT remains a promising adjuvant therapy for HGGs and requires further investigation. Clinical trials of 5-ALA RDT for HGG are needed to evaluate the optimum timing, dosing and effectiveness.
Collapse
Affiliation(s)
- Nathan J Nordmann
- Division of Neurosurgery, Neuroscience Institute, Southern Illinois University School of Medicine. P.O. Box 19638, Springfield, IL, 62794-9638, United States
| | - Alex P Michael
- Division of Neurosurgery, Neuroscience Institute, Southern Illinois University School of Medicine. P.O. Box 19638, Springfield, IL, 62794-9638, United States.
| |
Collapse
|
43
|
Yamamoto S, Fukuhara H, Karashima T, Inoue K. Real-world experience with 5-aminolevulinic acid for the photodynamic diagnosis of bladder cancer: Diagnostic accuracy and safety. Photodiagnosis Photodyn Ther 2020; 32:101999. [DOI: 10.1016/j.pdpdt.2020.101999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
|
44
|
Abstract
In neurosurgery, the extent of resection plays a critical role, especially in the management of malignant gliomas. These tumors are characterized through a diffuse infiltration into the surrounding brain parenchyma. Delineation between tumor and normal brain parenchyma can therefore often be challenging. During the recent years, several techniques, aiming at better intraoperative tumor visualization, have been developed and implemented in the field of brain tumor surgery. In this chapter, we discuss current strategies for intraoperative imaging in brain tumor surgery, comprising conventional techniques such as neuronavigation, techniques using fluorescence-guided surgery, and further highly precise developments such as targeted fluorescence spectroscopy or Raman spectroscopy.
Collapse
Affiliation(s)
- Stephanie Schipmann-Miletić
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Glioblastoma (GBM) patients have a poor prognosis despite the use of modern synergistic multimodal treatment strategies, with a progression-free survival estimated at 7-8 months, a median survival of 14-16 months and 5-year overall survival of 9.8%. RECENT FINDINGS Physical methods hold the promise to act synergistically with classical treatments to improve the outcome of GBM patients. Fluorescent guided surgery with 5-aminolevulinic acid and tumor-treating fields therapy have already shown positive results in randomized phase III trials and have been incorporated in the standard management. Other techniques such as photodynamic therapy (PDT) and focused ultrasound, often combined whit microbubbles, are reaching clinical development. SUMMARY Several clinical trials to evaluate the feasibility and efficacy of ultrasound devices to disrupt the blood-brain barrier are ongoing. PDT enables the creation of a safety margin or treatment of non-resecable tumors. However, randomized trials are urgently required to validate the efficacy of these promising approaches. We aim to critically review physical approaches to treat GBM, focusing on available clinical trial data.
Collapse
|
46
|
5-Aminolevulinic acid for recurrent malignant gliomas: A systematic review. Clin Neurol Neurosurg 2020; 195:105913. [DOI: 10.1016/j.clineuro.2020.105913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/28/2020] [Accepted: 05/10/2020] [Indexed: 11/24/2022]
|
47
|
Mastrangelopoulou M, Grigalavicius M, Raabe TH, Skarpen E, Juzenas P, Peng Q, Berg K, Theodossiou TA. Predictive biomarkers for 5-ALA-PDT can lead to personalized treatments and overcome tumor-specific resistances. Cancer Rep (Hoboken) 2020; 5:e1278. [PMID: 32737955 PMCID: PMC9780429 DOI: 10.1002/cnr2.1278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a minimally invasive, clinically approved therapy with numerous advantages over other mainstream cancer therapies. 5-aminolevulinic acid (5-ALA)-PDT is of particular interest, as it uses the photosensitiser PpIX, naturally produced in the heme pathway, following 5-ALA administration. Even though 5-ALA-PDT shows high specificity to cancers, differences in treatment outcomes call for predictive biomarkers to better stratify patients and to also diversify 5-ALA-PDT based on each cancer's phenotypic and genotypic individualities. AIMS The present study seeks to highlight key biomarkers that may predict treatment outcome and simultaneously be exploited to overcome cancer-specific resistances to 5-ALA-PDT. METHODS AND RESULTS We submitted two glioblastoma (T98G and U87) and three breast cancer (MCF7, MDA-MB-231, and T47D) cell lines to 5-ALA-PDT. Glioblastoma cells were the most resilient to 5-ALA-PDT, while intracellular production of 5-ALA-derived protoporphyrin IX (PpIX) could not account for the recorded PDT responses. We identified the levels of expression of ABCG2 transporters, ferrochelatase (FECH), and heme oxygenase (HO-1) as predictive biomarkers for 5-ALA-PDT. GPX4 and GSTP1 expression vs intracellular glutathione (GSH) levels also showed potential as PDT biomarkers. For T98G cells, inhibition of ABCG2, FECH, HO-1, and/or intracellular GSH depletion led to profound PDT enhancement. Inhibition of ABCG2 in U87 cells was the only synergistic adjuvant to 5-ALA-PDT, rendering the otherwise resistant cell line fully responsive to 5-ALA-PDT. ABCG2 or FECH inhibition significantly enhanced 5-ALA-PDT-induced MCF7 cytotoxicity, while for MDA-MB-231, ABCG2 inhibition and intracellular GSH depletion conferred profound synergies. FECH inhibition was the only synergism to ALA-PDT for the most susceptible among the cell lines, T47D cells. CONCLUSION This study demonstrates the heterogeneity in the cellular response to 5-ALA-PDT and identifies biomarkers that may be used to predict treatment outcome. The study also provides preliminary findings on the potential of inhibiting specific molecular targets to overcome inherent resistances to 5-ALA-PDT.
Collapse
Affiliation(s)
- Maria Mastrangelopoulou
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Mantas Grigalavicius
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Tine H. Raabe
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Ellen Skarpen
- Department of Molecular Cell BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Petras Juzenas
- Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Qian Peng
- Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Kristian Berg
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | | |
Collapse
|
48
|
Matoba Y, Banno K, Kisu I, Kobayashi Y, Tsuji K, Nagai S, Yamagami W, Nakamura M, Tominaga E, Kawaida M, Aoki D. Hysteroscopic Photodynamic Diagnosis Using 5-Aminolevulinic Acid: A High-Sensitivity Diagnostic Method for Uterine Endometrial Malignant Diseases. J Minim Invasive Gynecol 2020; 27:1087-1094. [PMID: 31415818 DOI: 10.1016/j.jmig.2019.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
Abstract
STUDY OBJECTIVE To examine the diagnostic accuracy of hysteroscopic photodynamic diagnosis (PDD) using 5-aminolevulinic acid (5ALA) in patients with endometrial cancer and premalignant atypical endometrial hyperplasia. DESIGN A single-center, open-label, exploratory intervention study. SETTING University Hospital in Japan. PATIENTS Thirty-four patients who underwent hysteroscopic resection in the Department of Obstetrics and Gynecology at Keio University Hospital. INTERVENTIONS Patients were given 5ALA orally approximately 3 hours before surgery and underwent observation of the uterine cavity and endometrial biopsy using 5ALA-PDD during hysteroscopic resection. Specimens were diagnosed histopathologically and the diagnostic sensitivity and specificity of hysteroscopic 5ALA-PDD for malignancy in the uterine cavity was determined. Red (R), blue (B), and green (G) intensity values were determined from PDD images, and the relationships of histopathological diagnosis with these values were used to develop a model for objective diagnosis of uterine malignancy. MEASUREMENTS AND MAIN RESULTS Three patients were excluded from the study because of failure of the endoscope system. A total of 113 specimens were collected endoscopically. The sensitivity and specificity of 5ALA-PDD for diagnosis of malignancy in the uterine cavity were 93.8% and 51.9%, respectively. The R/B ratio in imaging analysis was highest in malignant lesions, followed by benign lesions and normal uterine tissue, with significant differences among these groups (p <.05). The R/B and G/B ratios were used in a formula for prediction of malignancy based on logistic regression and the area under the receiver operating characteristic curve for this formula was 0.838. At a formula cutoff value of 0.220, the sensitivity and specificity for diagnosis of malignant disease were 90.6% and 65.4%, respectively. CONCLUSION To our knowledge, this is the first study of the diagnostic accuracy of 5ALA-PDD for malignancies in the uterine cavity. Hysteroscopic 5ALA-PDD had higher sensitivity and identifiability of lesions. These findings suggest that hysteroscopic 5ALA-PDD may be useful for diagnosis of minute lesions.
Collapse
Affiliation(s)
- Yusuke Matoba
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki)
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki).
| | - Iori Kisu
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki)
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki)
| | - Kosuke Tsuji
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki)
| | - Shimpei Nagai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki)
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki)
| | - Masaru Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki)
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki)
| | - Miho Kawaida
- Department of Pathology, Keio University School of Medicine, Shinjuku-ku (Dr. Kawaida), Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku (Drs. Matoba, Banno, Kisu, Kobayashi, Tsuji, Nagai, Yamagami, Nakamura, Tominaga, and Aoki)
| |
Collapse
|
49
|
Exploiting Cancer's Tactics to Make Cancer a Manageable Chronic Disease. Cancers (Basel) 2020; 12:cancers12061649. [PMID: 32580319 PMCID: PMC7352192 DOI: 10.3390/cancers12061649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
The history of modern oncology started around eighty years ago with the introduction of cytotoxic agents such as nitrogen mustard into the clinic, followed by multi-agent chemotherapy protocols. Early success in radiation therapy in Hodgkin lymphoma gave birth to the introduction of radiation therapy into different cancer treatment protocols. Along with better understanding of cancer biology, we developed drugs targeting cancer-related cellular and genetic aberrancies. Discovery of the crucial role of vasculature in maintenance, survival, and growth of a tumor opened the way to the development of anti-angiogenic agents. A better understanding of T-cell regulatory pathways advanced immunotherapy. Awareness of stem-like cancer cells and their role in cancer metastasis and local recurrence led to the development of drugs targeting them. At the same time, sequential and rapidly accelerating advances in imaging and surgical technology have markedly increased our ability to safely remove ≥90% of tumor cells. While we have advanced our ability to kill cells from multiple directions, we have still failed to stop most types of cancer from recurring. Here we analyze the tactics employed in cancer evolution; namely, chromosomal instability (CIN), intra-tumoral heterogeneity (ITH), and cancer-specific metabolism. These tactics govern the resistance to current cancer therapeutics. It is time to focus on maximally delaying the time to recurrence, with drugs that target these fundamental tactics of cancer evolution. Understanding the control of CIN and the optimal state of ITH as the most important tactics in cancer evolution could facilitate the development of improved cancer therapeutic strategies designed to transform cancer into a manageable chronic disease.
Collapse
|
50
|
Suero Molina E, Ewelt C, Warneke N, Schwake M, Müther M, Schipmann S, Stummer W. Dual labeling with 5-aminolevulinic acid and fluorescein in high-grade glioma surgery with a prototype filter system built into a neurosurgical microscope: technical note. J Neurosurg 2020; 132:1724-1730. [PMID: 31026838 DOI: 10.3171/2018.12.jns182422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/13/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Recent efforts to improve visualization of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PPIX) fluorescence resulted in a dual-labeling technique, combining it with fluorescein sodium in a prototype setup. Fluorescein identifies regions with blood-brain barrier breakdown in gliomas. However, normally perfused and edematous brain fluoresces unselectively, with strong background enhancement. The aim of this study was to test the feasibility of a novel, integrated filter combination using porphyrins for selective tumor identification and fluorescein for background enhancement. METHODS A microscope with a novel built-in filter system (YB 475) for visualizing both fluorescein and 5-ALA-induced porphyrins was used. Resection limits were identified with the conventional BLUE 400 filter system. Six patients harboring contrast ring-enhancing lesions were analyzed. RESULTS The complete surgical field could now be illuminated. Fluorescein was helpful for improving background visualization, and enhancing dura, edematous tissue, and cortex. Overlapping regions with both fluorophores harbored merged orange fluorescence. PPIX fluorescence was better visualized, even in areas beyond a normal working distance of approximately 25 cm, where the BLUE 400 filters recognized no or weak fluorescence. CONCLUSIONS The novel filter system improved general tissue brightness and background visualization, enhancing fluorescence-guided tumor resection. Furthermore, it appears promising from a scientific perspective, enabling the simultaneous and direct observation of areas with blood-brain barrier breakdown and PPIX fluorescence.
Collapse
|