1
|
Hagiwara K. [Insular lobe epilepsy. Part 1: semiology]. Rinsho Shinkeigaku 2024; 64:527-539. [PMID: 39069491 DOI: 10.5692/clinicalneurol.cn-001930-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The insula is often referred to as "the fifth lobe" of the brain, and its accessibility used to be very limited due to the deep location under the opercula as well as the sylvian vasculature. It was not until the availability of modern stereo-electroencephalography (SEEG) technique that the intracranial electrodes could be safely and chronically implanted within the insula, thereby enabling anatomo-electro-clinical correlations in seizures of this deep origin. Since the first report of SEEG-recorded insular seizures in late 1990s, the knowledge of insular lobe epilepsy (ILE) has rapidly expanded. Being on the frontline for the diagnosis and management of epilepsy, neurologists should have a precise understanding of ILE to differentiate it from epilepsies of other lobes or non-epileptic conditions. Owing to the multimodal nature and rich anatomo-functional connections of the insula, ILE has a wide range of clinical presentations. The following symptoms should heighten the suspicion of ILE: somatosensory symptoms involving a large/bilateral cutaneous territory or taking on thermal/painful character, and cervico-laryngeal discomfort. The latter ranges from slight dyspnea to a strong sensation of strangulation (laryngeal constriction). Other symptoms include epigastric discomfort/nausea, hypersalivation, auditory, vestibular, gustatory, and aphasic symptoms. However, most of these insulo-opercular symptoms can easily be masked by those of extra-insular seizure propagation. Indeed, sleep-related hyperkinetic (hypermotor) epilepsy (SHE) is a common clinical presentation of ILE, which shows predominant hyperkinetic and/or tonic-dystonic features that are often indistinguishable from those of fronto-mesial seizures. Subtle objective signs, such as constrictive throat noise (i.e., laryngeal constriction) or aversive behavior (e.g., facial grimacing suggesting pain), are often the sole clue in diagnosing insular SHE. Insular-origin seizures should also be considered in temporal-like seizures without frank anatomo-electro-clinical correlations. All in all, ILE is not the epilepsy of an isolated island but rather of a crucial hub involved in the multifaceted roles of the brain.
Collapse
|
2
|
Hagiwara K. [Insular lobe epilepsy. Part 2: presurgical evaluation & surgical interventions with stereo-electroencephalography]. Rinsho Shinkeigaku 2024; 64:540-549. [PMID: 39069490 DOI: 10.5692/clinicalneurol.cn-001930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Identification of insular lobe epilepsy (ILE) presents a major clinical challenge in the diagnosis and treatment of drug-resistant focal epilepsies. ILE has diverse clinical presentations due to the multifaceted functions of the insula. Surface EEG findings do not provide straightforward information to predict this deeply-situated origin of seizures; they are even misleading, masquerading as those of other focal epilepsies, such as temporal and frontal ones. Non-invasive imagings may disclose insular abnormalities, but extra-insular abnormalities can coexist or even stand out. Careful reading and a second-look guided by other clinical information are crucial in order not to miss subtle insulo-opercular abnormalities. Furthermore, a possible insular origin of seizures should be considered in MRI-negative frontal/temporal/parietal epilepsies. Therefore, exploration/exclusion of insular-origin seizures is necessary for a great majority of surgical candidates. As for the stereo-electroencephalography, considered as the gold standard method for intra-cranial EEG investigations with suspicion of ILE, planning of electrode positions/trajectories require sufficient knowledge of the functional localization and anatomo-functional connectivity of the insula. Dense sampling within the insula is required in patients with probable ILE, because the seizure-onset zone can be restricted to a single insular gyrus or even a part of it. It is also crucial to explore extra-insular regions on the basis of non-invasive investigation results while considering their anatomo-functional relationships with the insula. From a surgical perspective, differentiating seizures strictly confined to the insula from those extending to the opercula is of particular importance. Pure insular seizures can be treated with less invasive measures, such as radiofrequency thermocoagulation. To conclude, close attention must be paid to the possibility of ILE throughout the diagnostic workup. The precise identification/exclusion of ILE is a prerequisite to provide appropriate and effective surgical treatment in pharmaco-resistant focal epilepsies.
Collapse
|
3
|
Obaid S, Guberman GI, St-Onge E, Campbell E, Edde M, Lamsam L, Bouthillier A, Weil AG, Daducci A, Rheault F, Nguyen DK, Descoteaux M. Progressive remodeling of structural networks following surgery for operculo-insular epilepsy. Front Neurol 2024; 15:1400601. [PMID: 39144703 PMCID: PMC11322451 DOI: 10.3389/fneur.2024.1400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Operculo-insular epilepsy (OIE) is a rare condition amenable to surgery in well-selected cases. Despite the high rate of neurological complications associated with OIE surgery, most postoperative deficits recover fully and rapidly. We provide insights into this peculiar pattern of functional recovery by investigating the longitudinal reorganization of structural networks after surgery for OIE in 10 patients. Methods Structural T1 and diffusion-weighted MRIs were performed before surgery (t0) and at 6 months (t1) and 12 months (t2) postoperatively. These images were processed with an original, comprehensive structural connectivity pipeline. Using our method, we performed comparisons between the t0 and t1 timepoints and between the t1 and t2 timepoints to characterize the progressive structural remodeling. Results We found a widespread pattern of postoperative changes primarily in the surgical hemisphere, most of which consisted of reductions in connectivity strength (CS) and regional graph theoretic measures (rGTM) that reflect local connectivity. We also observed increases in CS and rGTMs predominantly in regions located near the resection cavity and in the contralateral healthy hemisphere. Finally, most structural changes arose in the first six months following surgery (i.e., between t0 and t1). Discussion To our knowledge, this study provides the first description of postoperative structural connectivity changes following surgery for OIE. The ipsilateral reductions in connectivity unveiled by our analysis may result from the reversal of seizure-related structural alterations following postoperative seizure control. Moreover, the strengthening of connections in peri-resection areas and in the contralateral hemisphere may be compatible with compensatory structural plasticity, a process that could contribute to the recovery of functions seen following operculo-insular resections for focal epilepsy.
Collapse
Affiliation(s)
- Sami Obaid
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
- Sherbrooke Connectivity Imaging Lab (SCIL), Sherbrooke University, Sherbrooke, QC, Canada
| | - Guido I. Guberman
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Etienne St-Onge
- Department of Computer Science and Engineering, Université du Québec en Outaouais, Montreal, QC, Canada
| | - Emma Campbell
- Department of Psychology, University of Montreal, Montreal, QC, Canada
| | - Manon Edde
- Sherbrooke Connectivity Imaging Lab (SCIL), Sherbrooke University, Sherbrooke, QC, Canada
| | - Layton Lamsam
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Alain Bouthillier
- Division of Neurosurgery, Department of Surgery, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
| | - Alexander G. Weil
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Montreal, QC, Canada
| | | | - François Rheault
- Medical Imaging and Neuroimaging (MINi) Lab, Sherbrooke University, Sherbrooke, QC, Canada
| | - Dang K. Nguyen
- Department of Neurosciences, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
- Division of Neurology, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Sherbrooke University, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Ikegaya N, Hayashi T, Higashijima T, Takayama Y, Sonoda M, Iwasaki M, Miyake Y, Sato M, Tateishi K, Suenaga J, Yamamoto T. Arteries Around the Superior Limiting Sulcus: Motor Complication Avoidance in Insular and Insulo-Opercular Surgery. Oper Neurosurg (Hagerstown) 2023; 25:e308-e314. [PMID: 37966479 DOI: 10.1227/ons.0000000000000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Insulo-opercular surgery can cause ischemic motor complications. A source of this is the arteries around the superior limiting sulcus (SLS), which reach the corona radiata, but the detailed anatomy remains unclear. To characterize arteries around the SLS including the long insular arteries (LIAs) and long medullary arteries, we classified them and examined their distribution in relation to the SLS, which helps reduce the risk of ischemia. METHODS Twenty adult cadaveric hemispheres were studied. Coronal brain slices were created perpendicular to the SLS representing insular gyri (anterior short, middle short, posterior short, anterior long, and posterior long). The arteries within 10-mm proximity of the SLS that reached the corona radiata were excavated and classified by the entry point. RESULTS A total of 122 arteries were identified. Sixty-three (52%), 20 (16%), and 39 (32%) arteries penetrated the insula (LIAs), peak of the SLS, and operculum (long medullary arteries), respectively. 100 and six (87%) arteries penetrated within 5 mm of the peak of the SLS. The arteries were distributed in the anterior short gyrus (19%), middle short gyrus (17%), posterior short gyrus (20%), anterior long gyrus (19%), and posterior long gyrus (25%). Seven arteries (5.7%) had anastomoses after they penetrated the parenchyma. CONCLUSION Approximately 90% of the arteries that entered the parenchyma and reached the corona radiata were within a 5-mm radius of the SLS in both the insula and operculum side. This suggests that using the SLS as a landmark during insulo-opercular surgery can decrease the chance of ischemia.
Collapse
Affiliation(s)
- Naoki Ikegaya
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Takefumi Higashijima
- Department of Neurosurgery, Yokohama City University Medical center, Yokohama , Japan
| | - Yutaro Takayama
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Masaki Sonoda
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Masaki Iwasaki
- Department of Neurosurgery, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira , Japan
| | - Yohei Miyake
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Mitsuru Sato
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Kensuke Tateishi
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Jun Suenaga
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Yokohama City University Graduate school of medicine, Yokohama , Japan
| |
Collapse
|
5
|
Obaid S, Chen JS, Ibrahim GM, Bouthillier A, Dimentberg E, Surbeck W, Guadagno E, Brunette-Clément T, Shlobin NA, Shulkin A, Hale AT, Tomycz LD, Von Lehe M, Perry MS, Chassoux F, Bouilleret V, Taussig D, Fohlen M, Dorfmuller G, Hagiwara K, Isnard J, Oluigbo CO, Ikegaya N, Nguyen DK, Fallah A, Weil AG. Predictors of outcomes after surgery for medically intractable insular epilepsy: A systematic review and individual participant data meta-analysis. Epilepsia Open 2023; 8:12-31. [PMID: 36263454 PMCID: PMC9978079 DOI: 10.1002/epi4.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022] Open
Abstract
Insular epilepsy (IE) is an increasingly recognized cause of drug-resistant epilepsy amenable to surgery. However, concerns of suboptimal seizure control and permanent neurological morbidity hamper widespread adoption of surgery for IE. We performed a systematic review and individual participant data meta-analysis to determine the efficacy and safety profile of surgery for IE and identify predictors of outcomes. Of 2483 unique citations, 24 retrospective studies reporting on 312 participants were eligible for inclusion. The median follow-up duration was 2.58 years (range, 0-17 years), and 206 (66.7%) patients were seizure-free at last follow-up. Younger age at surgery (≤18 years; HR = 1.70, 95% CI = 1.09-2.66, P = .022) and invasive EEG monitoring (HR = 1.97, 95% CI = 1.04-3.74, P = .039) were significantly associated with shorter time to seizure recurrence. Performing MR-guided laser ablation or radiofrequency ablation instead of open resection (OR = 2.05, 95% CI = 1.08-3.89, P = .028) was independently associated with suboptimal or poor seizure outcome (Engel II-IV) at last follow-up. Postoperative neurological complications occurred in 42.5% of patients, most commonly motor deficits (29.9%). Permanent neurological complications occurred in 7.8% of surgeries, including 5% and 1.4% rate of permanent motor deficits and dysphasia, respectively. Resection of the frontal operculum was independently associated with greater odds of motor deficits (OR = 2.75, 95% CI = 1.46-5.15, P = .002). Dominant-hemisphere resections were independently associated with dysphasia (OR = 13.09, 95% CI = 2.22-77.14, P = .005) albeit none of the observed language deficits were permanent. Surgery for IE is associated with a good efficacy/safety profile. Most patients experience seizure freedom, and neurological deficits are predominantly transient. Pediatric patients and those requiring invasive monitoring or undergoing stereotactic ablation procedures experience lower rates of seizure freedom. Transgression of the frontal operculum should be avoided if it is not deemed part of the epileptogenic zone. Well-selected candidates undergoing dominant-hemisphere resection are more likely to exhibit transient language deficits; however, the risk of permanent deficit is very low.
Collapse
Affiliation(s)
- Sami Obaid
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Jia-Shu Chen
- The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - George M Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Evan Dimentberg
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Werner Surbeck
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital of the University of Zurich, Zurich, Switzerland
| | - Elena Guadagno
- Harvey E. Beardmore Division of Pediatric Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Tristan Brunette-Clément
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Nathan A Shlobin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Aidan Shulkin
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada
| | - Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Luke D Tomycz
- The Epilepsy Institute of New Jersey, Jersey City, New Jersey, USA
| | - Marec Von Lehe
- Department of Neurosurgery, Brandenburg Medical School, Neuruppin, Germany
| | - Michael Scott Perry
- Comprehensive Epilepsy Program, Jane and John Justin Neuroscience Center, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Francine Chassoux
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Université Paris-Descartes Paris, Paris, France
| | - Viviane Bouilleret
- Université Paris Saclay-APHP, Unité de Neurophysiologie Clinique et d'Épileptologie(UNCE), Le Kremlin Bicêtre, France
| | - Delphine Taussig
- Université Paris Saclay-APHP, Unité de Neurophysiologie Clinique et d'Épileptologie(UNCE), Le Kremlin Bicêtre, France.,Pediatric Neurosurgery Department, Rothschild Foundation Hospital, Paris, France
| | - Martine Fohlen
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, Paris, France
| | - Georg Dorfmuller
- Pediatric Neurosurgery Department, Rothschild Foundation Hospital, Paris, France
| | - Koichi Hagiwara
- Epilepsy and Sleep Center, Fukuoka Sanno Hospital, Fukuoka, Japan
| | - Jean Isnard
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Hospital for Neurology and Neurosurgery, Lyon, France
| | - Chima O Oluigbo
- Department of Neurosurgery, Children's National Medical Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Naoki Ikegaya
- Departments of Neurosurgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Dang K Nguyen
- Division of Neurology, University of Montreal Hospital Center, Montreal, Quebec, Canada
| | - Aria Fallah
- Department of Neurosurgery and Pediatrics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Alexander G Weil
- Division of Pediatric Neurosurgery, Department of Surgery, Sainte Justine Hospital, University of Montreal, Quebec, Montreal, Canada.,Division of Neurosurgery, University of Montreal Hospital Center, Montreal, Quebec, Canada.,Department of Neuroscience, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Solanki C, Williams J, Andrews C, Fayed I, Wu C. Insula in epilepsy - "untying the gordian knot": A systematic review. Seizure 2023; 106:148-161. [PMID: 36878050 DOI: 10.1016/j.seizure.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023] Open
Abstract
PURPOSE Despite significant advances in epileptology, there are still many uncertainties about the role of the insula in epilepsy. Until recently, most insular onset seizures were wrongly attributed to the temporal lobe. Further, there are no standardised approaches to the diagnosis and treatment of insular onset seizures. This systematic review gathers the available information about insular epilepsy and synthesizes current knowledge as a basis for future research. METHOD Adhering to the PRISMA guidelines, studies were meticulously extracted from the PubMed database. The empirical data pertaining to the semiology of insular seizures, insular networks in epilepsy, techniques of mapping the insula, and the surgical intricacies of non-lesional insular epilepsy were reviewed from published studies. The corpus of information available was then subjected to a process of concise summarization and astute synthesis. RESULTS Out of 235 studies identified for full-text review, 86 studies were included in the systematic review. The insula emerges as a brain region with a number of functional subdivisions. The semiology of insular seizures is diverse and depends on the involvement of particular subdivisions. The semiological heterogeneity of insular seizures is explained by the extensive connectivity of the insula and its subdivisions with all four lobes of the brain, deep grey matter structures, and remote brainstem areas. The mainstay of the diagnosis of seizure onset in the insula is stereoelectroencephalography (SEEG). The surgical resection of the insular epileptogenic zone (when possible) is the most effective treatment. Open surgery on the insula is challenging but magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) also holds promise. CONCLUSION The physiological and functional roles of the insula in epilepsy have remained obfuscated. The dearth of precisely defined diagnostic and therapeutic protocols acts as an impediment to scientific advancement. This review could potentially facilitate forthcoming research endeavours by establishing a foundational framework for uniform data collection protocols, thereby enhancing the feasibility of comparing findings across future studies and promoting progress in this domain.
Collapse
Affiliation(s)
- Chirag Solanki
- Consultant Neurosurgeon, Department of Neurosurgery, Sterling Hospital, Ahmedabad, Gujarat, India.
| | - Justin Williams
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, United States.
| | - Carrie Andrews
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, United States.
| | - Islam Fayed
- Stereotactic and Functional Neurosurgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.
| | - Chengyuan Wu
- Associate Professor of Neurosurgery and Radiology, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, United States.
| |
Collapse
|
7
|
Dai Y, Zhang H, Fan X, Wei P, Shan Y, Zhao G. Optimized SEEG-guided three-dimensional radiofrequency thermocoagulation for insular epilepsy. Acta Neurochir (Wien) 2023; 165:249-258. [PMID: 36342542 DOI: 10.1007/s00701-022-05401-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE The high risk of resection surgery for drug-resistant insular epilepsy has driven interest in new treatment techniques. Stereo-electroencephalography-guided three-dimensional radiofrequency thermocoagulation (SEEG-3D RFTC) offers an alternative option. Herein, we present the detailed protocol and investigation of the efficacy and safety of a preliminary observational study. METHODS From February 2017 to April 2021, ten patients diagnosed with insular epilepsy were enrolled in the study. They underwent implantation of a combination of SEEG electrodes to form a high-density focal stereo-array in insula, including oblique electrodes through the long axis of insula and orthogonal electrodes to widely cover the medial and lateral insula. SEEG-3D RFTC was performed between two contiguous contacts of the same electrode, or between two adjacent contacts of different electrodes. RESULTS Surgical procedures were well tolerated, with no related long-term complications. Seizure-free outcome was achieved in seven patients (70%), including ILAE I in four and ILAE II in three. Two other (20%) patients had rare seizures (ILAE III). One (10%) patient experienced an ILAE IV outcome (follow-up = 12--63 months). The responder rate (including ILAE I-IV) was 100%. CONCLUSION The optimized SEEG-3D RFTC is an effective and safe option for the treatment of drug-resistant insular epilepsy.
Collapse
Affiliation(s)
- Yang Dai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
| | - Huaqiang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
| | - Xiaotong Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China.
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun St., Xicheng District, Beijing, 100053, China.
- Clinical Research Center for Epilepsy, Capital Medical University, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
8
|
Jayapaul P, Gopinath S, Pillai A. Outcome following surgery for insulo-opercular epilepsies. J Neurosurg 2022; 137:1226-1236. [PMID: 35276652 DOI: 10.3171/2021.12.jns212220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the clinical outcome in patients with medically refractory epilepsy who had undergone resective or ablative surgery for suspected insulo-opercular epileptogenic foci. METHODS The prospectively maintained database of patients undergoing epilepsy surgery was reviewed, and all patients who underwent insulo-opercular surgery for medically refractory epilepsy with a minimum of 12 months of postoperative follow-up were identified, excluding those who had insulo-opercular resection in combination with temporal lobectomy. The presurgical electroclinicoradiological data, stereo-EEG (SEEG) findings, resection/ablation patterns, surgical pathology, postoperative seizure outcome, and neurological complications were analyzed. RESULTS Of 407 patients undergoing epilepsy surgery in a 5-year period at the Amrita Advanced Centre for Epilepsy, 24 patients (5.9%) who underwent exclusive insulo-opercular interventions were included in the study. Eleven (46%) underwent surgery on the right side, 12 (50%) on the left side, and the operation was bilateral in 1 (4%). The mean age at surgery was 24.5 ± 12.75 years. Onset of seizures occurred on average at 10.6 ± 9.7 years of life. Characteristic auras were identified in 66% and predominant seizure type was hypermotor (15.4%), automotor (15.4%), hypomotor (11.5%), or a mixed pattern. Seventy-five percent of the seizures recorded on scalp video-EEG occurred during sleep. The 3T MRI results were normal in 12 patients (50%). Direct single-stage surgery was undertaken in 5 patients, and SEEG followed by intervention in 19. Eighteen patients (75%) underwent exclusive resective surgery, 4 (16.7%) underwent exclusive volumetric radiofrequency ablation, and 2 (8.3%) underwent staged radiofrequency ablation and resective surgery. Immediate postoperative neurological deficits occurred in 10/24 (42%), which persisted beyond 12 postoperative months in 3 (12.5%). With a mean follow-up of 25.9 ± 14.6 months, 18 patients (75%) had Engel class I outcome, 3 (12.5%) had Engel class II, and 3 (12.5%) had Engel class III or IV. There was no statistically significant difference in outcomes between MRI-positive versus MRI-negative cases. CONCLUSIONS Surgery for medically refractory epilepsy in insulo-opercular foci is less common and remains a challenge to epilepsy surgery centers. Localization is aided significantly by a careful study of auras and semiology followed by EEG and imaging. The requirement for SEEG is generally high. Satisfactory rates of seizure freedom were achievable independent of the MRI lesional/nonlesional status. Morbidity is higher for insulo-opercular epilepsy surgery compared to other focal epilepsies; hence, the practice and development of minimally invasive strategies for this subgroup of patients undergoing epilepsy surgery is perhaps most important.
Collapse
Affiliation(s)
| | - Siby Gopinath
- 2Department of Neurology, Amrita Advanced Centre for Epilepsy, Amrita Institute of Medical Sciences & Research Centre, Kochi, India
| | | |
Collapse
|
9
|
Li D, Podkorytova I, Dieppa M, Perven G. Pearls & Oy-sters: Two Cases of Stereotactic EEG-Proven Insular Epilepsy With Non-localizing Scalp EEG and Interesting Semiologies. Neurology 2022; 99:437-441. [PMID: 35764400 DOI: 10.1212/wnl.0000000000200993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/03/2022] [Indexed: 11/15/2022] Open
Abstract
Insular epilepsy is a great mimicker and can be mistaken for seizures originating from other areas of the brain or as non-epileptic spells. The semiology of insular epilepsy can include, but is not limited to, auditory illusions, paresthesias, gastric rising, laryngeal constriction, and hyperkinetic movements. These arise from both the functions of the insula itself and its extensive connections with other regions of the brain. Noninvasive workup can be negative or non-localizing due to the insula's location deep within the lateral sulcus. Stereotactic EEG can therefore be an important tool in cases of insular epilepsy so that patients may be appropriately diagnosed and evaluated for potential surgical treatment. We present two cases of epilepsy with non-localizing scalp EEG and challenging semiologies, the workup undertaken to identify them as cases of insular epilepsy, and subsequent surgical treatment and outcomes.
Collapse
Affiliation(s)
- Denise Li
- Adult Neurology Residency Program, University of Texas Southwestern Medical Center
| | - Irina Podkorytova
- Department of Neurology, University of Texas Southwestern Medical Center
| | - Marisara Dieppa
- Department of Neurology, University of Texas Southwestern Medical Center
| | - Ghazala Perven
- Department of Neurology, University of Texas Southwestern Medical Center
| |
Collapse
|
10
|
Passos GAR, Silvado CES, Borba LAB. Drug resistant epilepsy of the insular lobe: A review and update article. Surg Neurol Int 2022; 13:197. [PMID: 35673654 PMCID: PMC9168288 DOI: 10.25259/sni_58_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Epilepsy is a chronic disease that affects millions of people around the world generating great expenses and psychosocial problems burdening the public health in different ways. A considerable number of patients are refractory to the drug treatment requiring a more detailed and specialized investigation to establish the most appropriate therapeutic option. Insular epilepsy is a rare form of focal epilepsy commonly drug resistant and has much of its investigation and treatment involved with the surgical management at some point. The insula or the insular lobe is a portion of the cerebral cortex located in the depth of the lateral sulcus of the brain; its triangular in shape and connects with the other adjacent lobes. The insular lobe is a very interesting and complex portion of the brain related with different functions. Insula in Latin means Island and was initially described in the 18th century but its relation with epilepsy was first reported in the 1940–1950s. Insular lobe epilepsy is generally difficult to identify and confirm due to its depth and interconnections. Initial non-invasive studies generally demonstrate frustrating or incoherent information about the origin of the ictal event. Technological evolution made this pathology to be progressively better recognized and understood enabling professionals to perform the correct diagnosis and choose the ideal treatment for the affected population. Methods: A literature review was performed using MEDLINE/PubMed, Scopus, and Web of Science databases. The terms epilepsy/epileptic seizure of the insula and surgical treatment was used in various combinations. We included studies that were published in English, French, or Portuguese; performed in humans with insular epilepsy who underwent some surgical treatment (microsurgery, laser ablation, or radiofrequency thermocoagulation). Results: Initial search results in 1267 articles. After removing the duplicates 710 remaining articles were analyzed for titles and abstracts applying the inclusion and exclusion criteria. 70 studies met all inclusion criteria and were selected. Conclusion: At present, the main interests and efforts are in the attempt to achieve and standardize the adequate management of the patient with refractory epilepsy of the insular lobe and for that purpose several forms of investigation and treatment were developed. In this paper, we will discuss the characteristics and information regarding the pathology and gather data to identify and choose the best therapeutic option for each case.
Collapse
Affiliation(s)
- Gustavo A. R. Passos
- UFPR Post Graduate Program in Internal Medicine, Department of Neurosurgery, Mackenzie University Hospital,
| | - Carlos E. S. Silvado
- UFPR Post Graduate Program in Internal Medicine, Department of Neurology, Hospital de Clínicas da Universidade Federal do Paraná,
| | - Luis Alencar B. Borba
- Department of Neurosurgery, Hospital de Clínicas da Universidade Federal do Paraná/Mackenzie University Hospital, Curitiba, Brazil
| |
Collapse
|
11
|
Gireesh ED, Lee K, Skinner H, Seo J, Chen PC, Westerveld M, Beegle RD, Castillo E, Baumgartner J. Intracranial EEG and laser interstitial thermal therapy in MRI-negative insular and/or cingulate epilepsy: case series. J Neurosurg 2021; 135:751-759. [PMID: 33307521 DOI: 10.3171/2020.7.jns201912] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The goal of this study was to assess the success rate and complications of stereo-electroencephalogra-phy (sEEG) and laser interstitial thermal therapy (LITT) in the treatment of nonlesional refractory epilepsy in cingulate and insular cortex. METHODS The authors retrospectively analyzed the treatment response in 9 successive patients who underwent insular or cingulate LITT for nonlesional refractory epilepsy at their center between 2011 and 2019. Localization of seizures was based on inpatient video-EEG monitoring, neuropsychological testing, 3-T MRI, PET scan, magnetoencephalography scan, and/or ictal SPECT scan. Eight patients underwent sEEG, and 1 patient had implantation of both sEEG electrodes and subdural grids for localization of epileptogenic zones. LITT was performed in 5 insular cases (4 left and 1 right) and 3 cingulate cases (all left-sided). One patient also underwent both insular and cingulate LITT on the left side. All of the patients who underwent insular LITT as well as 2 of the 3 who underwent cingulate LITT were right-hand dominant. The patient who underwent insular plus cingulate LITT was also right-hand dominant. RESULTS Following LITT, 67% of the patients were seizure free (Engel class I) at follow-up (mean 1.35 years, range 0.6-2.8 years). All patients responded favorably to treatment (Engel class I-III). Two patients developed small intracranial hemorrhages during the sEEG implantation that did not require surgical management. One patient developed a large intracranial hemorrhage during an insular LITT procedure that did require surgical management. That patient experienced aphasia, incoordination, and hemiparesis, which resolved with inpatient rehabilitation. No permanent neurological deficits were noted in any of the patients at last follow-up. Neuropsychological status was stable in this cohort before and after LITT. CONCLUSIONS sEEG can be safely used to localize seizures originating from insular and cingulate cortex. LITT can successfully treat seizures arising from these deep-seated structures. The insula and cingulum should be evaluated more frequently for seizure onset zones.
Collapse
Affiliation(s)
| | - Kihyeong Lee
- 1Epilepsy Center, Neuroscience Institute, AdventHealth
| | - Holly Skinner
- 1Epilepsy Center, Neuroscience Institute, AdventHealth
| | - Joohee Seo
- 1Epilepsy Center, Neuroscience Institute, AdventHealth
| | - Po-Ching Chen
- 1Epilepsy Center, Neuroscience Institute, AdventHealth
- 4MEG Center, Neuroscience Institute, AdventHealth; and
| | | | | | | | | |
Collapse
|
12
|
Kerezoudis P, Singh R, Goyal A, Worrell GA, Marsh WR, Van Gompel JJ, Miller KJ. Insular epilepsy surgery: lessons learned from institutional review and patient-level meta-analysis. J Neurosurg 2021; 136:523-535. [PMID: 34450581 DOI: 10.3171/2021.1.jns203104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Insular lobe epilepsy is a challenging condition to diagnose and treat. Due to anatomical intricacy and proximity to eloquent brain regions, resection of epileptic foci in that region can be associated with significant postoperative morbidity. The aim of this study was to review available evidence on postoperative outcomes following insular epilepsy surgery. METHODS A comprehensive literature search (PubMed/MEDLINE, Scopus, Cochrane) was conducted for studies investigating the postoperative outcomes for seizures originating in the insula. Seizure freedom at last follow-up (at least 12 months) comprised the primary endpoint. The authors also present their institutional experience with 8 patients (4 pediatric, 4 adult). RESULTS A total of 19 studies with 204 cases (90 pediatric, 114 adult) were identified. The median age at surgery was 23 years, and 48% were males. The median epilepsy duration was 8 years, and 17% of patients had undergone prior epilepsy surgery. Epilepsy was lesional in 67%. The most common approach was transsylvian (60%). The most commonly resected area was the anterior insular region (n = 42, 21%), whereas radical insulectomy was performed in 13% of cases (n = 27). The most common pathology was cortical dysplasia (n = 68, 51%), followed by low-grade neoplasm (n = 16, 12%). In the literature, seizure freedom was noted in 60% of pediatric and 69% of adult patients at a median follow-up of 29 months (75% and 50%, respectively, in the current series). A neurological deficit occurred in 43% of cases (10% permanent), with extremity paresis comprising the most common deficit (n = 35, 21%), followed by facial paresis (n = 32, 19%). Language deficits were more common in left-sided approaches (24% vs 2%, p < 0.001). Univariate analysis for seizure freedom revealed a significantly higher proportion of patients with lesional epilepsy among those with at least 12 months of follow-up (77% vs 59%, p = 0.032). CONCLUSIONS These findings may serve as a benchmark when tailoring decision-making for insular epilepsy, and may assist surgeons in their preoperative discussions with patients. Although seizure freedom rates are quite high with insular epilepsy treatment, the associated morbidity needs to be weighed against the potential for seizure freedom.
Collapse
Affiliation(s)
| | - Rohin Singh
- 2Mayo Clinic Alix School of Medicine, Scottsdale, Arizona; and
| | - Anshit Goyal
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - W Richard Marsh
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Kai J Miller
- 1Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
13
|
Ikegaya N, Iwasaki M, Kaneko Y, Kaido T, Kimura Y, Yamamoto T, Sumitomo N, Saito T, Nakagawa E, Sugai K, Sasaki M, Takahashi A, Otsuki T. Cognitive and developmental outcomes after pediatric insular epilepsy surgery for focal cortical dysplasia. J Neurosurg Pediatr 2020; 26:543-551. [PMID: 32764180 DOI: 10.3171/2020.5.peds2058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/07/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cognitive risk associated with insular cortex resection is not well understood. The authors reviewed cognitive and developmental outcomes in pediatric patients who underwent resection of the epileptogenic zone involving the insula. METHODS A review was conducted of 15 patients who underwent resective epilepsy surgery involving the insular cortex for focal cortical dysplasia, with a minimum follow-up of 12 months. The median age at surgery was 5.6 years (range 0.3-13.6 years). Developmental/intelligence quotient (DQ/IQ) scores were evaluated before surgery, within 4 months after surgery, and at 12 months or more after surgery. Repeated measures multivariate ANOVA was used to evaluate the effects on outcomes of the within-subject factor (time) and between-subject factors (resection side, anterior insular resection, seizure control, and antiepileptic drug [AED] reduction). RESULTS The mean preoperative DQ/IQ score was 60.7 ± 22.8. Left-side resection and anterior insular resection were performed in 9 patients each. Favorable seizure control (International League Against Epilepsy class 1-3) was achieved in 8 patients. Postoperative motor deficits were observed in 9 patients (permanent in 6, transient in 3). Within-subject changes in DQ/IQ were not significantly affected by insular resection (p = 0.13). Postoperative changes in DQ/IQ were not significantly affected by surgical side, anterior insular resection, AED reduction, or seizure outcome. Only verbal function showed no significant changes before and after surgery and no significant effects of within-subject factors. CONCLUSIONS Resection involving the insula in children with impaired development or intelligence can be performed without significant reduction in DQ/IQ, but carries the risk of postoperative motor deficits.
Collapse
Affiliation(s)
- Naoki Ikegaya
- Departments of1Neurosurgery and
- 2Department of Neurosurgery, Epilepsy Center, Yokohama City University School of Medicine, Yokohama, Kanagawa
| | | | | | - Takanobu Kaido
- Departments of1Neurosurgery and
- 3Department of Health and Nutrition, Faculty of Health and Nutrition, Osaka Shoin Women's University, Higashi-Osaka, Osaka
| | | | - Tetsuya Yamamoto
- 2Department of Neurosurgery, Epilepsy Center, Yokohama City University School of Medicine, Yokohama, Kanagawa
| | - Noriko Sumitomo
- 4Child Neurology, Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo
| | - Takashi Saito
- 4Child Neurology, Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo
| | - Eiji Nakagawa
- 4Child Neurology, Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo
| | - Kenji Sugai
- 4Child Neurology, Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo
| | - Masayuki Sasaki
- 4Child Neurology, Epilepsy Center, National Center Hospital, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo
| | - Akio Takahashi
- Departments of1Neurosurgery and
- 5Department of Neurosurgery, Shibukawa Medical Center, Shibukawa, Gunma; and
| | - Taisuke Otsuki
- Departments of1Neurosurgery and
- 6Epilepsy Hospital Bethel Japan, Iwanuma, Miyagi, Japan
| |
Collapse
|
14
|
Bouthillier A, Weil AG, Martineau L, Létourneau-Guillon L, Nguyen DK. Operculoinsular cortectomy for refractory epilepsy. Part 1: Is it effective? J Neurosurg 2020; 133:950-959. [PMID: 31629321 DOI: 10.3171/2019.4.jns1912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/19/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with refractory epilepsy of operculoinsular origin are often denied potentially effective surgical treatment with operculoinsular cortectomy (also termed operculoinsulectomy) because of feared complications and the paucity of surgical series with a significant number of cases documenting seizure control outcome. The goal of this study was to document seizure control outcome after operculoinsular cortectomy in a group of patients investigated and treated by an epilepsy team with 20 years of experience with this specific technique. METHODS Clinical, imaging, surgical, and seizure control outcome data of all patients who underwent surgery for refractory epilepsy requiring an operculoinsular cortectomy were retrospectively reviewed. Tumors and progressive encephalitis cases were excluded. Descriptive and uni- and multivariate analyses were done to determine seizure control outcome and predictors. RESULTS Forty-three patients with 44 operculoinsular cortectomies were studied. Kaplan-Meier estimates of complete seizure freedom (first seizure recurrence excluding auras) for years 0.5, 1, 2, and 5 were 70.2%, 70.2%, 65.0%, and 65.0%, respectively. With patients with more than 1 year of follow-up, seizure control outcome Engel class I was achieved in 76.9% (mean follow-up duration 5.8 years; range 1.25-20 years). With multivariate analysis, unfavorable seizure outcome predictors were frontal lobe-like seizure semiology, shorter duration of epilepsy, and the use of intracranial electrodes for invasive monitoring. Suspected causes of recurrent seizures were sparing of the language cortex part of the focus, subtotal resection of cortical dysplasia/polymicrogyria, bilateral epilepsy, and residual epileptic cortex with normal preoperative MRI studies (insula, frontal lobe, posterior parieto-temporal, orbitofrontal). CONCLUSIONS The surgical treatment of operculoinsular refractory epilepsy is as effective as epilepsy surgeries in other brain areas. These patients should be referred to centers with appropriate experience. A frontal lobe-like seizure semiology should command more sampling with invasive monitoring. Recordings with intracranial electrodes are not always required if the noninvasive investigation is conclusive. The complete resection of the epileptic zone is crucial to achieve good seizure control outcome.
Collapse
Affiliation(s)
| | - Alexander G Weil
- 1Divisions of Neurosurgery
- 4Division of Neurosurgery, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
15
|
Bouthillier A, Weil AG, Martineau L, Létourneau-Guillon L, Nguyen DK. Operculoinsular cortectomy for refractory epilepsy. Part 2: Is it safe? J Neurosurg 2020; 133:960-970. [PMID: 31597116 DOI: 10.3171/2019.6.jns191126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/18/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Operculoinsular cortectomy (also termed operculoinsulectomy) is increasingly recognized as a therapeutic option for perisylvian refractory epilepsy. However, most neurosurgeons are reluctant to perform the technique because of previously experienced or feared neurological complications. The goal of this study was to quantify the incidence of basic neurological complications (loss of primary nonneuropsychological functions) associated with operculoinsular cortectomies for refractory epilepsy, and to identify factors predicting these complications. METHODS Clinical, imaging, and surgical data of all patients investigated and surgically treated by our team for refractory epilepsy requiring an operculoinsular cortectomy were retrospectively reviewed. Patients with tumors and encephalitis were excluded. Logistic regression analysis was used for uni- and multivariate statistical analyses. RESULTS Forty-four operculoinsular cortectomies were performed in 43 patients. Although postoperative neurological deficits were frequent (54.5% of procedures), only 3 procedures were associated with a permanent significant neurological deficit. Out of the 3 permanent deficits, only 1 (2.3%; a sensorimotor hemisyndrome) was related to the technique of operculoinsular cortectomy (injury to a middle cerebral artery branch), while the other 2 (arm hypoesthesia and hemianopia) were attributed to cortical resection beyond the operculoinsular area. With multivariate analysis, a postoperative neurological deficit was associated with preoperative insular hypometabolism on PET scan. Postoperative motor deficit (29.6% of procedures) was correlated with fewer years of neurosurgical experience and frontal operculectomies, but not with corona radiata ischemic lesions. Ischemic lesions in the posterior two-thirds of the corona radiata (40.9% of procedures) were associated with parietal operculectomies, but not with posterior insulectomies. CONCLUSIONS Operculoinsular cortectomy for refractory epilepsy is a relatively safe therapeutic option but temporary neurological deficits after surgery are frequent. This study highlights the role of frontal/parietal opercula resections in postoperative complications. Corona radiata ischemic lesions are not clearly related to motor deficits. There were no obvious permanent neurological consequences of losing a part of an epileptic insula, including on the dominant side for language. A low complication rate can be achieved if the following conditions are met: 1) microsurgical technique is applied to spare cortical branches of the middle cerebral artery; 2) the resection of an opercula is done only if the opercula is part of the epileptic focus; and 3) the neurosurgeon involved has proper training and experience.
Collapse
Affiliation(s)
| | - Alexander G Weil
- 1Divisions of Neurosurgery
- 4Division of Neurosurgery, Sainte-Justine University Hospital Center, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
16
|
Baumgartner C, Koren JP, Britto-Arias M, Zoche L, Pirker S. Presurgical epilepsy evaluation and epilepsy surgery. F1000Res 2019; 8. [PMID: 31700611 PMCID: PMC6820825 DOI: 10.12688/f1000research.17714.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
With a prevalence of 0.8 to 1.2%, epilepsy represents one of the most frequent chronic neurological disorders; 30 to 40% of patients suffer from drug-resistant epilepsy (that is, seizures cannot be controlled adequately with antiepileptic drugs). Epilepsy surgery represents a valuable treatment option for 10 to 50% of these patients. Epilepsy surgery aims to control seizures by resection of the epileptogenic tissue while avoiding neuropsychological and other neurological deficits by sparing essential brain areas. The most common histopathological findings in epilepsy surgery specimens are hippocampal sclerosis in adults and focal cortical dysplasia in children. Whereas presurgical evaluations and surgeries in patients with mesial temporal sclerosis and benign tumors recently decreased in most centers, non-lesional patients, patients requiring intracranial recordings, and neocortical resections increased. Recent developments in neurophysiological techniques (high-density electroencephalography [EEG], magnetoencephalography, electrical and magnetic source imaging, EEG-functional magnetic resonance imaging [EEG-fMRI], and recording of pathological high-frequency oscillations), structural magnetic resonance imaging (MRI) (ultra-high-field imaging at 7 Tesla, novel imaging acquisition protocols, and advanced image analysis [post-processing] techniques), functional imaging (positron emission tomography and single-photon emission computed tomography co-registered to MRI), and fMRI significantly improved non-invasive presurgical evaluation and have opened the option of epilepsy surgery to patients previously not considered surgical candidates. Technical improvements of resective surgery techniques facilitate successful and safe operations in highly delicate brain areas like the perisylvian area in operculoinsular epilepsy. Novel less-invasive surgical techniques include stereotactic radiosurgery, MR-guided laser interstitial thermal therapy, and stereotactic intracerebral EEG-guided radiofrequency thermocoagulation.
Collapse
Affiliation(s)
- Christoph Baumgartner
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Johannes P Koren
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Martha Britto-Arias
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Lea Zoche
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Susanne Pirker
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| |
Collapse
|
17
|
Chen YF, Wei R, Yuan GQ, Gao DD, Jin Q, Cui XY, Zhang GX, Guo J. A new role of 11 C-Choline PET in localizing the epileptogenic foci in insular cortex in the patients. CNS Neurosci Ther 2019; 26:144-147. [PMID: 31508896 PMCID: PMC6930826 DOI: 10.1111/cns.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yu-Feng Chen
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Ran Wei
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China
| | - Guan-Qian Yuan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan-Dan Gao
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Qing Jin
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiao-Yu Cui
- School of Sino-Dutch Biomedical and Information Engineering, Northeastern University, Shenyang, China
| | - Guo-Xu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Guo
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
18
|
|
19
|
Baydin S, Gungor A, Holanda VM, Tanriover N, Danish SF. Microneuroanatomy of the Anterior Frontal Laser Trajectory to the Insula. World Neurosurg 2019; 132:e909-e921. [PMID: 31351206 DOI: 10.1016/j.wneu.2019.07.130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Magnetic resonance imaging-guided laser interstitial thermal therapy (LITT) is an emerging minimally invasive procedure for the treatment of deep intracranial lesions. Insular lesions are challenging to treat because of the risk of damaging important surrounding structures. The precise knowledge of the neural structures that are at risk along the trajectory and during the ablation is essential to reduce associated complications. This study aims to describe the relevant anatomy of the anterior frontal LITT trajectory to the insular region by using sectional anatomy and fiber dissection technique. METHODS Three silicone-injected cadaveric heads were used to implant laser catheters bilaterally to the insular region by using a frameless stereotactic technique from a frontal approach. Sections were cut in both the oblique axial plane parallel to the trajectory and in the coronal plane. White matter fiber dissections were used to establish the tracts related to the laser trajectory from lateral to medial and medial to lateral. RESULTS Supraorbital regions were selected as entry points. After crossing the frontal bone, the track intersected the inferior frontal lobe. The catheter was illustrated reaching the insular region medial to the inferior fronto-occipital fasciculus and insular cortex, and superior to the uncinate fasciculus. The uncinate fasciculus, extreme capsule, claustrum, external capsule, and putamen were traversed, preserving the major vascular structures. CONCLUSIONS Independent of the insular area treated, an understanding of the neuroanatomy related to the anterior frontal laser trajectory is essential to improve the ability to perform LITT of this challenging region.
Collapse
Affiliation(s)
- Serhat Baydin
- Department of Neurosurgery, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - Abuzer Gungor
- Department of Neurosurgery, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Vanessa M Holanda
- Center of Neurology and Neurosurgery Associates (NeuroCENNA), Beneficência Portuguesa of São Paulo Hospital, São Paulo-SP, Brazil
| | - Necmettin Tanriover
- Department of Neurosurgery, Istanbul University Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Shabbar F Danish
- Department of Neurosurgery, Rutgers-RWJ Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
20
|
Mullatti N, Landre E, Mellerio C, Oliveira AJ, Laurent A, Turak B, Devaux B, Chassoux F. Stereotactic thermocoagulation for insular epilepsy: Lessons from successes and failures. Epilepsia 2019; 60:1565-1579. [DOI: 10.1111/epi.16092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Nandini Mullatti
- Department of Clinical Neurophysiology King's College Hospital London UK
| | - Elisabeth Landre
- Department of Neurosurgery Sainte‐Anne Hospital Paris‐Descartes University Paris France
| | - Charles Mellerio
- Department of Neuroradiology Sainte‐Anne Hospital Paris‐Descartes University Paris France
| | - Andrea J. Oliveira
- Department of Neurosurgery Sainte‐Anne Hospital Paris‐Descartes University Paris France
| | - Agathe Laurent
- Department of Neurosurgery Sainte‐Anne Hospital Paris‐Descartes University Paris France
| | - Baris Turak
- Department of Neurosurgery Sainte‐Anne Hospital Paris‐Descartes University Paris France
| | - Bertrand Devaux
- Department of Neurosurgery Sainte‐Anne Hospital Paris‐Descartes University Paris France
| | - Francine Chassoux
- Department of Neurosurgery Sainte‐Anne Hospital Paris‐Descartes University Paris France
- Nuclear Medicine Department Frederic Joliot Hospital Department, Commission of Nuclear Energy Orsay Orsay France
| |
Collapse
|
21
|
Jobst BC, Gonzalez-Martinez J, Isnard J, Kahane P, Lacuey N, Lahtoo SD, Nguyen DK, Wu C, Lado F. The Insula and Its Epilepsies. Epilepsy Curr 2019; 19:11-21. [PMID: 30838920 PMCID: PMC6610377 DOI: 10.1177/1535759718822847] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insular seizures are great mimickers of seizures originating elsewhere in the
brain. The insula is a highly connected brain structure. Seizures may only
become clinically evident after ictal activity propagates out of the insula with
semiology that reflects the propagation pattern. Insular seizures with
perisylvian spread, for example, manifest first as throat constriction, followed
next by perioral and hemisensory symptoms, and then by unilateral motor
symptoms. On the other hand, insular seizures may spread instead to the temporal
and frontal lobes and present like seizures originating from these regions. Due
to the location of the insula deep in the brain, interictal and ictal scalp
electroencephalogram (EEG) changes can be variable and misleading. Magnetic
resonance imaging, magnetic resonance spectroscopy, magnetoencephalography,
positron emission tomography, and single-photon computed tomography imaging may
assist in establishing a diagnosis of insular epilepsy. Intracranial EEG
recordings from within the insula, using stereo-EEG or depth electrode
techniques, can prove insular seizure origin. Seizure onset, most commonly seen
as low-voltage, fast gamma activity, however, can be highly localized and easily
missed if the insula is only sparsely sampled. Moreover, seizure spread to the
contralateral insula and other brain regions may occur rapidly. Extensive
sampling of the insula with multiple electrode trajectories is necessary to
avoid these pitfalls. Understanding the functional organization of the insula is
helpful when interpreting the semiology produced by insular seizures. Electrical
stimulation mapping around the central sulcus of the insula results in
paresthesias, while stimulation of the posterior insula typically produces
painful sensations. Visceral sensations are the next most common result of
insular stimulation. Treatment of insular epilepsy is evolving, but poses
challenges. Surgical resections of the insula are effective but risk significant
morbidity if not carefully planned. Neurostimulation is an emerging option for
treatment, especially for seizures with onset in the posterior insula. The close
association of the insula with marked autonomic changes has led to interest in
the role of the insula in sudden unexpected death in epilepsy and warrants
additional study with larger patient cohorts.
Collapse
Affiliation(s)
| | | | - Jean Isnard
- 3 Hospices Civils de Lyon, Hospital for Neurology and Neurosurgery, Lyon, France
| | | | - Nuria Lacuey
- 5 University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Samden D Lahtoo
- 5 University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | | | - Chengyuan Wu
- 7 Thomas Jefferson University, Philadelphia, PA, USA
| | - Fred Lado
- 8 Northwell Health, Great Neck, NY, USA
| |
Collapse
|
22
|
d'Orio P, Rizzi M, Mariani V, Pelliccia V, Lo Russo G, Cardinale F, Nichelatti M, Nobili L, Cossu M. Surgery in patients with childhood-onset epilepsy: analysis of complications and predictive risk factors for a severely complicated course. J Neurol Neurosurg Psychiatry 2019; 90:84-89. [PMID: 30100551 DOI: 10.1136/jnnp-2018-318282] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 11/03/2022]
Abstract
OBJECT To compare the occurrence of surgery-related complications in patients with childhood-onset focal epilepsy operated on in the paediatric or in the adult age. To investigate risk factors for surgery-related complications in the whole cohort, with special attention to age at surgery and severe morbidity. METHODS A cohort of 1282 patients operated on for childhood-onset focal epilepsy was retrospectively analysed. Occurrence of surgery-related complications, including a severely complicated course (SCC: surgical complication requiring reoperation and/or permanent neurological deficit and/or death), was compared between patients operated on in the paediatric age (<16 year-old; 452 cases) and, respectively, in adulthood (≥16 year-old; 830 cases). The whole cohort of patients was also evaluated for risk factors for a SCC. RESULTS At last contact (median follow-up 98 months), 74.5% of patients were in Engel's class I (78.0% of children and 73.0% of adults). One hundred patients (7.8%) presented a SCC (6.4% for children and 8.6% for adult patients). Postoperative intracranial haemorrhages occurred more frequently in adult cases. At multivariate analysis, increasing age at operation, multilobar surgery, resections in the rolandic/perirolandic and in insulo-opercular regions were independent risk factors for a SCC. CONCLUSIONS Surgery for childhood-onset focal epilepsy provides excellent results on seizures and an acceptable safety profile at any age. Nevertheless, our results suggest that increasing age at surgery is associated with an increase in odds of developing severe surgery-related complications. These findings support the recommendation that children with drug-resistant, symptomatic (or presumed symptomatic) focal epilepsy should be referred for a surgical evaluation as early as possible after seizure onset.
Collapse
Affiliation(s)
- Piergiorgio d'Orio
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Michele Rizzi
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milano, Italy.,Department of Neuroscience, University of Parma, Parma, Italy
| | - Valeria Mariani
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Veronica Pelliccia
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giorgio Lo Russo
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Francesco Cardinale
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Michele Nichelatti
- Service of Biostatistics, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Lino Nobili
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milano, Italy.,Child Neuropsychiatry Unit, DINOGMI, University of Genoa, Genoa, Italy, Istituto Giannina Gaslini, Genova, Italy
| | - Massimo Cossu
- "Claudio Munari" Epilepsy Surgery Centre, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, Milano, Italy
| |
Collapse
|
23
|
Key B, Brown D. Designing Brains for Pain: Human to Mollusc. Front Physiol 2018; 9:1027. [PMID: 30127750 PMCID: PMC6088194 DOI: 10.3389/fphys.2018.01027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
There is compelling evidence that the "what it feels like" subjective experience of sensory stimuli arises in the cerebral cortex in both humans as well as mammalian experimental animal models. Humans are alone in their ability to verbally communicate their experience of the external environment. In other species, sensory awareness is extrapolated on the basis of behavioral indicators. For instance, cephalopods have been claimed to be sentient on the basis of their complex behavior and anecdotal reports of human-like intelligence. We have interrogated the findings of avoidance learning behavioral paradigms and classical brain lesion studies and conclude that there is no evidence for cephalopods feeling pain. This analysis highlighted the questionable nature of anthropometric assumptions about sensory experience with increased phylogenetic distance from humans. We contend that understanding whether invertebrates such as molluscs are sentient should first begin with defining the computational processes and neural circuitries underpinning subjective awareness. Using fundamental design principles, we advance the notion that subjective awareness is dependent on observer neural networks (networks that in some sense introspect the neural processing generating neural representations of sensory stimuli). This introspective process allows the observer network to create an internal model that predicts the neural processing taking place in the network being surveyed. Predictions arising from the internal model form the basis of a rudimentary form of awareness. We develop an algorithm built on parallel observer networks that generates multiple levels of sensory awareness. A network of cortical regions in the human brain has the appropriate functional properties and neural interconnectivity that is consistent with the predicted circuitry of the algorithm generating pain awareness. By contrast, the cephalopod brain lacks the necessary neural circuitry to implement such an algorithm. In conclusion, we find no compelling behavioral, functional, or neuroanatomical evidence to indicate that cephalopods feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Deborah Brown
- School of Historical and Philosophical Inquiry, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
24
|
Obaid S, Tucholka A, Ghaziri J, Jodoin PM, Morency F, Descoteaux M, Bouthillier A, Nguyen DK. Cortical thickness analysis in operculo-insular epilepsy. NEUROIMAGE-CLINICAL 2018; 19:727-733. [PMID: 30003025 PMCID: PMC6040575 DOI: 10.1016/j.nicl.2018.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/06/2023]
Abstract
Background In temporal lobe epilepsy (TLE), advanced neuroimaging techniques reveal anomalies extending beyond the temporal lobe such as thinning of fronto-central cortices. Operculo-insular epilepsy (OIE) is an under-recognized and poorly characterized condition with the potential of mimicking TLE. In this work, we investigated insular and extra-insular cortical thickness (CT) changes in OIE. Methods All participants (14 patients with refractory OIE, 9 age- and sex-matched patients with refractory TLE and 26 healthy controls) underwent a T1-weighted acquisition on a 3 T MRI. Anatomical images were processed with Advanced Normalization Tools. Between-group analysis of CT was performed using a two-sided t-test (threshold of p < 0.05 after correction for multiple comparisons; cut-off threshold of 250 voxels) between (i) patients with OIE vs TLE, and (ii) patients with OIE vs healthy controls. Results Significant widespread thinning was observed in OIE patients as compared with healthy controls mainly in the ipsilateral insula, peri-rolandic region, orbito-frontal area, mesiotemporal structures and lateral temporal neocortex. Contralateral cortical shrinkage followed a similar albeit milder and less diffuse pattern.The CT of OIE patients was equal or reduced relative to the TLE group for every cortical region analyzed. Thinning was observed diffusely in OIE patients, predominantly inboth insulae and the ipsilateral occipito-temporal area. Conclusion Our results reveal structural anomalies extending beyond the operculo-insular area in OIE.
Collapse
Affiliation(s)
- Sami Obaid
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Service de Neurochirurgie, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Alan Tucholka
- Barcelona Beta Brain Research Center, Foundation Pasqual Maragall, Barcelona, Spain
| | - Jimmy Ghaziri
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de psychologie, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Pierre-Marc Jodoin
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Félix Morency
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alain Bouthillier
- Service de Neurochirurgie, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Dang K Nguyen
- Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada; Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Service de Neurologie, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|