Deng J, He Z. Characterizing Risk of In-Hospital Mortality Following Subarachnoid Hemorrhage Using Machine Learning: A Retrospective Study.
Front Surg 2022;
9:891984. [PMID:
36034376 PMCID:
PMC9407038 DOI:
10.3389/fsurg.2022.891984]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Background
Subarachnoid hemorrhage has a high rate of disability and mortality, and the ability to use existing disease severity scores to estimate the risk of adverse outcomes is limited. Collect relevant information of patients during hospitalization to develop more accurate risk prediction models, using logistic regression (LR) and machine learning (ML) technologies, combined with biochemical information.
Methods
Patient-level data were extracted from MIMIC-IV data. The primary outcome was in-hospital mortality. The models were trained and tested on a data set (ratio 70:30) including age and key past medical history. The recursive feature elimination (RFE) algorithm was used to screen the characteristic variables; then, the ML algorithm was used to analyze and establish the prediction model, and the validation set was used to further verify the effectiveness of the model.
Result
Of the 1,787 patients included in the mimic database, a total of 379 died during hospitalization. Recursive feature abstraction (RFE) selected 20 variables. After simplification, we determined 10 features, including the Glasgow coma score (GCS), glucose, sodium, chloride, SPO2, bicarbonate, temperature, white blood cell (WBC), heparin use, and sepsis-related organ failure assessment (SOFA) score. The validation set and Delong test showed that the simplified RF model has a high AUC of 0.949, which is not significantly different from the best model. Furthermore, in the DCA curve, the simplified GBM model has relatively higher net benefits. In the subgroup analysis of non-traumatic subarachnoid hemorrhage, the simplified GBM model has a high AUC of 0.955 and relatively higher net benefits.
Conclusions
ML approaches significantly enhance predictive discrimination for mortality following subarachnoid hemorrhage compared to existing illness severity scores and LR. The discriminative ability of these ML models requires validation in external cohorts to establish generalizability.
Collapse