1
|
Zhang S, Zhang Y, Sun X. Targeting GPR133 via miR-106a-5p inhibits the proliferation, invasion, migration and epithelial-mesenchymal transition (EMT) of glioma cells. Int J Neurosci 2024; 134:991-1002. [PMID: 37036013 DOI: 10.1080/00207454.2023.2201873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/07/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Background: Glioma is the most common malignant brain tumor. GPR133 is a key factor in the progression of glioma. However, the role of GPR133 in glioma invasion and EMT and the microRNAs (miRNAs) associated with this pathway are still poorly understood.Objective: This study aims to elucidate the biological function of miR-106a-5p and GPR133 in glioma as well as the molecular mechanism of their interaction.Methods: The mRNA expression of miR-106a-5p and GPR133 in glioma specimens and cells was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The protein level of GPR133 and the levels of invasion- and EMT-related proteins were measured by western blotting. miR-106a-5p and GPR133 function in glioma cells was determined through cell counting kit-8 (CCK-8), transwell, wound healing, colony formation assays in vitro and xenograft assays in vivo. To determine the targeting relationship between miR-106a-5p and GPR133, a dual-luciferase reporter assay was conducted.Results: A marked reduction in miR-106a-5p expression was observed in glioma cells and specimens. Patients with high expression of miR-106a-5p had a good prognosis, while patients with high expression of GPR133 had a shorter OS. Additionally, overexpression of miR-106a-5p or downregulation of GPR133 inhibited the progression of glioma cells. Furthermore, miR-106a-5p negatively regulated GPR133 expression by binding to its 3'-UTR, and restrained the invasion, migration, proliferation and EMT of glioma cells by targeting GPR133.Conclusions: miR-106a-5p is a tumor suppressor that negatively regulates GPR133. The miR-106a-5p/GPR133 axis could potentially serve as a therapeutic target for glioma.
Collapse
Affiliation(s)
- Shiyuan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PRChina
- Department of Neurosurgery, Suining Central Hospital, Suining, PR China
| | - Yuan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PRChina
| | - Xiaochuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PRChina
| |
Collapse
|
2
|
Stephan G, Haddock S, Wang S, Erdjument-Bromage H, Liu W, Ravn-Boess N, Frenster JD, Bready D, Cai J, Ronnen R, Sabio-Ortiz J, Fenyo D, Neubert TA, Placantonakis DG. Modulation of GPR133 (ADGRD1) signaling by its intracellular interaction partner extended synaptotagmin 1. Cell Rep 2024; 43:114229. [PMID: 38758649 PMCID: PMC11209873 DOI: 10.1016/j.celrep.2024.114229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 10/12/2023] [Accepted: 04/26/2024] [Indexed: 05/19/2024] Open
Abstract
GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Sara Haddock
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Rebecca Ronnen
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas A Neubert
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
Žáčková S, Pávová M, Trylčová J, Chalupová J, Priss A, Lukšan O, Weber J. Upregulation of mRNA Expression of ADGRD1/GPR133 and ADGRG7/GPR128 in SARS-CoV-2-Infected Lung Adenocarcinoma Calu-3 Cells. Cells 2024; 13:791. [PMID: 38786015 PMCID: PMC11119037 DOI: 10.3390/cells13100791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.
Collapse
Affiliation(s)
- Sandra Žáčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
- Department of Genetics and Microbiology, Charles University, Faculty of Sciences, 128 44 Prague, Czech Republic
| | - Marcela Pávová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jitka Chalupová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Ondřej Lukšan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic; (S.Ž.); (M.P.); (J.T.); (J.C.); (A.P.); (O.L.)
| |
Collapse
|
4
|
Ravn-Boess N, Roy N, Hattori T, Bready D, Donaldson H, Lawson C, Lapierre C, Korman A, Rodrick T, Liu E, Frenster JD, Stephan G, Wilcox J, Corrado AD, Cai J, Ronnen R, Wang S, Haddock S, Sabio Ortiz J, Mishkit O, Khodadadi-Jamayran A, Tsirigos A, Fenyö D, Zagzag D, Drube J, Hoffmann C, Perna F, Jones DR, Possemato R, Koide A, Koide S, Park CY, Placantonakis DG. The expression profile and tumorigenic mechanisms of CD97 (ADGRE5) in glioblastoma render it a targetable vulnerability. Cell Rep 2023; 42:113374. [PMID: 37938973 PMCID: PMC10841603 DOI: 10.1016/j.celrep.2023.113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain malignancy. Adhesion G protein-coupled receptors (aGPCRs) have attracted interest for their potential as treatment targets. Here, we show that CD97 (ADGRE5) is the most promising aGPCR target in GBM, by virtue of its de novo expression compared to healthy brain tissue. CD97 knockdown or knockout significantly reduces the tumor initiation capacity of patient-derived GBM cultures (PDGCs) in vitro and in vivo. We find that CD97 promotes glycolytic metabolism via the mitogen-activated protein kinase (MAPK) pathway, which depends on phosphorylation of its C terminus and recruitment of β-arrestin. We also demonstrate that THY1/CD90 is a likely CD97 ligand in GBM. Lastly, we show that an anti-CD97 antibody-drug conjugate selectively kills tumor cells in vitro. Our studies identify CD97 as a regulator of tumor metabolism, elucidate mechanisms of receptor activation and signaling, and provide strong scientific rationale for developing biologics to target it therapeutically in GBM.
Collapse
Affiliation(s)
- Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Nainita Roy
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Takamitsu Hattori
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hayley Donaldson
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christopher Lawson
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Cathryn Lapierre
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Aryeh Korman
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tori Rodrick
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Enze Liu
- Department of Medicine, Division of Hematology/Oncology, Indiana University, Indianapolis, IN 46202, USA
| | - Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jordan Wilcox
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Alexis D Corrado
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rebecca Ronnen
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara Haddock
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jonathan Sabio Ortiz
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Orin Mishkit
- Preclinical Imaging Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Aris Tsirigos
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Zagzag
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Drube
- Institute for Molecular Cell Biology, Universitätsklinikum Jena, 07745 Jena, Germany
| | - Carsten Hoffmann
- Institute for Molecular Cell Biology, Universitätsklinikum Jena, 07745 Jena, Germany
| | | | - Drew R Jones
- Metabolomics Laboratory, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Richard Possemato
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Christopher Y Park
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
5
|
Stephan G, Erdjument-Bromage H, Liu W, Frenster JD, Ravn-Boess N, Bready D, Cai J, Fenyo D, Neubert T, Placantonakis DG. Modulation of GPR133 (ADGRD1) Signaling by its Intracellular Interaction Partner Extended Synaptotagmin 1 (ESYT1). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527921. [PMID: 36798364 PMCID: PMC9934660 DOI: 10.1101/2023.02.09.527921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
GPR133 (ADGRD1) is an adhesion G protein-coupled receptor that signals through Gαs and is required for growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM impairs tumor growth in vitro, suggesting functions of ESYT1 beyond the interaction with GPR133. Our findings suggest a novel mechanism for modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Joshua D. Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Devin Bready
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Cai
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyo
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Thomas Neubert
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology and Kimmel Center for Biology and Medicine at the Skirball Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Health and Experimental Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
6
|
Lei P, Wang H, Yu L, Xu C, Sun H, Lyu Y, Li L, Zhang DL. A correlation study of adhesion G protein-coupled receptors as potential therapeutic targets in Uterine Corpus Endometrial cancer. Int Immunopharmacol 2022; 108:108743. [DOI: 10.1016/j.intimp.2022.108743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
|
7
|
Stephan G, Frenster JD, Liebscher I, Placantonakis DG. Activation of the adhesion G protein-coupled receptor GPR133 by antibodies targeting its N-terminus. J Biol Chem 2022; 298:101949. [PMID: 35447113 PMCID: PMC9133650 DOI: 10.1016/j.jbc.2022.101949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
We recently demonstrated that GPR133 (ADGRD1), an adhesion G protein-coupled receptor involved in raising cytosolic cAMP levels, is necessary for growth of glioblastoma (GBM) and is de novo expressed in GBM relative to normal brain tissue. Our previous work suggested that dissociation of autoproteolytically generated N-terminal and C-terminal fragments of GPR133 at the plasma membrane correlates with receptor activation and signaling. To promote the goal of developing biologics that modulate GPR133 function, we investigated the effects of antibodies against the N-terminus of GPR133 on receptor signaling. Here, we show that treatment of HEK293T cells overexpressing GPR133 with these antibodies increased cAMP levels in a concentration-dependent manner. Analysis of culture medium following antibody treatment further indicated the presence of complexes of these antibodies with the autoproteolytically cleaved N-terminal fragments of GPR133. In addition, cells expressing a cleavage-deficient mutant of GPR133 (H543R) did not respond to antibody stimulation, suggesting that the effect is cleavage dependent. Finally, we demonstrate the antibody-mediated stimulation of WT GPR133, but not the cleavage-deficient H543R mutant, was reproducible in patient-derived GBM cells. These findings provide a paradigm for modulation of GPR133 function with biologics and support the hypothesis that the intramolecular cleavage in the N-terminus modulates receptor activation and signaling.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA.
| | - Joshua D Frenster
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Ines Liebscher
- Rudolf Schönheimer Institute for Biochemistry, Molecular Biochemistry, University of Leipzig, Leipzig, Germany
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA; Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA; Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
8
|
Structural basis of tethered agonism of the adhesion GPCRs ADGRD1 and ADGRF1. Nature 2022; 604:779-785. [PMID: 35418679 PMCID: PMC9046087 DOI: 10.1038/s41586-022-04580-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are essential for a variety of physiological processes such as immune responses, organ development, cellular communication, proliferation and homeostasis1–7. An intrinsic manner of activation that involves a tethered agonist in the N-terminal region of the receptor has been proposed for the aGPCRs8,9, but its molecular mechanism remains elusive. Here we report the G protein-bound structures of ADGRD1 and ADGRF1, which exhibit many unique features with regard to the tethered agonism. The stalk region that proceeds the first transmembrane helix acts as the tethered agonist by forming extensive interactions with the transmembrane domain; these interactions are mostly conserved in ADGRD1 and ADGRF1, suggesting that a common stalk–transmembrane domain interaction pattern is shared by members of the aGPCR family. A similar stalk binding mode is observed in the structure of autoproteolysis-deficient ADGRF1, supporting a cleavage-independent manner of receptor activation. The stalk-induced activation is facilitated by a cascade of inter-helix interaction cores that are conserved in positions but show sequence variability in these two aGPCRs. Furthermore, the intracellular region of ADGRF1 contains a specific lipid-binding site, which proves to be functionally important and may serve as the recognition site for the previously discovered endogenous ADGRF1 ligand synaptamide. These findings highlight the diversity and complexity of the signal transduction mechanisms of the aGPCRs. Cryo-electron microscopy structures of the adhesion G protein-coupled receptors ADGRD1 and ADGRF1 provide insight into how these receptors are activated in an intrinsic manner through a ‘stalk’ region that acts as a tethered agonist.
Collapse
|
9
|
Wu G, Zhai D, Xie J, Zhu S, Liang Z, Liu X, Zhao Z. N 6 -methyladenosine (m 6 A) RNA modification of G protein-coupled receptor 133 increases proliferation of lung adenocarcinoma. FEBS Open Bio 2021; 12:571-581. [PMID: 34185971 PMCID: PMC8886537 DOI: 10.1002/2211-5463.13244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/30/2021] [Accepted: 06/28/2021] [Indexed: 11/15/2022] Open
Abstract
Lung adenocarcinoma (LUAD) accounts for almost 40% of lung cancers, leading to significant associated morbidity and mortality rates. However, the mechanism of LUAD tumorigenesis remains far from clear. Here, we scanned down‐regulated genes involved in LUAD sourced from The Cancer Genome Atlas and Gene Expression Omnibus data and focused on G protein‐coupled receptor 133 (GPR133). We offer compelling evidence that GPR133 was expressed at low levels in the setting of LUAD, and higher expression was positively related to a better prognosis among patients with LUAD. Functionally, GPR133 inhibited cell proliferation and tumor growth in vitro and in vivo. Regarding the mechanism, flow cytometry assays and western blot assays showed that GPR133 enhanced p21 and decreased cyclin B1 expression, thus triggering LUAD cells at G2/M‐phase arrest. Consistent with this, we evaluated the expression levels of cell‐cycle biomarkers and found that bioinformatics analysis combined with N6‐methyladenosine (methylation at the N6 position in adenosine) RNA immunoprecipitation‐qPCR assay indicated that GPR133 expression was down‐regulated by this modification. Moreover, we observed that methyltransferase‐like 3 was impaired in LUAD, and that it is able to significantly increase levels of GPR133 by enhancing its RNA stability. In conclusion, we found that GPR133 expression was down‐regulated in LUAD via N6‐methyladenosine modification. Increasing GPR133 levels could suppress LUAD cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Guixiong Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.,Respiratory Department, The People's Hospital of Wuzhou, Sanlong Avenue139#, Wuzhou, 543002, Guangxi, China
| | - Dongfeng Zhai
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Hengzhigang Road 78#, Guangzhou, 510095, Guangdong, China
| | - Jiemei Xie
- Respiratory Department, The People's Hospital of Wuzhou, Sanlong Avenue139#, Wuzhou, 543002, Guangxi, China
| | - Shuiquan Zhu
- Respiratory Department, The People's Hospital of Wuzhou, Sanlong Avenue139#, Wuzhou, 543002, Guangxi, China
| | - Zhuo Liang
- Respiratory Department, The People's Hospital of Wuzhou, Sanlong Avenue139#, Wuzhou, 543002, Guangxi, China
| | - Xin Liu
- Department of Clinical Laboratory, Guangzhou Chest Hospital, Hengzhigang Road 62#, Guangzhou, 510095, Guangdong, China
| | - Ziwen Zhao
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, 510080, Guangzhou, China
| |
Collapse
|
10
|
Functional impact of intramolecular cleavage and dissociation of adhesion G protein-coupled receptor GPR133 (ADGRD1) on canonical signaling. J Biol Chem 2021; 296:100798. [PMID: 34022221 PMCID: PMC8215292 DOI: 10.1016/j.jbc.2021.100798] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022] Open
Abstract
GPR133 (ADGRD1), an adhesion G protein–coupled receptor (GPCR) whose canonical signaling activates GαS-mediated generation of cytosolic cAMP, has been shown to be necessary for the growth of glioblastoma (GBM), a brain malignancy. The extracellular N terminus of GPR133 is thought to be autoproteolytically cleaved into N-terminal and C- terminal fragments (NTF and CTF, respectively). However, the role of this cleavage in receptor activation remains unclear. Here, we used subcellular fractionation and immunoprecipitation approaches to show that the WT GPR133 receptor is cleaved shortly after protein synthesis and generates significantly more canonical signaling than an uncleavable point mutant GPR133 (H543R) in patient-derived GBM cultures and HEK293T cells. After cleavage, the resulting NTF and CTF remain noncovalently bound to each other until the receptor is trafficked to the plasma membrane, where we demonstrated NTF–CTF dissociation occurs. Using a fusion of the CTF of GPR133 and the N terminus of thrombin-activated human protease-activated receptor 1 as a controllable proxy system to test the effect of intramolecular cleavage and dissociation, we also showed that thrombin-induced cleavage and shedding of the human protease-activated receptor 1 NTF increased intracellular cAMP levels. These results support a model wherein dissociation of the NTF from the CTF at the plasma membrane promotes GPR133 activation and downstream signaling. These findings add depth to our understanding of the molecular life cycle and mechanism of action of GPR133 and provide critical insights that will inform therapeutic targeting of GPR133 in GBM.
Collapse
|
11
|
Abstract
Background Members of the adhesion family of G protein-coupled receptors (GPCRs) have received attention for their roles in health and disease, including cancer. Over the past decade, several members of the family have been implicated in the pathogenesis of glioblastoma. Methods Here, we discuss the basic biology of adhesion GPCRs and review in detail specific members of the receptor family with known functions in glioblastoma. Finally, we discuss the potential use of adhesion GPCRs as novel treatment targets in neuro-oncology.
Collapse
Affiliation(s)
- Gabriele Stephan
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Niklas Ravn-Boess
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Dimitris G Placantonakis
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, New York, USA.,Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA.,Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Frenster JD, Kader M, Kamen S, Sun J, Chiriboga L, Serrano J, Bready D, Golub D, Ravn-Boess N, Stephan G, Chi AS, Kurz SC, Jain R, Park CY, Fenyo D, Liebscher I, Schöneberg T, Wiggin G, Newman R, Barnes M, Dickson JK, MacNeil DJ, Huang X, Shohdy N, Snuderl M, Zagzag D, Placantonakis DG. Expression profiling of the adhesion G protein-coupled receptor GPR133 (ADGRD1) in glioma subtypes. Neurooncol Adv 2020; 2:vdaa053. [PMID: 32642706 PMCID: PMC7262742 DOI: 10.1093/noajnl/vdaa053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Glioma is a family of primary brain malignancies with limited treatment options and in need of novel therapies. We previously demonstrated that the adhesion G protein-coupled receptor GPR133 (ADGRD1) is necessary for tumor growth in adult glioblastoma, the most advanced malignancy within the glioma family. However, the expression pattern of GPR133 in other types of adult glioma is unknown. Methods We used immunohistochemistry in tumor specimens and non-neoplastic cadaveric brain tissue to profile GPR133 expression in adult gliomas. Results We show that GPR133 expression increases as a function of WHO grade and peaks in glioblastoma, where all tumors ubiquitously express it. Importantly, GPR133 is expressed within the tumor bulk, as well as in the brain-infiltrating tumor margin. Furthermore, GPR133 is expressed in both isocitrate dehydrogenase (IDH) wild-type and mutant gliomas, albeit at higher levels in IDH wild-type tumors. Conclusion The fact that GPR133 is absent from non-neoplastic brain tissue but de novo expressed in glioma suggests that it may be exploited therapeutically.
Collapse
Affiliation(s)
- Joshua D Frenster
- Departments of Neurosurgery, New York, New York, USA.,NYU Grossman School of Medicine, New York, New York, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Michael Kader
- Departments of Neurosurgery, New York, New York, USA
| | | | - James Sun
- Departments of Neurosurgery, New York, New York, USA
| | - Luis Chiriboga
- Pathology, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Devin Bready
- Departments of Neurosurgery, New York, New York, USA
| | | | | | | | - Andrew S Chi
- Neurology, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Sylvia C Kurz
- Neurology, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Rajan Jain
- Radiology, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA
| | | | - David Fenyo
- Biochemistry and Molecular Pharmacology, New York, New York, USA.,Institute for Systems Genetics, NYU Grossman School of Medicine, New York, New York, USA
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | | | | | | | | | - Douglas J MacNeil
- Office for Therapeutic Alliances, NYU Grossman School of Medicine, New York, New York, USA
| | - Xinyan Huang
- Office for Therapeutic Alliances, NYU Grossman School of Medicine, New York, New York, USA
| | - Nadim Shohdy
- Office for Therapeutic Alliances, NYU Grossman School of Medicine, New York, New York, USA
| | - Matija Snuderl
- Pathology, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA
| | - David Zagzag
- Departments of Neurosurgery, New York, New York, USA.,Pathology, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Dimitris G Placantonakis
- Departments of Neurosurgery, New York, New York, USA.,NYU Grossman School of Medicine, New York, New York, USA; Kimmel Center for Stem Cell Biology, NYU Grossman School of Medicine, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA.,Brain and Spine Tumor Center, NYU Grossman School of Medicine, New York, New York, USA.,Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
13
|
Scholz N. Cancer Cell Mechanics: Adhesion G Protein-coupled Receptors in Action? Front Oncol 2018; 8:59. [PMID: 29594040 PMCID: PMC5859372 DOI: 10.3389/fonc.2018.00059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
In mammals, numerous organ systems are equipped with adhesion G protein-coupled receptors (aGPCRs) to shape cellular processes including migration, adhesion, polarity and guidance. All of these cell biological aspects are closely associated with tumor cell biology. Consistently, aberrant expression or malfunction of aGPCRs has been associated with dysplasia and tumorigenesis. Mounting evidence indicates that cancer cells comprise viscoelastic properties that are different from that of their non-tumorigenic counterparts, a feature that is believed to contribute to the increased motility and invasiveness of metastatic cancer cells. This is particularly interesting in light of the recent identification of the mechanosensitive facility of aGPCRs. aGPCRs are signified by large extracellular domains (ECDs) with adhesive properties, which promote the engagement with insoluble ligands. This configuration may enable reliable force transmission to the ECDs and may constitute a molecular switch, vital for mechano-dependent aGPCR signaling. The investigation of aGPCR function in mechanosensation is still in its infancy and has been largely restricted to physiological contexts. It remains to be elucidated if and how aGPCR function affects the mechanoregulation of tumor cells, how this may shape the mechanical signature and ultimately determines the pathological features of a cancer cell. This article aims to view known aGPCR functions from a biomechanical perspective and to delineate how this might impinge on the mechanobiology of cancer cells.
Collapse
Affiliation(s)
- Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|